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Abstract

In this paper, a homogeneous principle is proposed to seek the space-time scaling invariant traveling wave

solutions expressed by power functions for some fractional differential equations. Applying this principle to

generalized fractional Benjamin-Ono equations and generalized fractional ZakharovKuznetsov equations, the

traveling wave solutions expressed by power functions have been obtained under some parameter conditions.
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1. Introduction

Fractional differential equations (FDEs) play an outstanding role in physics, chemistry and engineering.
However, effective general method for solving them can not be found even in the most useful works on fractional
derivatives and integrals [1]. Fortunately, the Adomian decomposition method (ADM) [2, 3], the homotopy

perturbation method (HPM) [4–8], Homotopy analysis method (HAM) [9–14], the variational iteration method

(VIM) [15–17] are efficient for solving some FDEs.

Recently, Djordjevic and Atanackovic [18] found similarity solutions of nonlinear conduction and Burgers/
Korteweg-de Vries fractional equations by using Lie-group scaling transformation. They considered heat
conduction fractional equations

∂αT

∂tα
=

∂

∂x

[
(k + mTn)

∂T

∂x

]
, x ∈ (0,∞), t > 0, 0 < α ≤ 1, (1.1)

and obtained its traveling wave solutions of the form

T (x, t) =
[

ncαΓ(1 + 2−α
n

)
m(2 − α)Γ(2 − α + 2−α

n
)

] 1
n

(ct − x)
2−α

n
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under k = 0. Motivated by [18], we seek the space-time scaling invariant (called STSI shortly) traveling wave
solutions expressed by power functions of the following more generalized fractional equations:

∂αu

∂tα
+ L ((un1)N1xM1y, (un2)N2xM2y, · · · , (uni)NixMiy) = 0, (1.2)

where L is a polynomial function, u = u(x, y, t), α is the order of the fractional derivative (p− 1 < α ≤ p, p ∈
N), ni ∈ R andNixMiy denotes N th

i -order derivative with respect to x and M th
i -order derivative with respect

to y . Equation (1.2) includes the special case of equation (1.1) ask = 0. Indeed, if we take

L = r1(un1)N1xM1y((un2)N2xM2y)2 + r2(un3)N3xM3y(un4)N4xM4y,

and p = 1, r1 = −mn, n1 = n − 1, N1 = M1 = 0, n2 = 1, N2 = 1, M2 = 0, r2 = −m, n3 = n, N3 = M3 = 0, n4 =
1, N4 = 2, M4 = 0, then equation (1.2) is reduced to equation (1.1).

Remainder of this paper is organized as follows. A basic principle of finding STSI traveling wave solutions
for equation (1.2) is presented in the next section. Two examples are given to demonstrate the effectiveness of
this principle in Section 3. Finally, our findings are summarized in Section 4, Summary and Conclusions.

2. A basic principle: homogeneous principle

The three most commonly used definitions in Fractional Calculus are the Riemann-Liouville, Grunwald-
Letnikov and Caputo deffnitions [1]. In this paper, we generally use Riemann-Liouville fractional derivative as
follows.

Definition. Letp − 1 < α ≤ p, p ∈ N . The Riemann-Liouville fractional derivative of order α of any function
f(t) is defined as

∂αf(t)
∂tα

=
1

Γ(p − α)
dp

dtp

∫ t

0

f(q)dq

(t − q)α+1−p
, (2.1)

where Γ is the Gamma function.
For equation (1.2), we seek the STSI traveling wave solutions expressed by power functions as follows:

u(x, y, t) =

{
ϕ1(ct − k1x − k2y)a , if k1x + k2y ≤ ct,

0 , if k1x + k2y > ct,
(2.2)

where ϕ1 and a are undetermined constants, c is a wave speed, x, y ∈ R and k1= 1,k2 = 0(k1 = 1, k2 = 1)

correspond to u = u(x, t)(u = u(x, y, t)), respectively.

Now let us give a basic principle (homogeneous principle) accompanied by the main steps for seeking the

STSI traveling wave solutions expressed by power functions for equation (1.2) as follows:

Step 1: Taking the space-time scaling transformation

t = kt1, x = kx1, y = ky1, k > 0, (2.3)

then

u(x, y, t) = ka

{
ϕ1(ct1 − k1x1 − k2y1)a , if k1x1 + k2y1 ≤ ct1,

0 , if k1x1 + k2y1 > ct1.
(2.4)
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When ct1 − k1x1 − k2y1 ≥ 0, substituting equation (2.4) into equation (1.2), we obtain an ordinary differential
equation involving fractional derivative:

[k(ct1 − k1x1 − k2y1)]a−αcαϕ1
Γ(a+1)

Γ(a+1−α)
+ L([k(ct1 − k1x1 − k2y1)]an1−N1−M1kN1

1 kM1
2 ϕn1

1 an1(an1 − 1)

· · · (an1 − N1 − M1 + 1), · · · , [k(ct1 − k1x1 − k2y1)]ani−Ni−MikNi

1 kMi

2 ϕni

1 ani(ani − 1)

· · · (ani − Ni − Mi + 1)) = 0.

(2.5)

From equation (2.5), the conditions of the existence for STSI traveling wave solutions (2.4) are that equation

(2.5) is homogenous with respect to k .

Step 2: Under the above conditions of invariance, ϕ1 is determined from the relation

cαϕ1
Γ(a+1)

Γ(a+1−α) + L(kN1
1 kM1

2 ϕn1
1 an1(an1 − 1) · · · (an1 − N1 − M1 + 1),

· · · , kNi
1 kMi

2 ϕni
1 ani(ani − 1) · · · (ani − Ni − Mi + 1)) = 0.

(2.6)

For the convenience of statement, let equation (1.2) be of the form

∂αu
∂tα + r1u

n01(∂u
∂x )2 + r2u

n02 ∂2u
∂x2 + l11(un11)x + l12(un12)y

+l21(un2l)xx + l22(un22)xy + l23(un23)yy

+l31(un31)xxx + l32(un32)xxy + l33(un33)xyy + l34(un34)yyy

+l41(un41)xxxx + · · ·+ l45(un45)yyyy = 0.

(2.7)

Let

u1(x, y, t) =

{
ϕ1(ct1 − k1x1 − k2y1)a, if k1x1 + k2y1 ≤ ct1,

0, if k1x1 + k2y1 > ct1,
(2.8)

and when k1x1 +k2y1 < ct1 , substituting equation (2.8) into equation (2.7), equation (2.7) can be changed into

ka−α ∂αu1
∂tα

1
+ kan01+2(a−1)r1u

n01
1 (∂u1

∂x1
)2 + kan02+a−2r2u

n02
1

∂2u1
∂x2

1

+kan11−1l11(un11
1 )x1 + kan12−1l12(un12

1 )y1

+kan21−2l21(un2l

1 )x1x1 + · · ·+ kan23−2l23(un23
1 )y1y1

+kan31−3l31(un31
1 )x1x1x1 + · · ·+ kan34−3l34(un34

1 )y1y1y1

+kan41−4l41(un41
1 )x1x1x1x1 + · · ·+ kan45−4l45(un45

1 )y1y1y1y1 = 0.

(2.9)

Then the conditions of invariance read:

a − α = an01 + 2(a − 1) = an02 + a − 2 = an11 − 1 = · · · = an45 − 4. (2.10)
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When k1x1 + k2y1 < ct1 , one may easily verify that

∂αu1
∂tα

1
= ϕ1

dα(ct1−k1x1−k2y1)a

dtα
1

= [ct1 − k1x1 − k2y1]a−αϕ1c
α Γ(a+1)

Γ(a−α+1) ,

un01
1 (∂u1

∂x1
)2 = [ct1 − k1x1 − k2y1]an01+2(a−1)ϕn01+2

1 a2k2
1,

un02
1

∂2u1
∂x2

1
= [ct1 − k1x1 − k2y1]an02+a−2ϕn02+1

1 k2
1a(a − 1),

(un11
1 )x1 = −[ct1 − k1x1 − k2y1]an11−1ϕn11

1 k1an11, · · ·

(un45
1 )4y1 = [ct1 − k1x1 − k2y1]an45−4(k2)4an45(an45 − 1)(an45 − 2)(an45 − 3)ϕn45

1 .

Substituting the above equations into equation (2.9), under the invariant conditions (2.10), we obtain

cαϕ1
Γ(a+1)

Γ(a−α+1) + r1ϕ
n01+2
1 a2k2

1 + r2k
2
1a(a − 1)ϕn02+1

1 − l11an11k1ϕ
n11
1

+ · · ·+ l45ϕ
an45
1 an45(an45 − 1)(an45 − 2)(an45 − 3)k4

2 = 0.
(2.11)

This implies that ϕ1 is determined by equation (2.11).

Remark. When p = 1, r1 = −mn, n01 = n − 1, r2 = −m, n02 = n, k1 = 1, k2 = 0, l11 = · · · = l45 = 0, we

obtain a = 2−α
n from invariant conditions and

ϕ1 =
[

cαΓ(a+1)
(an+a−1)Γ(a−α+1)ma

] 1
n

=
[

cαΓ(a+1)
(a+1−α)Γ(a−α+1)ma

] 1
n

from equation (2.11), i.e.

ϕ1 =
[

cαΓ(a+1)
Γ(a−α+2)ma

] 1
n

=
[

cαnΓ(2−α
n +1)

Γ(2−α
n −α+2)m(2−α)

] 1
n

. The results agree with the results presented in [18].

3. Applications

In this section, the homogeneous principle proposed in Section 2 shall be demonstrated via application
to two examples.

3.1. Space-time scaling invariant traveling wave solutions of generalized fractional

Benjamin-Ono equations

If we take u = u(x, t), α = β , 1 < β ≤ 2, l21 = −l2 , n21 = n , l41 = −l1 , n41 = m and other coefficients

as zero, then equation (2.7) is reduced to the generalization of the fractional Benjamin-Ono (called GFB(m, n)

shortly) equation,

∂βu

∂tβ
− l1(um)xxxx − l2(un)xx = 0, (3.1)

where mn �= 0, m, n are constants. When β = 2, its traveling wave solutions are obtained by dynamical system
method [19]. If we take k1 = 1 and k2 = 0 in (2.2), then the STSI traveling wave solutions of the GFB(m, n)
equations are

u(x, y, t) =

{
ϕ1(ct − x)a , if x ≤ ct,

0 , if x > ct.
(3.2)
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By applying the homogeneous principle to GFB(m, n) equation, we obtain a and ϕ1 , which are determined by
the conditions of invariance,

a − β = an − 2 = am − 4, (3.3)

and

cβϕ1
Γ(a + 1)

Γ(a + 1 − β)
= l1am(am − 1)(am − 2)(am − 3)ϕm

1 + l2an(an − 1)ϕn
1 . (3.4)

From (3.3) and (3.4), we obtain the following conclusions.

(i) If β = 2 then n = 1, a = 2
m−1

and ϕ1 =
[

(m−1)2(c2−l2)
2l1m(m+1)

] 1
m−1

(ii) If 1 < β < 2, then a = 4−β
m−1 = 2−β

n−1 and in this case we have the following results:

(A) If one of the cases satisfies (a) a = 3
m

, (b) a = 2
m

, (c) a = 1
m

, (d) a = 1
n

, then ϕ1 = 0.

(B) If l1 = 0, then ϕ1 =
[

cβΓ( n+1−β
n−1 )

l2Γ(3n−nβ−1
n−1 )

] 1
n−1

.

(C) If l2 = 0, then ϕ1 =
[

cβΓ(m+3−mβ
m−1 )

l1Γ( 5m−mβ−1
m−1 )

] 1
m−1

To ascertain the effect of parameters on the wave shape of STSI traveling wave solution in the general
cases, we plot (3.2) for the case where β = 1.8, c = l1 = l2 = 1 and for different values of n and t (see Figure 1).

In (3.2), ϕ1 represents the amplitude of a wave, which propagates along x -axis with the speed c (See

Figures 1 and 2). In Figure 1(a), we show the wave profiles for n = 1.1. It is seen that the wave profiles are

convex. When n is increased to 12, i.e. 2−β
n−1 = 1, the dependence of u on ct − x in (3.2) is linear (See Figure

1(b)). Further increasing n to 2 makes the wave profiles be concave (See Figure 1(c)).

Now we examine the influence of the parameter β on the wave shape for fixed time. In the special cases
where c = l1 = l2 = 1, n = 1.4 (n = 2), we solve (3.2) for four different values of β and show the wave profiles
for t = 0.3 in Figure 2.

In Figure 2 (a), n = 1.4, when β = 1.6, the dependence of u on ct− x is linear. If we increase the order

of the derivative β , then the wave profile changes from convex (β = 1.5) to concave (β = 1.8).

In Figure 2(b), n = 2, the wave profile is concave for the different values of β .

3.2. Space-time scaling invariant traveling wave solutions of generalized fractional

Zakharov-Kuznetsov equations

If we take u = u(x, y, t), 0 < α ≤ 1, r1 = r2 = 0, l11 = l1 , n11 = m , l12 = l21 = · · · = l23 = 0,

l31 = l2, n31 = n, l32 = 0, l33 = l3, n33 = r, l34 = l41 = · · · = l45 = 0, then equation (2.7) is reduced

to the generalization of fractional Zakharov-Kuznetsov equation (abbreviated GFZK) in the form

∂αu

∂tα
+ l1(um)x + l2(un)xxx + l3(ur)yyx = 0, (3.5)

where l1, l2, l3, m, n, r are constants and mnr �= 0 governs the behavior of weakly nonlinear ion acoustic waves
in a plasma comprising cold ions and hot isothermal electrons in the presence of a uniform magnetic field [20,

469



HE, FANG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

x

u

t=1

t = 0.8

t = 0.4

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)

t = 1

t = 0.8

t = 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

(b)

t = 1

xx

u t = 0.8

t =0.6

Figure 1. Wave profiles of GFB(m , n) equations for β = 1.8, c = l1 = l2 = 1: (a) n = 1.1, (b) n = 1.2, and (c)

n = 2.

21]. Some solutions of the GFZK equation have been obtained by VIM [22] and HPM [23]. But traveling wave
solutions have not been considered.

In (22), if we take k1 = k2 = 1, then the STSI traveling wave solution is

u(x, y, t) =
{

ϕ1(ct − x − y)a , if x + y ≤ ct,

0 , if x + y > ct.
(3.6)

By applying the homogeneous principle to GFZK equation, we obtain

a − α = am− 1 = an − 3 = ar − 3, (3.7)

and
Γ(1 + a)

Γ(1 + a − α)
cα − l1ϕ

m−1
1 am− (l2 + l3)ϕr−1

1 ar(ar − 1)(ar − 2) = 0. (3.8)

From (3.7) and (3.8), we obtain r = n and the following conclusions:
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Figure 2. Wave profiles of GFB(m , n) equations for t = 0.3, c = l1 = l2 = 1 and different values ofβ : (a) n = 1.4,
and (b) n = 2.

(i) If α = 1, then m = 1 and a = 2
r−1

.

(ii) If 0 < α < 1, then a = 1−α
m−1 = 3−α

r−1 . In this case, the value of ϕ1 is as follows:

(A) If l2 = −l3 , then ϕ1 =
[

cα(m−1)Γ(m−α
m−1 )

m(1−α)l1Γ(
m(1−α)

m−1 )

] 1
m−1

.

(B) If one of the cases is satisfied: (a) a = 1
r , (b) a = 2

r , then ϕ1 = 0.

(C) If l1 = 0, then ϕ1 =
[

cαΓ(2+r−α
r−1 )

(l2+l3)Γ( 4r−rα−1
r−1 )

] 1
r−1

.

In (3.6), ϕ1 represents the amplitude of a wave, which propagates along xy plane with the speed c . If we regard
x + y as a coordinate axis, then the wave profiles of STSI traveling wave solutions are similar to those defined
by GFB(m, n) (see Figure 1 and Figure 2).

4. Summary and conclusions

In this paper, we have considered the space-time scaling invariant traveling wave solutions of equation
(1.2). A basic principle (homogeneous principle) is proposed to seek the traveling wave solutions expressed by
power functions which are invariant under space-time scaling transformations. The effectiveness of this method is
confirmed by applying to GFB(m , n) equations and GFZK equations. The traveling wave solutions expressed

by power functions have been obtained under some given parameter conditions for GFB(m , n) equations
and GFZK equations. These solutions may be helpful to describe waves features for some fractional partial
differential equations in physics. It is worth mentioning that the homogeneous principle proposed in Section 2 is
also applicable to the case in which L is a polynomial function with respect to powers of u = u(x1, x2, . . . , xn, t)
and their partial derivatives of any order.
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