# A preliminary study of the frequencies infrared spectrum of the $\vartheta_{4}$ band of monoisotopic ${ }^{34} \mathrm{SF}_{6}$ 

Mohamed MESKINE, Okkacha OUARDI and Abdelkrim KAAROUR<br>University D. Moulay Tahar, BP138, EN-NASR 20 000, Saida-ALGERIA<br>Physicochemical research laboratory, 184 Avenue Mokadem Ahmed, 20221 O/Brahim, Saida-ALGERIA<br>e-mail: meskine202002@yahoo.fr

Received: 13.10.2011


#### Abstract

Octahedral formalism based on the notions of molecular symmetry is used in the calculation of the position lines of the $\vartheta_{4}$ band of ${ }^{34} \mathrm{SF}_{6}$; we used an experimental spectrum near $650 \mathrm{~cm}^{-1}$. This spectrum was analysed using XTDS and SPVIEW software's, developed in Dijon, France. We have 37 parameters to determined at the six order and for $J_{\max }=95$, using 1497 data. We have obtained an $R M S=0.598 \times 10^{-3}$ $\mathrm{cm}^{-1}$.


Key Words: Octahedral molecule, tensorial formalism, Hamiltonian, XTDS, SPVIEW

## 1. Introduction

Sulphur hexafluoride is one of heaviest gases known, its density being $139 \mathrm{~kg} / \mathrm{m}^{3}$ at $20{ }^{\circ} \mathrm{C}$ and 0.1 Mpa (approximately one atmosphere) pressure, five times heavier than air. Its molecular mass is 146.06 g , it is colourless, odourless non-toxic and inflammable. The $\mathrm{SF}_{6}$ is octahedral with Sulphur at the molecule's centre and the six fluorine atoms at each vertex. S-F and F-F bond lengths are $1.5 \AA$ and $2.21 \AA$. Sulphur hexafluoride having a long lifetime and being a strong absorber of infrared in the atmosphere makes it an atmospheric and thermal antagonist. In fact, this molecule is classified among gases contributing to greenhouse warming at the 1997 conference on the climatic change in Kyoto, Japan. With this in mind, we have undertook a systematic study of the $v_{4}$ absorption band of monoisotopic ${ }^{34} \mathrm{SF}_{6}$ ( $4.21 \%$ in the atmosphere).

The $v_{4}$ absorption band comprises the six vibration modes $\vartheta_{1}, \vartheta_{2}, \vartheta_{3}, \vartheta_{4}, \vartheta_{5}$ and $\vartheta_{6}$ of symmetry $\mathrm{A}_{1 g}, \mathrm{E}_{g}, \mathrm{~F}_{1 u}, \mathrm{~F}_{1 u}, \mathrm{~F}_{2 g}, \mathrm{~F}_{2 u}$, respectively (given in Table 1) [1]. We used the tensorial form of the Hamiltonian to calculate all possible frequencies of the rovibrational spectrum of this molecule. This form make it is possible to developed the Hamiltonian as a linear combination of the rovibrational operators, obtained by coupling in $\mathrm{O}_{h}$ group. On the basis of experimental spectrum (the experimental conditions are given in Table 2) [2], we determined the parameters of the Hamiltonian to sixth order and $J_{\max }=95$. XTDS and SPVIEW developed
in Dijon, French and freely downloadable via the Internet* make it possible to carry out most of studies of octahedral molecules [3].

Table 1. The vibration normal modes of $\mathrm{SF}_{6}$.

| Normal mode | $\vartheta_{1}$ | $\vartheta_{2}$ | $\vartheta_{3}$ | $\vartheta_{4}$ | $\vartheta_{5}$ | $\vartheta_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symmetry in $\mathrm{O}_{\mathrm{h}}$ | $\mathrm{A}_{1 \mathrm{~g}}$ | $\mathrm{E}_{\mathrm{g}}$ | $\mathrm{F}_{1 \mathrm{u}}$ | $\mathrm{F}_{1 \mathrm{u}}$ | $\mathrm{F}_{2 \mathrm{~g}}$ | $\mathrm{F}_{2 \mathrm{u}}$ |
| Degeneracy | 1 | 2 | 3 | 3 | 3 | 3 |
| Activity <br> Type | RamanRaman Infrared $_{j}$ <br> Stretching |  |  | Infrared Raman <br>  Inactive <br> Bending  |  |  |

Table 2. Experiment conditions.

| Experiment |  |  |
| :---: | :---: | :---: |
| Temperature | Pressure | Resolution |
| $213{ }^{\circ} \mathrm{K}$ | 2.8 mbar | $0.0028 \mathrm{~cm}^{-1}$ |

## 2. Theoretical model

The theoretical model used in this work is based on the tensorial form of the Hamiltonian and vibrational extrapolation methods developed in Dijon. The effective Hamiltonian for polyad $P_{n}$ is obtained by projection in the corresponding subspace [4]:

$$
\begin{gather*}
H^{\left\langle P_{n}\right\rangle}=P^{\left\langle P_{n}\right\rangle} H P^{\left\langle P_{n}\right\rangle}  \tag{1}\\
H^{\left\langle P_{n}\right\rangle}=H_{\{G S\}}^{\left\langle P_{n}\right\rangle}+H_{\left\{P_{1}\right\}}^{\left\langle P_{n}\right\rangle}+\cdots+H_{\left\{P_{k}\right\}}^{\left\langle P_{n}\right\rangle}+\cdots+H_{\left\{P_{n}\right\}}^{\left\langle P_{n}\right\rangle} \tag{2}
\end{gather*}
$$

The various terms are written like [5]:

$$
\begin{equation*}
H_{\left\{P_{k}\right\}}=\sum_{\text {over all indices }} t_{\left\{n_{s}\right\}\left\{m_{s}\right\}}^{\Omega(k, n \Gamma) \Gamma_{1} \Gamma_{2}} \otimes T_{\left\{n_{s}\right\}\left\{m_{s}\right\}}^{\Omega(k, n \Gamma) \Gamma_{1} \Gamma_{2}} \tag{3}
\end{equation*}
$$

where $t_{\left\{n_{s}\right\}\left\{m_{s}\right\}}^{\Omega(k, n \Gamma) \Gamma_{1} \Gamma_{2}}$ are the model parameters; and $T_{\left\{n_{s}\right\}\left\{m_{s}\right\}}^{\Omega(k, n) \Gamma_{1} \Gamma_{2}}$ are the model rovibrational operators, obtained by coupling in the molecule's group rotational operators $R^{\Omega(k, n \Gamma)}$ and the vibrational operators $V_{\left\{n_{s}\right\}\left\{m_{s}\right\}}^{\Omega\left(k, n \Gamma \Gamma_{1} \Gamma_{2}\right.}$ [6]:

$$
\begin{equation*}
T_{\left\{n_{s}\right\}\left\{m_{s}\right\}}^{\Omega(k, n \Gamma) \Gamma_{1} \Gamma_{2}}=\beta\left(R^{\Omega(k, n \Gamma)} \otimes V_{\left\{n_{s}\right\}\left\{m_{s}\right\}}^{\Omega(k, n \Gamma) \Gamma_{1} \Gamma_{2}}\right), \tag{4}
\end{equation*}
$$

where

$$
\beta= \begin{cases}\sqrt{\Gamma_{1}}\left(\frac{-\sqrt{3}}{4}\right)^{\frac{\Omega}{2}} & \text { for }(k, n \Gamma)=\left(0, n A_{1}\right)  \tag{5}\\ 1 & \text { for }(k, n \Gamma) \neq\left(0, n A_{1}\right)\end{cases}
$$

The vibrational operator is also obtained by coupling in the group of covering of the molecule:

$$
\begin{equation*}
V_{\left\{n_{s}\right\}\left\{m_{s}\right\}}^{\alpha_{1} \Gamma_{1} \alpha_{2} \Gamma_{2}(\Gamma)}=\frac{1}{N} e^{i \varphi} \times\left(A_{\left\{n_{s}\right\}\left\{m_{s}\right\}}^{\alpha_{1} \Gamma_{1} \alpha_{2} \Gamma_{2}(\Gamma)}+\varepsilon(-1)^{\Gamma_{1}+\Gamma_{2}+\Gamma} \times B_{\left\{n_{s}\right\}\left\{m_{s}\right\}}^{\alpha_{2} \Gamma_{2} \alpha_{1} \Gamma_{1}(\Gamma)}\right) \tag{6}
\end{equation*}
$$

[^0]In this formula,

$$
\varepsilon=\left\{\begin{array}{l}
-1 \text { if this operator is an odd polynomial }  \tag{7}\\
+1 \text { if this operator is an even polynomial }
\end{array}\right.
$$

$N$ is the factor of standardization, and

$$
e^{i \varphi}=\left\{\begin{array}{l}
+i \text { for } \varepsilon=1  \tag{8}\\
-i \text { for } \varepsilon=-1
\end{array}\right.
$$

The stages followed in construction of the vibrational operators are as a follows [7]. By coupling operators $n_{s}$ to creations operators $a_{s}^{+(C)}$, one gets

$$
\begin{gather*}
a_{s}^{+(C)}=\frac{1}{2}\left(q_{s \sigma}-i p_{s \sigma}\right)^{(C)}  \tag{9}\\
\left(a_{s}^{+(C)} \times a_{s}^{+(C)} \times \ldots \times a_{s}^{+(C)}\right)^{\alpha_{1} \Gamma_{1}}=a_{\left\{n_{s}\right\}}^{+\left(\alpha_{1} \Gamma_{1}\right)} . \tag{10}
\end{gather*}
$$

By coupling operators $m_{s}$ to annihilation operators $a_{s}^{(C)}$, one gets

$$
\begin{gather*}
a_{s}^{(C)}=\frac{\sqrt{2}}{2}\left(q_{s \sigma}+i p_{s \sigma}\right)^{(C)},  \tag{11}\\
\left(a_{s}^{(C)} \times a_{s}^{(C)} \times \ldots \times a_{s}^{(C)}\right)^{\alpha_{2} \Gamma_{2}}=a_{\left\{m_{s}\right\}}^{\left(\alpha_{2} \Gamma_{2}\right)} . \tag{12}
\end{gather*}
$$

By coupling the two tensors obtained to build two vibrational operators, we get

$$
\begin{align*}
& A_{\left\{n_{s}\right\}\left\{m_{s}\right\}}^{\alpha_{1} \Gamma_{1} \alpha_{2} \Gamma_{2}(\Gamma)}=\left(a_{\left\{n_{s}\right\}}^{+\left(\alpha_{1} \Gamma_{1}\right)} \times a_{\left\{m_{s}\right\}}^{\left(\alpha_{2} \Gamma_{2}\right)}\right)^{(\Gamma)}  \tag{13}\\
& B_{\left\{n_{s}\right\}\left\{m_{s}\right\}}^{\alpha_{2} \Gamma_{2} \alpha_{1} \Gamma_{1}(\Gamma)}=\left(a_{\left\{m_{s}\right\}}^{\left(\alpha_{2} \Gamma_{2}\right)} \times a_{\left\{n_{s}\right\}}^{+\left(\alpha_{1} \Gamma_{1}\right)}\right)^{(\Gamma)} . \tag{14}
\end{align*}
$$

$V$ is a non-homogeneous polynomial of degree

$$
\begin{equation*}
d_{v}=\sum_{s}\left(n_{s}+m_{s}\right) \tag{15}
\end{equation*}
$$

The rotational operator is obtained by the coupling of the elementary rotational operators [7]:

$$
\begin{equation*}
R^{\Omega(k, n \Gamma)}=\left[A^{\left(l_{g}\right)} \times A^{\left(l_{g}\right)} \times \ldots \times A^{\left(l_{g}\right)}\right]^{(k, n \Gamma)} \tag{16}
\end{equation*}
$$

Where the row $K$ takes the values:

$$
\begin{equation*}
k=\Omega, \Omega 2, \ldots, 1 \text { and } 0 \tag{17}
\end{equation*}
$$

The degree of $R^{\Omega(k, n \Gamma)}$ is $\Omega$.

## 3. Analysis and discussion

The XTDS package provides the facility to fit Hamiltonian parameters using experimental data; this necessitates an assignment file (obtained via the SPVIEW software) bearing lines of the form given in Table 3. In practicality, we performed two tasks: First task is to calculate the Hamiltonian operator's matrix elements to six orders, for both ground state and the $\vartheta_{4}$ band of monoisotopic ${ }^{34} \mathrm{SF}_{6}$. The second task performs an iteration to determine a new parameter set.

Table 3. The assignments file form.

| $\mathrm{N}^{\circ}$ | Exp. freq | Intensity | RMS | . . . . . . . . Assignment. . . . . . . . . |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8764 | 631.907032 | $-0.6708 \mathrm{E}+00$ | 0.001004 | 91 A2g | 5 | 92 | A2u | 20 | SPVIEW_EXASG |
| 8765 | 631.912319 | + $0.7093 \mathrm{E}+00$ | 0.000793 | 91 Eg | 10 | 92 | E u | 41 | SPVIEW_EXASG |
| 8766 | 631.926309 | $+0.6775 \mathrm{E}+00$ | 0.000958 | 91 E g | 12 | 92 | E u | 43 | SPVIEW_EXASG |
| 8767 | 631.931345 | + $0.6872 \mathrm{E}+00$ | 0.000953 | 91 F2g | 18 | 92 | F2u | 64 | SPVIEW_EXASG |
| 8768 | 631.935326 | $+0.5724 \mathrm{E}+00$ | 0.000891 | 91 A2g | 7 | 92 | A2u | 22 | SPVIEW_EXASG |
| 8769 | 631.940063 | + $0.6761 \mathrm{E}+00$ | 0.000668 | 91 F2g | 20 | 92 | F2u | 66 | SPVIEW_EXASG |
| 8770 | 631.945002 | $+0.6833 \mathrm{E}+00$ | 0.000968 | 91 Eg | 14 |  | E u | 45 | SPVIEW_EXASG |

Fitting of the frequencies of spectral lines was conducted using the least squares iterative method, where the calculated frequencies are functions of the set of parameters $\{P\}$ of Hamiltonian tensorial form [8]:

$$
\begin{equation*}
S=S_{0}+\frac{\partial S}{\partial P_{i}}+\frac{1}{2} \frac{\partial S}{\partial P_{i} \partial P_{j}} \cdot \delta P_{i} \delta P_{j}+\cdots \tag{18}
\end{equation*}
$$

where $S$ is the mean square deviation [9]

$$
\begin{equation*}
S=\sum\left(\sigma_{o b s}-\sigma_{c a l}\right)^{2} / \sigma^{2} \tag{19}
\end{equation*}
$$

Here, $\sigma$ is the experimental accuracy. $S$ was taken as the sum of square deviations of the observed frequencies from the calculated ones over all measured lines.

The parameters are correlated if we can express their variations via the variation along a direction $x$ as

$$
\begin{equation*}
\delta P_{i}=a_{i} \cdot \delta_{x} \tag{20}
\end{equation*}
$$

where $a_{i}$ is the direction cosines.
In this analysis, we have 10 parameters for the ground states (Table 4) [2] and we have determined 22 other parameters for the $\vartheta_{4}$ band; these values are given in Table 5 . We adjusted parameter $t_{\left\{n_{s}\right\}\left\{m_{s}\right\}}^{2\left(2,0 E_{g}\right) F_{1 u} F_{1 u}}$ manually and fixed it to the value $0.752654 \times 10^{-04} \mathrm{~cm}^{-1}$, to get a correct profile for the $Q$ branch.

Figure 1 shows the root mean square deviation of the frequencies lines; the statistics of fit are given in Table 6.

These computed parameters of fit makes it possible to calculate simulated spectra, and subsequently compare with experimental spectrum, as shown in Figure 2. Figures 3-5 illustrate various areas of Figure 2 in the three regions of spectrum $P(\Delta J=-1), \mathrm{Q}(\Delta J=-0)$ and $\mathrm{R}(\Delta J=+1)$ branches. We give some details in Table 7.


Figure 1. The root mean square deviation of the frequencies lines.

Table 4. Effective Hamiltonian parameters of the Ground State of monoisotopic ${ }^{34} \mathrm{SF}_{6}$.

| $\Omega(\mathrm{k}, \mathrm{n} \Gamma)$ | $\mathrm{n}_{\mathrm{s}} \quad \Gamma_{1}$ | $\mathrm{n}_{\mathrm{s}} \quad \Gamma_{2}$ | $\Gamma \mathrm{Hmn}$ | value / $\mathrm{cm}^{-1}$ | St.Dev. / cm ${ }^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2(0,0 \mathrm{Alg})$ | 000000A1g | 000000A1g | A1g 02 | $00.91078389192 \mathrm{E}-01$ | $0.0000000 \mathrm{E}+00$ |
| 4(0,0A1g) | 000000A1g | 000000A1g | A1g 04 | $0-0.63369998149 \mathrm{E}-08$ | $0.0000000 \mathrm{E}+00$ |
| 4 (4,0A1g) | 000000A1g | 000000A1g | A1g 04 | $00.18196943510 \mathrm{E}-09$ | $0.0000000 \mathrm{E}+00$ |
| $6(0,0 \mathrm{Al}$ g $)$ | 000000A1g | 000000A1g | A1g 06 | $0-0.15890094350 \mathrm{E}-12$ | $0.0000000 \mathrm{E}+00$ |
| $6(4,0 \mathrm{Al}$ g) | 000000A1g | 000000A1g | A1g 06 | $00.10083389785 \mathrm{E}-13$ | $0.0000000 \mathrm{E}+00$ |
| $6(6,0 \mathrm{Alg})$ | 000000A1g | 000000A1g | A1g 06 | $0-0.10615255469 \mathrm{E}-15$ | $0.0000000 \mathrm{E}+00$ |
| $8(0,0 \mathrm{Alg})$ | 000000A1g | 000000A1g | A1g 08 | $0 \quad 0.59060087823 \mathrm{E}-18$ | $0.0000000 \mathrm{E}+00$ |
| $8(4,0 \mathrm{Alg})$ | 000000A1g | 000000A1g | A1g 08 | $0 \quad 0.65795734511 \mathrm{E}-19$ | $0.0000000 \mathrm{E}+00$ |
| $8(6,0 \mathrm{Al} \mathrm{g})$ | 000000A1g | 000000A1g | A1g 08 | $0-0.89391941374 \mathrm{E}-20$ | $0.0000000 \mathrm{E}+00$ |
| 8(8,0A1g) | 000000A1g | 000000A1g | A1g 08 | $0-0.96703402824 \mathrm{E}-21$ | $0.0000000 \mathrm{E}+00$ |



Figure 2. Experimental and simulated spectra of the $\vartheta_{4}$ band of monoisotopic ${ }^{34} \mathrm{SF}_{6}$.


Figure 3. Part of experimental and simulated spectra in the P branch.

Table 5. Effective Hamiltonian parameters of the $\vartheta_{4}$ band of monoisotopic ${ }^{34} \mathrm{SF}_{6}$.

| $\Omega(\mathrm{k}, \mathrm{n} \Gamma)$ | $\mathrm{n}_{\mathrm{s}} \quad \Gamma_{1}$ | $\mathrm{n}_{\mathrm{s}} \quad \Gamma_{2} \quad \Gamma \mathrm{Hmn}$ |  | value / $\mathrm{cm}^{-1}$ | St.Dev. / cm ${ }^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $0(0,0 \mathrm{Alg})$ | 000100F1u | 000100F1u A1g 20 | 190 | $0.61221079379 \mathrm{E}+03$ | $0.1666360 \mathrm{E}-04$ |
| $1(1,0 F 1 \mathrm{~g})$ | 000100F1u | 000100F1u F1g 21 |  | -0.73013123539E-01 | $0.2381399 \mathrm{E}-05$ |
| $2(0,0 \mathrm{Alg})$ | 000100 F 1 u | 000100F1u A1g 22 | 18 | -0.66476812969E-04 | $0.2851683 \mathrm{E}-07$ |
| 2(2,0E g) | 000100F1u | 000100F1u E g 22 | 0 | $0.75265400000 \mathrm{E}-04$ | $0.0000000 \mathrm{E}+00$ |
| 2 (2,0F2g) | 000100F1u | 000100F1u F2g 22 | 18 | $0.82794503615 \mathrm{E}-04$ | $0.1224230 \mathrm{E}-06$ |
| $3(1,0 F 1 \mathrm{~g})$ | 000100F1u | 000100F1u F1g 23 | 12 | -0.16115633194E-07 | $0.4684374 \mathrm{E}-09$ |
| $3(3,0 F 1 \mathrm{~g})$ | 000100 F 1 u | 000100 F 1 u F1g 23 | 25 | $0.53485801653 \mathrm{E}-07$ | $0.2981333 \mathrm{E}-09$ |
| 4(0,0A1g) | 000100F1u | 000100F1u A1g 24 | 1 | $0.34330541579 \mathrm{E}-08$ | $0.5441896 \mathrm{E}-10$ |
| 4(2,0E g) | 000100F1u | 000100F1u E g 24 | 1 | $0.56743622674 \mathrm{E}-08$ | $0.8056314 \mathrm{E}-10$ |
| 4 (4,0A1g) | 000100F1u | 000100F1u A1g 24 | 1 | $0.18397850831 \mathrm{E}-08$ | $0.2888642 \mathrm{E}-10$ |
| 4(4,0E g) | 000100 F 1 u | 000100F1u E g 24 | 1 | $0.72566848215 \mathrm{E}-09$ | $0.1064078 \mathrm{E}-09$ |
| 4(4,0F2g) | 000100F1u | 000100F1u F2g 24 | 2 | $0.99165757983 \mathrm{E}-09$ | $0.8109295 \mathrm{E}-10$ |
| $5(1,0 F 1 \mathrm{~g})$ | 000100F1u | 000100F1u F1g 25 | 9 | $0.12089800863 \mathrm{E}-11$ | $0.3400066 \mathrm{E}-13$ |
| $5(3,0 F 1 \mathrm{~g})$ | 000100F1u | $000100 F 1 u$ F1g 25 | 1 | $0.47165060223 \mathrm{E}-11$ | $0.4285519 \mathrm{E}-12$ |
| 5 ( $5,0 \mathrm{~F} 1 \mathrm{~g}$ ) | 000100F1u | 000100F1u F1g 25 | 1 | $0.38452415508 \mathrm{E}-11$ | $0.4774977 \mathrm{E}-12$ |
| $5(5,1 F 1 \mathrm{~g})$ | 000100F1u | 000100F1u F1g 25 | 10 | $0.19626782148 \mathrm{E}-11$ | $0.6613854 \mathrm{E}-13$ |
| $6(0,0 \mathrm{~A} 1 \mathrm{~g})$ | 000100 F 1 u | $000100 F 1 u$ Alg 26 | 1 | $0.18562222357 \mathrm{E}-12$ | $0.6348078 \mathrm{E}-14$ |
| $6(2,0 F 2 \mathrm{~g})$ | 000100 F 1 u | 000100F1u F2g 26 | 2 | -0.12560950916E-12 | $0.4052106 \mathrm{E}-14$ |
| $6(4,0 \mathrm{Al}$ g) | 000100 F 1 u | $000100 F 1 u$ A1g 26 | 1 | $0.45838094452 \mathrm{E}-13$ | $0.1886891 \mathrm{E}-14$ |
| $6(4,0 \mathrm{E}$ g) | 000100F1u | 000100 Flu E g 26 | 1 | $0.77176985730 \mathrm{E}-13$ | $0.5596607 \mathrm{E}-14$ |
| $6(4,0 F 2 \mathrm{~g})$ | 000100F1u | 000100F1u F2g 26 | 2 | $0.69343761394 \mathrm{E}-13$ | $0.4287391 \mathrm{E}-14$ |
| $6(6,0 \mathrm{E}$ g ) | 000100 F 1 u | $000100 F 1 u$ E g 26 | 13 | -0.64226981343E-14 | $0.5223495 \mathrm{E}-15$ |

One use of spectrum calculation is to calculate the energy values of both upper and lower levels; we calculate the transition moment between these two levels and, finally, the spectrum line frequencies and intensities are calculated from specific conditions (frequency range, temperature, pressure, etc.) [3].

Figure 6 show the calculated spectrum used by the Hamiltonian parameters determined in this work. This spectrum extends from $591.219543 \mathrm{~cm}^{-1}$ to $632.593073 \mathrm{~cm}^{-1}$. It contains 12933 lines.

The reduced energies levels (Figure 7) are calculated via the relation

$$
\begin{equation*}
E_{\text {red }}=E-B_{0} J(j+1)+\cdots, \tag{21}
\end{equation*}
$$

where $B_{0}=9.1073389192 \times 10^{-2} \mathrm{~cm}^{-1}$ (the rotational constant) [8].

Table 6. The statistics of fit.

| $J$ | NUMBER OF <br> DATA | THEORETICAL <br> PRECISION | CUMULATIVE <br> NB OF DATA | PARTIAL <br> STD. DEV. | MEAN <br> DEV. | CUMULATIVE <br> STD. DEV. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 2 | 0.000000 | 17 | 0.000292 | -0.000172 | 0.000034 |
| 20 | 1 | 0.000000 | 33 | 0.000349 | -0.000349 | 0.000072 |
| 40 | 5 | 0.000000 | 88 | 0.000328 | 0.000172 | 0.000123 |
| 60 | 22 | 0.000000 | 343 | 0.000150 | 0.000104 | 0.000167 |
| 80 | 42 | 0.000002 | 920 | 0.000284 | 0.000181 | 0.000128 |
| 90 | 45 | 0.000004 | 1343 | 0.000180 | 0.000113 | 0.000121 |
| 95 | 11 | 0.000006 | 1496 | 0.000412 | 0.000289 | 0.000122 |



Figure 4. Part of experimental and simulated spectra in the Q branch.


Figure 5. Part of experimental and simulated spectra in the R branch.

Table 7. Details on the simulated spectrum.

| Simulation |  |  |  |
| :---: | :---: | :---: | :---: |
| Development <br> order | $J_{\max }$ | number <br> of Data | RMS |
| 06 | 95 | 1497 | $0.598 \times 10^{-3} \mathrm{~cm}^{-1}$ |



Figure 6. Calculated spectra of the $\vartheta_{4}$ band of monoisotopic ${ }^{34} \mathrm{SF}_{6}$.


Figure 7. Reduced energies for calculated levels of the $\vartheta_{4}$ band of monoisotopic ${ }^{34} \mathrm{SF}_{6}$.

## 4. Conclusion and perspectives

In the present work, we have analyzed the $\vartheta_{4}$ band frequencies of monoisotopic ${ }^{34} \mathrm{SF}_{6}$. The fitting of parameters and calculation of infrared spectrum are made using software programs XTDS and SPVIEW developed in Dijon.

We used 10 parameters of the ground state given in reference [2]. These parameters were fixed during analysis; 22 others parameters were also determined for the $v_{4}$ band associated with the six orders of the rovibrational Hamiltonian, and for $J_{\max }=95$, using 1497 observed data with an root mean square equal to $0.598 \times 10^{-3} \mathrm{~cm}^{-1}$.

These parameters make it possible to calculate rovibrational spectrum used the tensorial form of the Hamiltonian adapted to the octahedral molecules. The study of the infrared spectrum is very important for the modelling of the atmospheric absorption of this species, since $\mathrm{SF}_{6}$ is now recognized as a pollutant that can contribute to the greenhouse effect [9]. Its concentration in earth's atmosphere is presently small, but increases at a rate of around $7 \%$ per year due to industrial emissions [10].

## References

[1] M. Rey, V. Boudon, M. Loête and F. Michelot, Journal of molecular spectroscopy., 204, (2000), 106.
[2] V. Boudon, G. Pierre and H. Berger, Journal of Molecular Spectroscopy., 205, (2001), 304.
[3] Ch. Wenger, V. Boudon and J-P. Champion, Journal of quantitative Spectrscopy \& Radiative Transfer., 66, (2000), 1.
[4] J-P. Champion, Ph.D. thesis, MIPC Faculty of Science, University of Dijon, Bourgogne, 28 September 1978.
[5] M. Loête, Ph.D. thesis, MIPC Faculty of Science, University of Dijon, Bourgogne, 27 June 1984.
[6] S. Toumi, Ph.D. thesis, Laboratory of Molecular Spectroscopy, University of Dijon, 14 Décembre 1984.
[7] D. Bermejo, R. Z. Martinez, E. Loubignac, V. Boudon and G. Pierre, Journal of molecular spectroscopy., 201, (2000), 164.
[8] O. Acef, Ch. J. Bordé, A. Clairon, G. Pierre and B. Satakov, Journal of Molecular Spectroscopy., 199, (2000), 188.
[9] C. Dervos and P. Vassiliou, Air EßWaste Manage. Assoc., 50, (2000), 137.
[10] L. Geller et al., Geophys. Res. Lett., 24, (1997), 675.


[^0]:    *XTDS and SPVIEW can be freely downloaded from http://www.u-bourgogne.fr/LPUB/shTDS.html.

