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Abstract

An exact solution of the laminar flow of an incompressible, viscous, electrically conducting fluid between

two infinite, parallel, horizontal isothermal stationary walls in the presence of a transverse magnetic field

and constant heat source, taking into account the induced magnetic field, induced electric field, Soret effect

and dissipating heat is presented. The expressions for the non-dimensional velocity field, temperature field,

concentration field, induced magnetic field, induced electric field, skin frictions at the walls and the co-

efficients of the rates of heat and mass transfer at the walls in terms of the Nusselt and Sherwood numbers

are obtained. The effects of the different parameters involved in the problem, namely Hartmann number,

Prandtl number, Eckert number, heat source parameter, Soret number and pressure gradient on the above

mentioned fields are discussed through graphs and tables. It is seen that the magnetic field has a significant

effect on the flow and transport characteristics. The results obtained in this paper are consistent with the

physical reality of the flow problem.

Key Words: Magnetic field, electric field, current density, induced magnetic field, viscous dissipative heat,

electrically conducting, heat source, thermal diffusion
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1. Introduction

MHD is the science of motion of electrically conducting fluid in presence of magnetic field. Engineers apply
MHD principle in fusion reactors, dispersion of metals, metallurgy, design of MHD pumps, MHD generator and
MHD flow meters etc. The dynamo and motor is a classical example of MHD principle. Geophysics encounters
MHD characteristics in the interaction of conducting fluid and magnetic field. MHD convection problems are
also very significant in the fields of stellar and planetary magnetospheres, aeronautics and electrical engineering.
The principle of MHD also finds its application in medicine and Biology. The MHD principle is also utilized in
stabilizing a flow against the transition from laminar to turbulent flow.

MHD in its present form is due to the pioneer contribution of several notable authors like Alfven [1],

Cowling [2], Shercliff [3], Ferraro and Plumpton [4] and Crammer and Pai [5]. The phenomenon of heat transfer
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plays a significant role in many industrial and environmental problems. Industrial problems include those of
production and conversion of energy and electrical power generation, minimization of the rates of heat transfer
for maintaining the integrity of materials in high temperature environments, working and design of propulsion
systems and cryogenics. Environmental problems include those of local and global climatology. Studies on
thermal effects in buildings and other structures require applications of heat transfer principles. The study of
heat transfer related problems concerning the flows of electrically conducting fluids through channels becomes
very interesting and fruitful from physical point of view when a magnetic field is applied to the flow.

The first experimental and theoretical work on MHD channel flow was undertaken by Hartmann [6] and

Hartmann and Lazarus [7]. Following these works [6 and 7], several other investigators have carried out model

studies on MHD channel flow. Some of them are Chang and Yen [8], Sutton and Sherman [9], Soundalgekar and

Bhatt [10], Badosa and Borkakati [11], Makinde and Mhone [12], Ganesh and Krishnambal [13], Chaudhary et

al. [14], Anwar et al. [15] and Lahjomri et al. [16]. Recently, Ahmed and Kalita [17] have studied the problem
of two dimensional steady MHD forced convective Poiseuille flow and heat transfer between two porous plates
with constant pressure gradient and a heat source, taking into account the induced magnetic field.

As the present author is aware, up to now, no attempt has been made to study the problem of laminar
forced convective mass transfer flow of an incompressible viscous electrically conducting fluid between two
horizontal parallel isothermal stationary walls in presence of transverse magnetic field and a constant heat
source, taking into account the induced magnetic field together the Soret effect. Such an attempt has been
made in the present work. The thermal diffusion effect (known as Soret effect) is applied for isotope separation
and in mixtures between gases with very light molecular weight like Hydrogen and Helium. The main objectives
of the present work is to investigate the effect of the applied magnetic field on the velocity field, temperature
field, concentration field, skin friction, Nusselt number and Sherwood number at the plates, induced magnetic
field, current density and the induced electric field. It is also proposed to study the effect of dissipative heat,
Prandtl number and heat source on the temperature field, concentration and on the co-efficient of the rate of
heat and mass transfer from either plate to the fluid.

2. Mathematical formulations

The equations governing the steady motion of an incompressible viscous electrically conducting fluid in
presence of a magnetic field and a constant heat source are: the continuity equation,

�∇ · �q = 0; (1)

Gauss’s law of magnetism,

�∇ · �H = 0; (2)

Magnetic induction equation,

�∇×
(
�q × �H

)
+ η∇2 �H = 0, (3)

where η = 1
4 π μ0 σ ;

Ampere’s law,

�∇× �H = 4 π �J ; (4)
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Ohm’s law,

�J = σ
[
�E + �q × �B

]
; (5)

Momentum equation,

ρ
(
�q.�∇

)
�q = �∇p̄ + �J × �B + μ∇2�q + ρ�g; (6)

Energy equation,

ρCp

(
�q · �∇

)
�q = k∇2T̄ +

�J2

σ
+ ϕ + Q; (7)

and the Species continuity equation,

(
�q · �∇

)
C̄ = DM∇2C̄ + DT∇2T̄ . (8)

All of the above symbolic physical quantities are defined in the Nomenclature.

We now consider a steady laminar flow of an incompressible, viscous, electrically conducting fluid through
a channel bounded by two infinite horizontal isothermal parallel plates separated by a distance 2L in the presence

of transverse applied magnetic field �H0 and a heat source. The physical model of the problem is as shown in
Figure 1.

O
Z

Y

X

1, 0, 0, , ww Hy L u T T C C == − = = =

1,, 0, , 0ww C C Hy L u T T == = = =

Figure 1. Physical model of the problem.

We introduce a coordinate system (x̄, ȳ, z̄) with the flow along the x-axis, the y-axis normal to the plates,

and the z-axis along the width of the plates. Let �q = (ū, 0, 0) be the fluid velocity and �H =
(
H̄1, H̄0, 0

)
be the

magnetic field at point (x̄, ȳ, z̄) in the fluid.

Equation (1) gives

∂ū

∂x̄
= 0, (9)

which shows that ū is independent of x̄ . In the present problem ūdoes not depend on z̄ hence

ū = ū (ȳ) . (10)
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The Gauss law of magnetism yields ∂H̄1
∂x̄ = 0, which shows that

H̄1 = H̄1 (ȳ) . (11)

We assume
p̄ = p̄0 (x̄) + p̄1 (ȳ) . (12)

Under the assumption (12), equation (6) can be broken up to:

μ0H̄0

4 π

dH̄1

dȳ
+ μ

d2ū

dȳ2
=

dp̄0

dx̄
= −P̄ = A constant. (13)

and
dp̄1

dȳ
+ ρḡ +

μ0

4π
H̄1

dH̄1

dȳ
= 0. (14)

Equation (3) reduces to

d2H̄1

dȳ2
+ 4πσμ0H̄0

dū

dȳ
= 0. (15)

The energy equation (7) yields

k

ρCp

d2T̄

dȳ2
+

μ

ρCp

(
dū

dȳ

)2

+
σ

ρCp

(
Ē + μ0ūH̄0

)2 +
Q

ρCp
= 0. (16)

Equation (8) reduces to

DM
d2C̄

d ȳ2
+ DT

d2T̄

d ȳ2
= 0. (17)

Equations (4) and (5) give

J̄ = σ
[
E + μ0 ū H̄0

]
= − 1

4 π

dH̄1

dȳ
, (18)

where J̄ =
∣∣∣ �J

∣∣∣ and Ē =
∣∣∣�E∣∣∣ .

We recall that there is no externally applied current for which

L∫
−L

J̄ dȳ = 0. (19)

The relevant boundary conditions are

at ȳ = L : ū = 0, T̄ = T̄w, C̄ = C̄wH̄1 = 0, (20a)

at ȳ = −L : ū = 0, T̄ = T̄w, C̄ = C̄wH̄1 = 0, (20b)

at ȳ = 0 : p̄1 = 0. (20c)
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We introduce the following non-dimensional quantities:

M = μ0H̄0L

√
σ

μ
, y =

ȳ

L
, x =

x̄

L
, z =

z̄

L
,

u =
4 π

√
μσ ū

H̄0
, h =

H̄1

H̄0
, E =

4 π Ē Lσ

H̄0

Pr =
μCp

k
, P =

4 π L2P̄
√

σ

H̄0
√

μ
, g =

4 π Lρḡ

μ0H̄2
0

,

J =
4 π L J̄

H̄0
, p0 =

4 π L
√

σ p̄0

H̄0
√

μ
,

θ =
T̄ − T̄w

T̄w
, Ec =

H̄2
0

16 π2μ σ Cp T̄w
,

α =
QL2

T̄w k
, Sc =

ν

DM
, Sr =

DT T̄w

ν C̄w
, p1 =

4 π p̄1

μ0H̄2
0

, θ =
C − Cw

Cw

The non-dimensional forms of Equations (13)-(19) are as follows:

d2u

dy2
+ M

dh

dy
= −P, (21)

dp1

dy
+ g + h

dh

dy
= 0, (22)

d2h

dy2
+ M

du

dy
= 0, (23)

d2θ

dy2
+ PrEc

(
du

dy

)2

+ PrEc (E + Mu)2 + α = 0 , (24)

d2φ

dy2
+ Sr Sc

d2θ

dy2
= 0, (25)

J = E + Mu = −dh

dy
, (26)

∫ 1

−1

Jdy = 0. (27)

The relevant boundary conditions are

at y = 1 : u = 0, θ = 0, φ = 0, h = 0, (28a)

at y = −1 : u = 0, θ = 0, φ = 0h = 0, (28b)

at y = 0, p1 = 0. (28c)
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The solution of the equation (22) subject to the boundary condition (28c) is

p1 + gy +
h2

2
= 0. (29)

The equation (23) yields
dh

dy
+ Mu = C2, (30)

C2 being a constant. The equation (26) gives

E = −
(

dh

dy
+ Mu

)
= −C2. (31)

Equations (30) and (31) yield
dh

dy
+ Mu = −E. (32)

Equations (21) and (32) together give

d2u

dy2
− M2u = ME − P. (33)

The solution of equation (33), subject to boundary conditions (28a) and (28b), is

u =

{
P−ME

M2

[
1 − Cosh(My)

CoshM

]
for M �= 0,

P
2

(
1 − y2

)
for M = 0.

(34)

Equations (26) and (27) give

E =
{

P
M (1 − M CothM) for M �= 0

0 for M = 0
(35)

Equations (32), (34) and (35) subsequently yield

h =

{
P
M

[
Sinh(My)

SinhM − y
]

for M �= 0,

0 for M = 0.
(36)

The equation (26) gives

J =

{
P
M

[
1 − M cosh My

SinhM

]
for M �= 0,

0 for M = 0.
(37)

The solutions of the equation (24) subject to the boundary conditions (28a) and (28b) are

θ = A0
2

(
1 − y2

)
+ A1

M2 (CoshM − CoshMy)
+ A2

4M2 [Cosh (2M) − Cosh (2My)] , M �= 0,
(38)

and

θ =
α

2
(
1 − y2

)
+

Pr Ec
12

(
1 − y4

)
, M = 0, (39)
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where

A0 = α + PrEcB2, A1 = −2 PrEcAB
CoshM ,

A2 = −Pr EcA2

Cosh2M , B = E + A, A = P−ME
M .

Equation (25) gives

φ = −Sr Sc θ. (40)

3. Co-efficient of skin friction

The shear stress at any point in fluid is given by

τ̄ = μ
dū

dȳ
=

H̄0

4πL

√
μ

σ

du

dy
= τ0

du

dy
, τ0 =

H̄0

4πL

√
μ

σ
. (41)

The co-efficient of skin friction at any point is given by the relation

τ =
τ̄

τ0
=

du

dy
. (42)

The co-efficient of skin frictions at the walls y = 1 and y = −1 are, respectively, given by the relations

τ1 =
du

dy

]
y=1

=
{

ME−P
M tanhM for M �= 0,

−P for M = 0,
(43)

and

τ2 =
du

dy

]
y=−1

=
{

P−ME
M tanhM for M �= 0,

P for M = 0.
(44)

4. Rate of heat transfer

The co-efficient of the rate of heat transfer at any point in fluid in terms of Nusselt number Nu is given
by

Nu = − L

T̄w

dT̄

dȳ
= −dθ

dy
(45)

The Nusselt numbers at the walls y = 1 and y = −1 are as follows:

Nu1 = − dθ

dy

]
y=1

=

{
A0 + A1

M SinhM + A2
2M Sinh (2M) for M �= 0,

α + PrEcP2

3 for M = 0,
(46)

Nu2 = − dθ

dy

]
y=−1

=

{
−A0 − A1

M SinhM − A2
2M Sinh (2M) for M �= 0,

−α − PrEcP2

3 for M = 0.
(47)
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5. Rate of mass transfer

The coefficient of the rate of mass transfer at any point in fluid in terms of Sherwood number Sh is given
by

Sh = − L

C̄w

dC̄

dȳ
= −dφ

dy
(48)

The Sherwood numbers at the walls y = 1 and y = −1 are respectively given by the relations

Sh1 = − dφ

dy

]
y=1

= Sr Sc
dθ

dy

]
y=1

= −Sr ScNu1, (49)

Sh2 = − dφ

dy

]
y=−1

= Sr Sc
dθ

dy

]
y=−1

= −Sr ScNu2. (50)

6. Results and Discussion

In order to get physical insight into the problem, we have carried out numerical calculations for the non
dimensional velocityu , induced magnetic field h , current density J , temperature θ and the Nusselt numbers
Nu1 and Nu2 at the plates y =1 and y = -1 and the coefficient of skin friction τ1 and τ2 at these plates,
by assigning some selected values to the parameters entering into the problem and the effect of these values are
demonstrated through different graphs and tables.

Figure 2 and Figure 3 show the variation of the velocity field u versus y under the influence of the
Hartmann number M and the pressure gradient P . These two figures clearly establish the fact that the fluid
motion is retarded due to imposition of the transverse magnetic field and accelerated under the pressure gradient.
This phenomenon clearly agrees with the physical reality. These figures further indicate that the velocity
increases sharply in a thin layer adjacent to either plate and there after it slightly decreases and remains almost
stationary in the central portion of the channel.
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Figure 2. Velocity u versus y for P = 1 Ec = 0.4, Pr =

7 andα = 0.8.

Figure 3. Velocity u versus y for M = 10, Ec = 0.4, Pr

= 7 and α = 0.8.
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Figure 4. Induced magnetic field h versus y for P = 1,

Ec = 0.4, Pr = 7 and α = 0.8.

Figure 5. Induced magnetic field versus y for M = 10,

Ec = 0.4, Pr = 7 and α = 0.8.

It is observed from Figures 4 and 5 that the pressure gradient causes the induced magnetic field to increase
whereas an increase in the magnetic parameter M results in a steady fall of the induced magnetic field.
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Figure 6. Current Density J, versus y for P = 1, Ec =

0.4, Pr = 7 and α = 0.8.

Figure 7. Current Density J, versus for M=10, Ec=0.4,

Pr=7 and α = 0.8 and α = 0.8.

Figures 6 and 7 show the change of behavior of the current densityJ against y under M and P . Like
velocity, here we also notice that the current density rises up under the pressure gradient and falls down for
increasing Hartmann number. Moreover it rises sharply near the plates and remains uniform in the central
portion of the channel.
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Figure 9. Temperature θ versus y for P = 1, M = 10,

Ec = 0.4 and α = 0.8.
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Figure 11. Temperature θ versus y For P = 1, M =

10, Pr = 7 and Ec = 0.4.
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Figure 12. Temperature θ versus y for M = 10, Ec = 0.4, Pr = 7 and α = 0.8.

The variation of the temperature field θ as a function of y under the effect of the Hartmann number
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M , the Prandtl number Pr, the Eckert number Ec, the heat source parameter α and the pressure gradient
P is demonstrated in Figures 8–12. These figures show that the fluid temperature falls due to imposition of
the transverse magnetic field, but it rises due to dissipative heat, heat generation source and pressure gradient.
This phenomenon has good agreement with the laws of physics.

Equation (40) shows that the concentration distribution is proportional to the temperature distribution
as their magnitudes are concerned. The same phenomena holds well for the local coefficients of heat and mass
transfer also, as seen in equations (49) and (50). The temperature profiles show that θ ≥ 0 ∀ − 1 ≤ y ≤ 1.

That is, T̄ ≥ T̄w in the fluid region, which indicates that the heat flux occurs from the fluid to either plate.

On the other hand, equation (40) yields that φ ≤ 0 ∀ − 1 ≤ y ≤ 1 which implies that C̄ ≤ C̄w in the entire

channel, and it causes that the mass is transferred from the walls to the fluid. Equations (40), (49) and (50)
establish the fact that the magnitude of the fluid concentration as well as the local co-efficient of the rate of
mass transfer (Sherwood number) linearly depends on Sr or Sc . In other words, the magnitude of the fluid
concentration rises under the thermal diffusion effect and falls due to mass diffusion.
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Figure 13. Nusselt number Nu1 versus P for Pr =7, Ec

= 0.4 and α = 0.8.

Figure 14. Nusselt number Nu1 versus P for M = 10,

Ec = 0.4 and α = 0.8
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Figure 15. Nusselt number Nu1 versus P for M = 10,

Pr = 7 and α = 0.8.

Figure 16. Nusselt number Nu1 versus P for M = 10,

Pr = 7 and Ec = 0.4.

456



AHMED

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
0.2     0.4      0.6     0.8      1       1.5      2

P

1M =

10M =

21M =

2Nu

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
0.2      0.4      0.6      0.8       1        1.5       2

Pr = 7
Pr = 1

P

2Nu

Figure 17. Nusselt number Nu2 versus P for Pr = 7,

Ec = 0.4 and α = 0.8.

Figure 18. Nusselt number Nu2 versus P for M = 10,

Ec = 0.4 and α = 0.8.
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Figure 19. Nusselt number Nu2 versus P for M = 10,

Pr = 7 and α = 0.8.

Figure 20. Nusselt number Nu2 versus P for M = 10,

Pr = 7 and Ec = 0.4.

Figures 13–20 show how the behavior of the coefficient of the rate of heat transfer from either plate to
the fluid is affected under influence of parameters M , P , Pr, Ec and α . We observe here that the rate of heat
transfer from either plate to the fluid increases under the effect of the parameters,P , Pr, Ec and α , but falls
under the effect ofM . That is, the application of the pressure gradient, the presence of dissipative heat as well
as heat generation source and Prandtl number result in a rise of the rate of heat transfer from plate to the fluid,
although the application of the transverse magnetic field causes it to fall.

From Figure 21, it is noted that the dimensionless concentration field θ increases in magnitude as the
Soret number Sr increases. This behavior is observed in the fluid region bounded in between the two walls. The
Soret effect is marked in the middle of the channel and is least at the walls.

Figures 22 and 23 indicate that a rise in Soret number Sr leads to a corresponding rise in the magnitudes
of mass flux namely |Sh1 | and |Sh2| at the upper and lower walls respectively. It is seen that as P increases,

|Sh1| decreases and |Sh2| increases.
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Figure 21. Concentration ϕ versus y for P = 1, M =

10, Pr = 0.71, Ec = 0.4, Sc = 0.22 and α = 0.8.

Figure 22. Sherwood numberSh1 versus P for M = 10,

Pr = 0.71,Sc= 0.22, Ec=0.4 and α = 0.8.
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Figure 23. Sherwood number Sh2 versus P for M = 10, Pr = 0.71,Sc= 0.22, Ec=0.4 and α = 0.8.

Tables 1 and 2 indicate that the viscous drag at either plate is reduced when the strength of the magnetic
is increased or the pressure gradient is decreased.

Table 1. Shear stress τ1 against M , versus P for α = 0.8

and Ec = 0.4.

Table 2. Shear stress τ2 against M , versus P for α = 0.8

and Ec = 0.4.

P τ1 (M = 10) τ1 (M = 21)
0.2 -0.2000 -0.1999
0.4 -0.4000 -0.3999
0.6 -0.6000 -0.5999
0.8 -0.8000 -0.7999
1 -1.0000 -0.9999

1.5 -1.5000 -1.4999
2 -2.0000 -1.9999

P τ2 (M = 10) τ2 (M = 21)
0.2 0.2000 0.1999
0.4 0.4000 0.3999
0.6 0.6000 0.5999
0.8 0.8000 0.7999
1 1.0000 0.9999

1.5 1.5000 1.4999
2 2.0000 1.9999
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7. Conclusions

Our investigation leads to the following conclusions.

1. The fluid motion is retarded due to imposition of the transverse magnetic field and accelerated under the
pressure gradient.

2. The pressure gradient causes the induced magnetic field to increase, whereas an increase in the magnetic
parameter M results in a steady fall of the induced magnetic field.

3. The fluid temperature falls due to imposition of the transverse magnetic field, but it rises due to dissipative
heat, heat generation source and pressure gradient.

4. The pressure gradient, the presence of dissipative heat as well as heat generation source and Prandtl
number result in a rise of the rate of heat transfer from plate to the fluid whereas a reverse effect is
observed under the magnetic field effect.

5. The viscous drag at either plate is reduced when the strength of the magnetic is increased or the pressure
gradient is decreased.

6. The concentration distribution is proportional to the temperature distribution as their magnitudes are
concerned. The same phenomena hold good for the local coefficients of heat and mass transfer also.

7. The magnitude of the fluid concentration rises under the thermal diffusion effect and falls due to mass
diffusion.

8. The Soret effect raises the magnitude of the species concentration field. The Soret effect (thermal diffusion)
on the concentration field is striking in the middle of the channel and is least at the walls.

9. The pressure gradient causes the magnitude of mass flux at the upper wall to decrease and the magnitude
of mass flux at the lower wall to increase. The Soret effect (thermal diffusion) raises the magnitudes of
mass flux at the walls of the channel.

Nomenclature

�B Magnetic induction vector Pr Prandtl number
C̄ Species concentration P Pressure gradient
Cp Specific heat at constant pressure P Dimensionless pressure gradient
DM Molecular mass diffusivity p0 Dimensionless mean pressure
DT Thermal diffusivity (Chemical) p1 Dimensionless perturbed pressure
�E Electric field vector Q Constant heat source
E Dimensionless electric field �q Velocity vector
Ē Dimensional electric field Sc Schmidt number
Ec Eckert number Sr Soret number
�g Acceleration due to gravity T̄ Temperature
g Dimensionless acceleration due to gravity T̄w Temperature at either plate
H̄0 Intensity of the applied magnetic field ū x̄−Component of the fluid velocity
�H Magnetic field intensity vector (x̄, ȳ, z̄) Cartesian coordinates
�H1 Induced magnetic field vector (x, y, z) Dimensionless coordinates
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H̄1 Dimensional induced magnetic field η Magnetic diffusivity
h Dimensionless induced magnetic field μ0 Magnetic permeability
î, ĵ, k̂ Unit vectors along the co-ordinate axes σ Electrical conductivity
�J Current density vector ρ Fluid density
J Dimensionless current density μ Co-efficient of viscosity
J Dimensional current density κ Thermal conductivity fluid
L Half of the distance between the parallel walls. ϕ Dissipation of energy due to viscosity
M Hartmann number θ Dimensionless temperature
p̄ Fluid pressure φ Dimensionless concentration
p̄0 (x) Mean pressure α Dimensionless heat source
p̄1 (y) Perturbed pressure

Acknowledgement

The authors are thankful to UGC for supporting this research work under MRP (F. No. 36-96/2008(SR))

References

[1] H. Alfven, Nature., 150, (1942), 405.

[2] T .G. Cowling, Magneto hydrodynamics, Wiley Inter Science, (New York. 1957).

[3] J. A. Shercliff, A text book of Magneto hydrodynamics, (Pergamon Press, London. 1965).

[4] V. C. A. Ferraro and C. Plumpton, An introduction to Magneto Fluid Mechanics, (Clarandon Press, Oxford. 1966).

[5] K. P. Crammer and S. L. Pai, Magneto-fluid Dynamics for Engineers and applied Physics, (Mc-Graw Hill book Co.

New York. 1978).

[6] J. Hartmann, K.Dan. Vidensk.Selsk. Mat. Fys. Medd., 15, (1937), 1.

[7] J. Hartmann and Lazarus, K.Dan. Vidensk.Selsk. Mat. Fys. Medd., 15, (1937), 1.

[8] C.C . Chang and J. T. Yen, Phys. Fluids, 4, (1961), 1355.

[9] G. W. Sutton and A. Sherman, Engineering Magneto hydrodynamics, (McGraw-Hill Book Co., Inc., New York.

1965).

[10] V. M. Soundalgekar and J. P. Bhatt, Oscillatory MHD channel flow and heat transfer, Indian J. Pure Appl. Math.,

15, (1984), 819.

[11] G. Bodosa and A. K. Borkakati, Indian Jour. of Theo. Phys., 51, (2003), 39.

[12] O. D. Makinde and P.Y. Mhone, Rom. Jour. Phys., 50, (2005), 931.

[13] S. Ganesh and S. Krishnambal, Journal of Applied Sciences, 6, (2006), 2420.

[14] R. C. Chaudhary, A. K. Jha and S. S. Dhayal, J. Rajasthan Acad. Phy. Sci., 5, (2006), 233.

[15] O. Anwar, B. J. Zuecob and H. S. Takhar, Communications in Nonlinear Science and Numerical Simulation, 14,

(2009), 1082.

[16] J. Lahjomri, A. Oubarra and A. Alemany, International Journal of Heat and Mass Transfer, 45, (2002), 1127.

[17] N. Ahmed and D. Kalita, Bull. Cal. Math. Soc., 102, (2010), 107.

460


