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Abstract

A semi-microscopic approach that modifies the 1p-shell model wave functions through the admixture

of higher p-shells configurations from multi-�ω model space is submitted in this work. The longitudinal

form factors of C2 transitions in 7Li and 15N, and the transverse form factors of M1 transition in 12C are

calculated in the framework of this approach with the emphasis on the reproduction of the second lobe data.

It is found that a slight contribution of the higher multi-p-shells with the 1p-shell in the modified initial

and/or final states wave functions is sufficient for giving the best description to the form factors data.
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1. Introduction

Electron scattering is a very valuable tool for testing the nuclear models wave functions. For the
conventional 1p-shell model of Cohen and Kurath (CK-model) [1], the interaction included was determined

in the smallest model space possible for the nuclei of this region (0 �ω model space). The extracted CK-model
wave functions are appropriate for calculating the observable quantities that depend on the 1p-shell nature, such
as magnetic dipole moments, Gamow-Teller (GT) β -decay and M1 γ -transitions, but they fail in describing the

electron scattering form factors at high momentum transfer [1]. This deficiency is attributed to the truncation
of the space which is restricted to the 1p3/2 and 1p1/2 shells, only.

Wolters et al. [2] develop an empirical effective interaction for 1p-shell nuclei in the complete (0+2)�ω

model space, which is shown to be quite successful for energies, static moments and transition rates. They
found that an extension of the model space from 0�ω to (0+2)�ω does not considerably improve the calculated

form factors [3], and they ascribed the discrepancy between the theoretical and experimental form factors to the

need for larger than (0+2)�ω model space or relativistic and/or mesonic effects. Towards the end of the p-shell,

Booten and van Hees [4] found that meson exchange currents (MECs) could only partly cure the deficiencies in

the wave functions, and thus they confirm the need for components other than (0+2)�ω .
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To make benefit of the 1p-shell model (0�ω ) wave functions in the reproduction of the form factors data,
the truncated space can be compensated by combining the 1p-shell model wave functions with highly-excited
states by using first order perturbation theory. This approach is called core polarization effect. Radhi et al.
[5] use such an approach to study the C2 form factors of 1p-shell nuclei. In spite of their remarkably good
agreement with measured data, core polarization effects in this study fail to reproduce the diffractive structure

of 7 Li data at high momentum transfer values and they left it as an open question to be studied.

The truncation of the model space can be reformed in another way that makes use of the independence
of the CK interaction from the radial wave function of the single-particle states, which is the modification of
the model space in such a way that combines 1p and 2p shells. This approach is argued by Talmi [6] following

the use of Huffman et al. [7] phenomenological wave functions to calculate the form factors of 14N. Such an

extension in the model space that mixes 1p+2p shells is used by Radhi et al. [8] to explain the diffractive

structure of the elastic magnetic electron scattering from 19 F. This extension is enlarged in the present work
to include the mixing of (1p + 2p + · · ·+ np) configurations in order to give the best description for the form
factors at high-q values.

2. Theory

Electron scattering form factors involving angular momentum J , isospin T and momentum transfer q,

between the initial and final nuclear shell model states of spin Ji,f and isospin Ti,f , are described by [9]

∣∣∣F L,m
J (q)

∣∣∣2 =
4π

Z2(2Ji + 1)

∣∣∣∣∣∣
∑

T=0,1

(
Tf T Ti

−Tz 0 Tz

) 〈
JfTf

∥∥∥∣∣∣TL,m
JT (q)

∣∣∣∥∥∥ JiTi

〉∣∣∣∣∣∣
2

|Ffs(q)|2 |Fcm(q)|2 , (1)

where Tz is the z-component of the isospin for the initial and final states and is given by Tz = (Z−N)/2. Ffs(q)

and Fcm(q) are respectively, the corrections for the finite-nucleon size, exp
(
−0.43q2/4

)
, and the center-of-mass

motion, exp
(
b2q2/(4A)

)
[10]. Here, Z , b and A are the atomic number, size parameter and mass number,

respectively. The reduced many-body matrix elements for shell-model wave functions of initial and final spin
J i,f and isospin T i,f can be expressed as a linear combination of the reduced single-particle matrix elements

[9] 〈
JfTf

∥∥∥∣∣∣TL,m
JT (q)

∣∣∣∥∥∥ JiTi

〉
=

∑
jijf

OBDM(Ji, Ti, Jf , Tf , J, T, ji, jf)
〈
jf tf

∥∥∥∣∣∣TL,m
JT (q)

∣∣∣∥∥∥ jiti

〉
, (2)

with the electron scattering operators TL,m
J (q) are either TL

J (q) for longitudinal transition or Tm
J (q) for

transverse magnetic transition.
The single-particle matrix element that is reduced in both spin and isospin is written in terms of that

reduced in spin only [9]:

〈
jf tf

∥∥∥∣∣∣TL,m
JT (q)

∣∣∣∥∥∥ jiti

〉
=

√
2T + 1

2

∑
tz

IT (tz)
〈
jf

∥∥∥TL,m
Jtz

(q)
∥∥∥ ji

〉
, (3)

where IT (tz) =

{
1 for T = 0

(−1)1/2−tz for T = 1
, and tz = 1/2 for proton and -1/2 for neutron. The reduced
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single-particle matrix elements of the electron scattering operators are given explicitly by Brown et al. [11].
The one-body density matrix elements, OBDM, which contain the complexities of nuclear structure, are given
by Lee and Kurath [12] for the 1p-shell nuclei.

Writing the initial and final single-particle states |i〉 ≡ |ji〉 and |f〉 ≡ |jf 〉 by replacing them with the

following linear combinations of single-particle basis that keep the angular part unchanged, brings

|i〉 =
n∑

k=0

αk

∣∣∣n(k)
i �iji

〉
, (4a)

|f〉 =
n∑

k′=0

βk′

∣∣∣n(k′)
f �fjf

〉
, (4b)

where amplitudes αk and βk′ are taken as free parameters that satisfy the orthonormality conditions
∑
k=0

|αk|2 =

1 and
∑

k′=0

|βk′ |2 = 1, respectively. Also, the radial quantum number of the initial and final states are changed

to n
(k)
i = 1 + k and n

(k′)
f = 1 + k′ , respectively.

The expansion of the initial and final states given in equations (4) mixes p-shell configurations from

multi-�ω spaces with that of 0�ω , i.e. mixes the higher-energy orbits (2p + 3p + · · · + np) with the 1p shell.
In other word, the present work submits a calculation method for the form factors in an incomplete multi-�ω

model space since it neglects many other configurations but the p shells. However, this simple modification
in the wave functions enables us to calculate the reduced many-particle matrix elements by using the OBDM
elements of the 1p-shell model as they are independent of the principal quantum number. The use of equations
(4) modifies the reduced single-particle matrix elements to

〈
jf

∥∥∥TL,m
Jtz

(q)
∥∥∥ ji

〉
=

∑
kk′

αkβk′

〈
n

(k′)
f �f jf

∥∥∥TL,m
Jtz

(q)
∥∥∥ n

(k)
i �iji

〉
. (5)

3. Results and discussion

The one-body density matrix elements (OBDM) of the 1p-shell model are used in calculations of the

form factors of electron scattering from the p-shell nuclei 7Li, 12C, and 15 N in a large extended space which
include admixture from higher multi-�ω p-shell configurations. The reduced single-particle matrix elements
of the electron scattering operators are calculated according to equation (5). Thus, the OBDM elements of
1p-shell model, which convert the single-particle calculations to a many-particle calculation, are modified by
the product of the parameters αk and βk′ for each higher p-shell that admixed with the 1p-shell. These
parameters are taken as adjustable parameters that reproduce the best description of the form factors data,
and the only correlation among them is the orthonormality conditions of the extended initial and final states.
The size parameters, b , of the harmonic oscillator single-particle wave functions employed in this work are 1.77

[13], 1.64 [14] and 1.678 fm [15], that reproduce the root-mean-square charge distribution of 7 Li, 12C and 15 N,
respectively.

The reduced transition probabilities at the photon point B(C2 ↑, k) and B(M1 ↑, k) where k = EX

�c , are

calculated from
∣∣F L

J=2(k)
∣∣2 and |F m

J=1(k)|2 , respectively, according to Brown et al. [11].
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3.1. JπT (EX, MeV ) = 1
2

− 1
2
(0.478) and 7

2

− 1
2
(4.63) states in 7Li

The ground state of 7 Li has JπT = 3
2

− 1
2
. The electro-excitation of 7Li from its ground state to those

two states has prominent longitudinal C2 components. As shown in Figures 1 and 2, the experimental data

show diffractive structure with two lobes separated by a minimum value around q ≈ 3 fm−1 . The dotted curves
in both figures represent 0�ω model space (CK-model) calculations of the C2 form factors, which reproduce the
shape of the first lobe only. Giving the valence nucleons effective charges, which have values different from free
nucleons charges by the increment δe = 0.35 e , the results enhance to be in very good agreement with the first
lobe data. This procedure is due to core polarization effects (q-independent) and is shown in the dashed-dotted
curves in both figures.
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Figure 1. Longitudinal C2 form factor for Jπ, T = 1
2

−
, 1

2

state at Ex =0.478 MeV in 7 Li. Data is from [18].

Figure 2. Longitudinal C2 form factor for Jπ, T = 7
2

−
, 1

2

state at Ex =4.63 MeV in 7Li. Data is from [19].

Calculations of 1p-shell model plus microscopic (q-dependent) core polarization effects that include higher-

energy particle-hole excitations up to 6 �ω [5] show analogous results to that displayed in the dashed-dotted
curves of Figures 1 and 2, and fail to reproduce the data that follow the minimum diffractions. On the other
hand, fully microscopic shell model calculations over the complete (0 + 2) �ω [16] and (0 + 2 + 4) �ω [17] model
spaces fail, also, to reproduce these structures.

In the present calculations, an admixture of 2p shells with 1p shells, (1p+2p), in the initial and final
states, shifted the first minima diffractions in both Figures 1 and 2 closer to the experimental responses, as
shown in the dashed curves. While admixture of (1p+2p+3p) shells in the initial and final states succeeds in

describing the C2 form factors data of the 1
2

− 1
2 state in 7 Li, as shown in the solid curve of Figure 1.

These linear combinations of modified initial and final states are

|i〉 = −0.975 |1p〉 + 0.1 |2p〉 + 0.198 |3p〉 ,

|f〉 = 0.95 |1p〉 + 0.1 |2p〉 + 0.296 |3p〉 .

The somewhat broad peak beyond q ≈ 3 fm−1 of the C2 form factors of 7
2

− 1
2 state in 7Li cannot be reproduced

by such an admixture of p shells, as shown in the dashed-double dotted curve of Figure 2. However, this state
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requires admixture of (1p+2p+3p+4p) shells in the initial and final states,

|i〉 = −0.98 |1p〉 + 0.09 |2p〉 + 0.07 |3p〉 + 0.163 |4p〉 ,

|f〉 = 0.98 |1p〉 + 0.09 |2p〉 + 0.07 |3p〉 + 0.163 |4p〉 ,

to enhance the resulting C2 form factor, and is shown as a solid curve in Figure 2. The above wave functions
denote directly that our calculations are carried out in incomplete (0 + 2 + 4) �ω and (0 + 2 + 4 + 6) �ω model
spaces.

On the other hand, the transition strengths at the photon point B(C2 ↑, q = k) are enhanced by
introducing the effective charges only. But there, values deteriorate as admixtures of higher p shells are taken
into account, as shown in Table 1.

Table 1. Theoretical values of reduced transition probabilities B(C2 ↑, k) (in units of e2 fm4) and B(M1 ↑, k) (in

units of μ2
N ) in comparison with the experimental values.

Nucl. Jπ
f Tf E

(a)
X mJ(b) 1p +δe:δgs +2p +3p +4p +5p +6p +7p Exp.

7Li 1/2− 1/2 0.478 C2 1.725 7.263 4.002 4.72 8.3 (0.5)(c)

7Li 7/2− 1/2 4.63 C2 2.675 10.17 8.04 8.19 8.046 15 (1.9)(c)

12C 1+ 1 15.11 M1 6.84 3.477 2.621 2.623 2.623 2.623 2.623 2.623 2.78 (0.08)(d)

15N 3/2− 1/2 6.32 C2 7.88 13.33 9.28 9.45 13.22 13.21 13.13 14.8 (??)(e)

(a) Excitation energies are in MeV. (b) Multipolarity. (c) Ref. [20]. (d) Ref. [21]. (e) Ref. [22].

3.2. JπT (EX , MeV ) = 1+1 (15.11) state in 12C

The excitation of 12C from the ground state (0+ 0) to the excited state (1+ 1) is by isovector M1 transition.

The higher precision experimental data of Deutschmann et al. [23] for M1 form factors are displayed as full
circles in Figures 3 and 4. Using Cohen-Kurath wave functions and the effective operators by introducing the
value gs (eff.) = 0.72gs (free) for valence protons and neutrons, cannot extract the correct experimental form
factors, as shown in the dotted and dashed curves of Figure 3, respectively. The extension of the ground state

(initial) wave function to include (1p+2p) shells reproduces the minimum diffraction at q ≈ 1.3 fm−1 as well
as the first lobe data. However, the admixture of 2p shell in our calculations underestimates the data after

q > 1.7 fm−1 . These results are shown as solid curve in Figure 3.
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Figure 3. M1 form factor for Jπ, T = 1+, 1 state at 15.11 MeV in 12C. Data is from [20].
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The transition to this state in 12C has been the subject of many previous studies. The suppression of
CK model calculations as compared with the second lobe experimental data is enhanced significantly by taking
into account the effects of the first order core polarization and meson exchange currents (MECs) [24]. In a

calculation method similar to that of Reference [24], Suzuki et al. [25] follow another exchange characters for
the central components of the residual interaction. Their calculations are fitted the data up to the peak of the
second lobe and fall off like the solid curve of Figure 3.

The complete (0 + 2) �ω model space calculations [26] for the transverse M1 form factors of this state as
well as that including two-level isospin mixing underestimate all the data of the second lobe.

Figure 4 shows the results of the present work as compared with the experimental data. One can observe
that the curves of the calculated M1 form factors of the second lobe are stretched as the number of higher

shells that taken into account are increased. Finally, by introducing the 7 th p-shell in the modified initial wave
function, the Deutschmann et al. data are reproduced excellently, as shown in the solid curve of Figure 4. This
modified wave function is

|i〉 = −0.87 |1p〉 + 0.38 |2p〉 + 0.024 |3p〉 + 0.024 |4p〉
+0.024 |5p〉 + 0.2 |6p〉 + 0.2387 |7p〉 .

On the other hand, the use of this extended wave function reproduces a value for the reduced transition
probability B(M1 ↑, q = k) to this state is less than the experimental one by 5.6% only as given in Table 1.
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Figure 4. M1 form factor for Jπ, T = 1+, 1 state at 15.11 MeV in 12 C. Data are from [20].

3.3. JπT (EX, MeV ) = 3
2

− 1
2
(6.32) state in 15N

The experimental data of the C2 form factors of this state are displayed as full circles in Figures 5 and

6 show diffractive structure with minimum value at q ≈ 2.5 fm−1 . The C2 form factors that shown as dotted
curve in Figure 5 are obtained by using Cohen-Kurath wave functions. The addition of effective charges to the
valence protons and neutrons with δe = 0.3e give the results that shown as the dashed curve in this figure.
Both curves fail to show the diffractive behavior of the data.
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Figure 5. C2 form factor for JπT = 3
2

−
1

1
2

state at

EX =6.32 MeV in 15 N. Data are from [28].

Figure 6. C2 form factor for JπT = 3
2

−
1

1
2

state at

EX =6.32 MeV in 15 N. Data is from [28].

Calculations that include microscopic core polarization effects [27] through excitations from the core
orbits up to higher orbits with 2 �ω excitations do not explain this behavior. It appears that such a structure
requires the contribution of higher shells.

Mixing in the 2p shell shifted the results of the dashed-dotted curve in Figure 5 towards the experimental

value of the minimum diffraction, while a small hump appears at q > 3 fm−1 due to (1p+2p+3p) shells
contribution in the initial and final states, as shown in the solid curve of Figure 5.

Consideration of the 4p, 5p, and 6p shells, respectively, in turn influences the C2 form factor as shown
in Figure 6 as the dotted, dashed, and solid curves. All these curves show the diffractive structure of this C2
form factor and predict the correct position of the minimum diffraction. However, both the dotted and dashed

curves overestimated the data slightly at 1.25 fm−1 < q < 2.1 fm−1 .

Thus, admixture of the shells (2p+3p+4p+5p+6p) with the 1p shell in the initial and final states give
the best description to the data since they have large error bars for that data of the second lobe. The following
wave functions are used to calculate the solid curve in Figure 6:

|i〉 = −0.97 |1p〉 + 0.1 |2p〉 + 0.2 |3p〉 − 0.01 |4p〉 + 0.01 |5p〉 + 0.094 |6p〉 ,

|f〉 = 0.97 |1p〉 + 0.1 |2p〉 − 0.2 |3p〉 + 0.01 |4p〉 + 0.01 |5p〉 + 0.094 |6p〉 .

However, the effective charge model enhances the value of B(C2 ↑, q = k) predicted by CK model calculations,

and the above modification in |i〉 and |f〉 retains this enhancement, as explained in Table 1.

Radhi et al. [29] showed that the high q data depend strongly on the radial part of the single-particle

wave functions. The high q data for the JπT (EX , MeV) = 1
2

− 1
2

(0.478) and 7
2

− 1
2

(4.63) states in 7Li and

JπT (EX , MeV) = 3
2

− 1
2
(6.32) in 15N were successfully described when the radial part of the single-particle

wave functions were those of the Woods-Saxon potential, rather than the harmonic oscillator potential. Their
calculations included core-polarization effects. In the present work, the radial part of single particle wave
functions of the harmonic oscillator potential, has been modified by including higher shells.
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4. Conclusions

The truncated model space that include the shells 1p3/2 and 1p1/2 only (0�ω) is less successful for

describing the dynamic properties such as electron scattering form factors and reduced transition probabilities
in the nuclei of atomic mass 4<A<16. Extending the model space to include the full (0 + 2 + 4)�ω fail

to reproduce the diffractive structures of the experimental C2 form factors of 7 Li. Consideration of higher-

energy excitations up to 6 �ω through core polarization effects fail also to describe this structure in 7Li. Our
calculations, which were carried out in the extended space involving admixture of the harmonic oscillator shells

(1p+2p+3p) and (1p+2p+3p+4p) in the initial and final wave functions of 7 Li, reproduce the data excellently.

On the other hand, the wave functions of 12 C and 15N require admixtures of higher shells up to 7p and 6p,
respectively, to give the best description for the electron scattering form factors. However, the results of the
present work denote that the extension involving such an incomplete multi-�ω model space may compensate any
other effects that interfere destructively with some components of the full multi-�ω model space calculations.
And this may justify the present approach. Another longitudinal and transverse form factors for nuclei in the
p- and sd-shell regions are left as subjects for future works in the framework of this approach.
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