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Abstract

Octahedral formalism based on the notions of molecular symmetry is used in the calculation of the

position lines of the ϑ4 band of 34 SF6 ; we used an experimental spectrum near 650 cm−1 . This spectrum

was analysed using XTDS and SPVIEW software’s, developed in Dijon, France. We have 37 parameters to

determined at the six order and for Jmax = 95, using 1497 data. We have obtained an RMS = 0.598×10−3

cm−1 .
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1. Introduction

Sulphur hexafluoride is one of heaviest gases known, its density being 139 kg/m3 at 20 ◦C and 0.1 Mpa

(approximately one atmosphere) pressure, five times heavier than air. Its molecular mass is 146.06 g, it is
colourless, odourless non-toxic and inflammable. The SF6 is octahedral with Sulphur at the molecule’s centre

and the six fluorine atoms at each vertex. S-F and F-F bond lengths are 1.5 Å and 2.21 Å. Sulphur hexafluoride
having a long lifetime and being a strong absorber of infrared in the atmosphere makes it an atmospheric and
thermal antagonist. In fact, this molecule is classified among gases contributing to greenhouse warming at the
1997 conference on the climatic change in Kyoto, Japan. With this in mind, we have undertook a systematic

study of the υ4 absorption band of monoisotopic 34SF6 (4.21% in the atmosphere).

The υ4 absorption band comprises the six vibration modes ϑ1 , ϑ2 , ϑ3 , ϑ4 , ϑ5 and ϑ6 of symmetry
A1g , Eg , F1u , F1u , F2g , F2u , respectively (given in Table 1) [1]. We used the tensorial form of the Hamiltonian

to calculate all possible frequencies of the rovibrational spectrum of this molecule. This form make it is possible
to developed the Hamiltonian as a linear combination of the rovibrational operators, obtained by coupling in
Oh group. On the basis of experimental spectrum (the experimental conditions are given in Table 2) [2], we
determined the parameters of the Hamiltonian to sixth order and Jmax = 95. XTDS and SPVIEW developed
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in Dijon, French and freely downloadable via the Internet∗ make it possible to carry out most of studies of
octahedral molecules [3].

Table 1. The vibration normal modes of SF6 .

Normal mode              ϑ ϑ ϑ ϑ                

Symmetry in Oh       A1g

1 2 3 4 5 6

                Eg                 F1u              F1u              F2g              F2u   

Degeneracy                1                   2                   3                 3                 3                 3 

Activity                   Raman        Raman        Infrared       Infrared        Raman     Inactive
    
Type                                         Stretching                                             Bending 

ϑϑ

Table 2. Experiment conditions.

Experiment
Temperature Pressure Resolution

213 ◦K 2.8 mbar 0.0028 cm−1

2. Theoretical model

The theoretical model used in this work is based on the tensorial form of the Hamiltonian and vibrational
extrapolation methods developed in Dijon. The effective Hamiltonian for polyad Pn is obtained by projection
in the corresponding subspace [4]:

H〈Pn〉 = P 〈Pn〉HP 〈Pn〉 (1)

H〈Pn〉 = H
〈Pn〉
{GS} + H

〈Pn〉
{P1} + · · ·+ H

〈Pn〉
{Pk} + · · ·+ H

〈Pn〉
{Pn} (2)

The various terms are written like [5]:

H{Pk} =
∑

over all indices

t
Ω(k,nΓ)Γ1Γ2
{ns}{ms} ⊗ T

Ω(k,nΓ)Γ1Γ2
{ns}{ms} , (3)

where t
Ω(k,nΓ)Γ1Γ2

{ns}{ms} are the model parameters; and T
Ω(k,nΓ)Γ1Γ2

{ns}{ms} are the model rovibrational operators, obtained

by coupling in the molecule’s group rotational operators RΩ(k,nΓ) and the vibrational operators V
Ω(k,nΓ)Γ1Γ2
{ns}{ms}

[6]:

T
Ω(k,nΓ)Γ1Γ2
{ns}{ms} = β(RΩ(k,nΓ) ⊗ V

Ω(k,nΓ)Γ1Γ2
{ns}{ms} ), (4)

where

β =

⎧⎨
⎩

√
Γ1

(
−
√

3
4

)Ω
2

for (k, nΓ) = (0, nA1) ,

1 for (k, nΓ) �= (0, nA1) .
(5)

The vibrational operator is also obtained by coupling in the group of covering of the molecule:

V
α1Γ1α2Γ2(Γ)
{ns}{ms} =

1
N

eiϕ ×
(
A

α1Γ1α2Γ2(Γ)
{ns}{ms} + ε(−1)Γ1+Γ2+Γ × B

α2Γ2α1Γ1(Γ)
{ns}{ms}

)
(6)

∗XTDS and SPVIEW can be freely downloaded from http://www.u-bourgogne.fr/LPUB/shTDS.html.
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In this formula,

ε =
{

−1 if this operator is an odd polynomial
+1 if this operator is an even polynomial,

(7)

N is the factor of standardization, and

eiϕ =
{

+i for ε = 1
−i for ε = −1.

(8)

The stages followed in construction of the vibrational operators are as a follows [7]. By coupling operators ns

to creations operators a
+(C)
s , one gets

a+(C)
s =

1
2

(qsσ − ipsσ)(C)
, (9)

(
a+(C)

s × a+(C)
s × . . .× a+(C)

s

)α1Γ1

= a
+(α1Γ1)
{ns} . (10)

By coupling operators ms to annihilation operators a
(C)
s , one gets

a(C)
s =

√
2

2
(qsσ + ipsσ)(C)

, (11)

(
a(C)

s × a(C)
s × . . .× a(C)

s

)α2Γ2

= a
(α2Γ2)
{ms} . (12)

By coupling the two tensors obtained to build two vibrational operators, we get

A
α1Γ1α2Γ2(Γ)

{ns}{ms} =
(
a
+(α1Γ1)
{ns} × a

(α2Γ2)
{ms}

)(Γ)

, (13)

B
α2Γ2α1Γ1(Γ)
{ns}{ms} =

(
a
(α2Γ2)
{ms} × a

+(α1Γ1)
{ns}

)(Γ)

. (14)

V is a non-homogeneous polynomial of degree

dv =
∑

s

(ns + ms) (15)

The rotational operator is obtained by the coupling of the elementary rotational operators [7]:

RΩ(k,nΓ) =
[
A(lg) × A(lg) × . . .× A(lg)

](k,nΓ)

(16)

Where the row K takes the values:
k = Ω, Ω2, . . . , 1and0. (17)

The degree of RΩ(k,nΓ) is Ω.
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3. Analysis and discussion

The XTDS package provides the facility to fit Hamiltonian parameters using experimental data; this
necessitates an assignment file (obtained via the SPVIEW software) bearing lines of the form given in Table 3.
In practicality, we performed two tasks: First task is to calculate the Hamiltonian operator’s matrix elements

to six orders, for both ground state and the ϑ4 band of monoisotopic 34SF6 . The second task performs an
iteration to determine a new parameter set.

Table 3. The assignments file form.

   No   Exp. freq    Intensity       RMS        .......... Assignment..........

  8764  631.907032 - 0.6708E+00    0.001004  91 A2g  5  92 A2u 20 SPVIEW_EXASG 

  8765  631.912319 + 0.7093E+00    0.000793  91 E g 10  92 E u 41 SPVIEW_EXASG 

  8766  631.926309 + 0.6775E+00    0.000958  91 E g 12  92 E u 43 SPVIEW_EXASG 

  8767  631.931345 + 0.6872E+00    0.000953  91 F2g 18  92 F2u 64 SPVIEW_EXASG 

  8768  631.935326 + 0.5724E+00    0.000891  91 A2g  7  92 A2u 22 SPVIEW_EXASG 

  8769  631.940063 + 0.6761E+00    0.000668  91 F2g 20  92 F2u 66 SPVIEW_EXASG 

  8770  631.945002 + 0.6833E+00    0.000968  91 E g 14  92 E u 45 SPVIEW_EXASG

Fitting of the frequencies of spectral lines was conducted using the least squares iterative method, where
the calculated frequencies are functions of the set of parameters {P } of Hamiltonian tensorial form [8]:

S = S0 +
∂S

∂Pi
+

1
2

∂S

∂Pi∂Pj
· δPiδPj + · · · , (18)

where S is the mean square deviation [9]

S =
∑

(σobs − σcal)
2 /σ2. (19)

Here, σ is the experimental accuracy. S was taken as the sum of square deviations of the observed frequencies
from the calculated ones over all measured lines.

The parameters are correlated if we can express their variations via the variation along a direction x as

δPi = ai·δx, (20)

where ai is the direction cosines.

In this analysis, we have 10 parameters for the ground states (Table 4) [2] and we have determined 22

other parameters for the ϑ4 band; these values are given in Table 5. We adjusted parameter t
2(2,0Eg)F1uF1u

{ns}{ms}

manually and fixed it to the value 0.752654×10−04 cm−1 , to get a correct profile for the Q branch.

Figure 1 shows the root mean square deviation of the frequencies lines; the statistics of fit are given in
Table 6.

These computed parameters of fit makes it possible to calculate simulated spectra, and subsequently
compare with experimental spectrum, as shown in Figure 2. Figures 3–5 illustrate various areas of Figure 2 in
the three regions of spectrum P (ΔJ = −1), Q ( ΔJ = −0) and R ( ΔJ = +1) branches. We give some details
in Table 7.
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Figure 1. The root mean square deviation of the frequencies lines.

Table 4. Effective Hamiltonian parameters of the Ground State of monoisotopic 34 SF6 .

   2(0,0A1g) 000000A1g 000000A1g A1g 02     0  0.91078389192E-01 0.0000000E+00 

   4(0,0A1g) 000000A1g 000000A1g A1g 04     0 -0.63369998149E-08 0.0000000E+00 

   4(4,0A1g) 000000A1g 000000A1g A1g 04     0  0.18196943510E-09 0.0000000E+00 

   6(0,0A1g) 000000A1g 000000A1g A1g 06     0 -0.15890094350E-12 0.0000000E+00 

   6(4,0A1g) 000000A1g 000000A1g A1g 06     0  0.10083389785E-13 0.0000000E+00 

   6(6,0A1g) 000000A1g 000000A1g A1g 06     0 -0.10615255469E-15 0.0000000E+00 

   8(0,0A1g) 000000A1g 000000A1g A1g 08     0  0.59060087823E-18 0.0000000E+00 

   8(4,0A1g) 000000A1g 000000A1g A1g 08     0  0.65795734511E-19 0.0000000E+00 

   8(6,0A1g) 000000A1g 000000A1g A1g 08     0 -0.89391941374E-20 0.0000000E+00 

   8(8,0A1g) 000000A1g 000000A1g A1g 08     0 -0.96703402824E-21 0.0000000E+00 

Ω(k, n Γ) ns HmnΓ1 ns Γ2 Γ value / cm–1 St.Dev. / cm–1
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Figure 2. Experimental and simulated spectra of the ϑ4

band of monoisotopic 34 SF6 .

Figure 3. Part of experimental and simulated spectra in

the P branch.
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Table 5. Effective Hamiltonian parameters of the ϑ4 band of monoisotopic 34 SF6 .

   0(0,0A1g) 000100F1u 000100F1u A1g 20   190  0.61221079379E+03 0.1666360E-04 

  1(1,0F1g) 000100F1u 000100F1u F1g 21    37 -0.73013123539E-01 0.2381399E-05 

  2(0,0A1g) 000100F1u 000100F1u A1g 22    18 -0.66476812969E-04 0.2851683E-07 

  2(2,0E g) 000100F1u 000100F1u E g 22     0  0.75265400000E-04 0.0000000E+00 

  2(2,0F2g) 000100F1u 000100F1u F2g 22    18  0.82794503615E-04 0.1224230E-06 

  3(1,0F1g) 000100F1u 000100F1u F1g 23    12 -0.16115633194E-07 0.4684374E-09 

  3(3,0F1g) 000100F1u 000100F1u F1g 23    25  0.53485801653E-07 0.2981333E-09 

  4(0,0A1g) 000100F1u 000100F1u A1g 24     1  0.34330541579E-08 0.5441896E-10 

  4(2,0E g) 000100F1u 000100F1u E g 24     1  0.56743622674E-08 0.8056314E-10 

  4(4,0A1g) 000100F1u 000100F1u A1g 24     1  0.18397850831E-08 0.2888642E-10 

  4(4,0E g) 000100F1u 000100F1u E g 24     1  0.72566848215E-09 0.1064078E-09 

  4(4,0F2g) 000100F1u 000100F1u F2g 24     2  0.99165757983E-09 0.8109295E-10 

  5(1,0F1g) 000100F1u 000100F1u F1g 25     9  0.12089800863E-11 0.3400066E-13 

  5(3,0F1g) 000100F1u 000100F1u F1g 25     1  0.47165060223E-11 0.4285519E-12 

  5(5,0F1g) 000100F1u 000100F1u F1g 25     1  0.38452415508E-11 0.4774977E-12 

  5(5,1F1g) 000100F1u 000100F1u F1g 25    10  0.19626782148E-11 0.6613854E-13 

  6(0,0A1g) 000100F1u 000100F1u A1g 26     1  0.18562222357E-12 0.6348078E-14 

  6(2,0F2g) 000100F1u 000100F1u F2g 26     2 -0.12560950916E-12 0.4052106E-14 

  6(4,0A1g) 000100F1u 000100F1u A1g 26     1  0.45838094452E-13 0.1886891E-14 

  6(4,0E g) 000100F1u 000100F1u E g 26     1  0.77176985730E-13 0.5596607E-14 

  6(4,0F2g) 000100F1u 000100F1u F2g 26     2  0.69343761394E-13 0.4287391E-14 

  6(6,0E g) 000100F1u 000100F1u E g 26    13 -0.64226981343E-14 0.5223495E-15 

Ω(k, n Γ) ns HmnΓ1 ns Γ2 Γ value / cm–1 St.Dev. / cm–1

One use of spectrum calculation is to calculate the energy values of both upper and lower levels; we
calculate the transition moment between these two levels and, finally, the spectrum line frequencies and
intensities are calculated from specific conditions (frequency range, temperature, pressure, etc.) [3].

Figure 6 show the calculated spectrum used by the Hamiltonian parameters determined in this work.

This spectrum extends from 591.219543 cm−1 to 632.593073 cm−1 . It contains 12933 lines.

The reduced energies levels (Figure 7) are calculated via the relation

Ered = E − B0J (j + 1) + · · · , (21)

where B0 = 9.1073389192×10−2 cm−1 (the rotational constant) [8].
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Table 6. The statistics of fit.

     NUMBER OF   THEORETICAL   CUMULATIVE      PARTIAL      MEAN       CUMULATIVE 

 J     DATA      PRECISION     NB OF DATA     STD. DEV.     DEV.       STD. DEV. 

10       2       0.000000          17         0.000292    -0.000172     0.000034 

20       1       0.000000          33         0.000349    -0.000349     0.000072 

40       5       0.000000          88         0.000328     0.000172     0.000123 

60      22       0.000000         343         0.000150     0.000104     0.000167 

80      42       0.000002         920         0.000284     0.000181     0.000128 

90      45       0.000004        1343         0.000180     0.000113     0.000121 

95      11       0.000006        1496         0.000412     0.000289     0.000122 
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Figure 4. Part of experimental and simulated spectra in

the Q branch.

Figure 5. Part of experimental and simulated spectra in

the R branch.

Table 7. Details on the simulated spectrum.

Simulation
Development Jmax number RMS

order of Data
06 95 1497 0.598×10−3 cm−1
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Figure 6. Calculated spectra of the ϑ4 band of monoiso-

topic 34SF6 .

Figure 7. Reduced energies for calculated levels of the

ϑ4 band of monoisotopic 34SF6 .
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4. Conclusion and perspectives

In the present work, we have analyzed the ϑ4 band frequencies of monoisotopic 34SF6 . The fitting
of parameters and calculation of infrared spectrum are made using software programs XTDS and SPVIEW
developed in Dijon.

We used 10 parameters of the ground state given in reference [2]. These parameters were fixed during
analysis; 22 others parameters were also determined for the υ4 band associated with the six orders of the
rovibrational Hamiltonian, and for Jmax = 95, using 1497 observed data with an root mean square equal to

0.598 × 10−3 cm−1 .
These parameters make it possible to calculate rovibrational spectrum used the tensorial form of the

Hamiltonian adapted to the octahedral molecules. The study of the infrared spectrum is very important for the
modelling of the atmospheric absorption of this species, since SF6 is now recognized as a pollutant that can
contribute to the greenhouse effect [9]. Its concentration in earth’s atmosphere is presently small, but increases

at a rate of around 7% per year due to industrial emissions [10].
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