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doi:10.3906/fiz-1108-13

Heat capacity of trapped bosons in a combined

harmonic-lattice potential

Azza M. El-BADRY
Department of Physics, Faculty of Science, El Minia University

El Minia-EGYPT
e-mail: elbadry.azza@yahoo.com

Received: 21.08.2011

Abstract

In this paper, the heat capacity per particle C(T )/NkB of the trapped bosons in a combined harmonic-

lattice potential is calculated within the semicalssical approximation. The main effects which can alter the

ideal gas are included simultaneously in the present approach. The calculated results show that the heat

capacity has a significant dependence on the lattice depth and temperature. Classical results are recovered

at sufficiently high temperature, and that it reproduces the Dulong-Petit law type. Moreover, the behavior

of the heat capacity in a deep lattice can be used as an indicator for the quantum phase transition superfluid-

Mott insulator. It decreases as the system gets closer to the Mott transition. The calculated results provide

a solid theoretical foundation of the current experiments.

Key Words: Thermodynamical properties for BEC in optical lattice; semiclassical theories and applications

1. Introduction

Ultracold boson atoms stored in a combined harmonic-lattice potential (lattice bosons) display a great

variety of quantum phenomena, similar to those found in certain solid-state systems [1]. However, by using
external fields the atoms can be brought to new experimental regimes and allow one to explore novel phenomena,
such as superfluid (SF)-Mott insulator (MI) quantum phase transition [2]. In this context, calculation of the

thermodynamic quantities, such as the heat capacity per a particle at constant volume CV(T )/NkB is of
considerable interest. Its behavior can be used as an indicator for the possible quantum SF-MI phase transitions
[3].

In the present paper an analytical semiclassical approximation, which is the density of states (DOS)

approach, for calculating CV(T )/NkB is given. This approach is based on using a piecewise DOS to convert

the sum over quantum state for the thermodynamical quantities into an ordinary integral directly [4]. The
parametrized DOS allows the inclusion of the main effects which can alter the ideal gas, such as the finite
size effect directly [5] and the effect of interatomic interaction indirectly [6]. The obtained formula for the
thermodynamic quantities as a function of temperature is given in terms of two scaling parameters. The first
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parameter parametrizes the effect of anisotropic hopping in the optical lattice. While the second parameter
accounts the finite size, interatomic interaction and deepness of the lattice potential effects. The calculated
results show that the heat capacity is accompanied by a peak in the higher temperature range (below the Bose

Einstein condensation temperature) for both anisotropic or isotropic harmonic potential, providing that there
is highly anisotropic hopping in the optical lattice.

Remainder of this paper is organized as follows. A simple model for the theoretical framework of BEC in
a combined potential is given in section two. The heat capacity is calculated in section three. The last section
outlines the discussion and conclusions.

2. Theoretical model

The combined potential is set up by accompanying an optical potential with a magnetic confining potential

[7]. The optical (lattice) potential, Vlat(r) = [Vx sin2(kx) + Vy sin2(ky) + Vz sin2(kz)], is created by combining

multiple laser beams with suitable alignment and polarization. While the magnetic (harmonic) potential,

Vhar(r) = 1
2
m(ω2

xx2+ω2
yy2 +ω2

zz
2), is arising from an external magnetic potential with frequencies {ωx, ωy, ωz} .

The potential seen by the atoms is typically modeled in the form [8]

Vcom(r) =
1
2
m(ω2

xx2 + ω2
yy

2 + ω2
zz

2) (1)

+ER

[
sx sin2(kx) + sy sin2(ky) + sz sin2(kz)

]
, (2)

where sx,y,z = Vx,y,z/ER is a dimensionless parameter which denotes the lattice depth Vx,y,z in units of the

recoil energy ER . The recoil energy, ER = �
2k2

2m {≡ �ωR} , is defined as the recoil energy that one atom acquires

as it absorbs one lattice photon, and k = 2π/λ is the lattice wave number, where λ is the laser wavelength.

In order to use Bose-Einstein statistics in calculating C(T )/NkB for this system, the single particle

energy levels are needed. For potential (2), it is impossible to find an exact analytical expression for the energy
of these levels. An approximate expression can be readily obtained if the trapped atoms are considered to be
harmonically trapped in the ground state of the optical lattice. In this case, the single particle energy levels
can be approximated by a modified harmonical oscillator energy levels.

However, for sufficiently deep optical lattice the confinement of an individual lattice site can be approxi-

mated by a corresponding harmonic potential with ωlat,x,y,z = [(2Vx,y,zk
2)/m]1/2 plus a quartic term which can

be treated perturbativly via the normal ladder operators. Under this approximation the single particle energy
level is given by [9, 10],

En = nx�ω′
x + ny�ω′

y + nz�ω′
z + E0, (3)

where E0 = 3
2
�ω̄ with ω̄ = 1

3
(ω′

x + ω′
y + ω′

z) is the mean of the combined frequencies, and ω′
x,y,z are given by

ω′
x = ωx[

√
1 + 4sxt2x − 0.5tx],

ω′
y = ωy[

√
1 + 4syt2y − 0.5ty], (4)

ω′
z = ωz[

√
1 + 4szt2z − 0.5tz],

362



El-BADRY

where tx,y,z = ωR
ωx,y,z

gives the ratio between recoil frequency and geometrical average of the harmonic frequen-

cies.
BEC is described within the grand canonical ensemble. Its relevant thermodynamic quantities can be

calculated from the partial derivative of the corresponding thermodynamical potential q of the physical system.
For a trapped Boson in a combined potential the thermodynamical potential q is given by [11, 12],

q = −
∑

n

gn ln
(
1 − ze−βEn

)
, (5)

where β = (1/kBT ) and kB is the Boltzmann constant, z = eβ(μk−E0) is the fugacity and gn = (1
2n2 + 3

2n +1)

is the degeneracy of the energy levels of the harmonic potential. It is convenient to expand the logarithm to
express the grand potential as a sum over Bose-Einstein distribution and using the semiclassical approximation
(summation over n in equation (5) is converted into an integral weighted by a DOS ρ(ε)):

q = q0 +
∞∑

n=1

gnze−βEn

1 − ze−βEn

= q0 +
∞∑

j=1

zj

j

∫ ∞

0

ρ(ε)e−jβεdε, (6)

The analytic DOS, which is relatively accurate for the lattice depths and harmonic confinements used in
experiments, is calculated for the spectrum (3) in [8, 9] as

ρ(ε) =
1
γ3

[
1
2

ε2

(�Ω)3
+

ε

(�Ω)2

[
3
2

ω̄

Ω
+

2
3

μk

�ω̄
γ

]]
, (7)

where Ω = [ωxωyωz]1/3 is the geometrical average of the harmonic frequencies, and μk is the chemical potential.

The parameter γ is given by

γ =
[
[
√

1 + 4sxt2x − 0.5tx][
√

1 + 4syt2y − 0.5ty][
√

1 + 4szt2z − 0.5tz]
]1/3

(8)

The parameter γ parametrizes the effects of anisotropic hopping through t′ s and the deepness of the optical
lattice potential through s′ s. It is clear that in the absence of the optical potential, γ = 1. For deep lattice
and small relative frequency, γ >> 1.

Substituting from equation (7) in (6), one has

q = q0 + γ−3

[(
KBT

�Ω

)3

g4(z) +
(

KBT

�Ω

)2

g3(z)
{

3
2

ω̄

Ω
+

2
3

μk

�ω̄
γ

}]
, (9)

where q0 = − ln(1 − z), and gk(z) =
∑∞

j=1(z
j/jk) is the usual Bose function. The intuitive value of μk is

calculated quantum mechanically [13]. Pedri and co-workers [14] have calculated the local chemical potential
to be

μk=0 =
(

π2(sxsysz)1/3

4

)1/10

μ0 (10)

where μ0 is the chemical potential in the absence of the optical potential.
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3. Heat capacity

In DOS approach, the heat capacity is calculated by differentiating the internal energy, U = kBT 2
(

∂q
∂T

)
z
,

with respect to the temperature, i.e.

CV(T ) =
(

∂U

∂T

)
N,V

. (11)

However, one has to take into account two different regimes. For T < T0 the chemical potential μk=0 is fixed
and the number of atoms in the ground state N0 depends on the temperature. From equations(11), one has

C(T < T0)
NkB

=
1
γ3

{
12

(
T

T0

)3
ζ(4)
ζ(3)

+ 6 R

(
T

T0

)2
}

, (12)

where T0 = �Ω
KB

(
N

ζ(3)

)1/3

is the BEC transition temperature for the ideal Bose gas trapped in the harmonic

potential. Parameter R is given by

R =
3
2

ω̄

Ω

(
ζ(3)
N

)1/3

+
2
3

ηγ
Ω
ω̄

(
π2(sxsysz)1/3

4

)1/10

, (13)

where η = μ0
KBT0

is a scaling parameter for interaction effect, first introduced by Dalfovo et al. in [15] and

calculated in [9]. It is easy to see that parameter R simultaneously considers the main effects which can alter
the ideal Bose gas trapped in the combined potential. The first term gives the finite size effect while the second
term accounts for the interatomic interaction and the deepness of the lattice.

For T > T0 , on the other hand, N0 vanishes and μ0 depends on temperature. Thus the heat capacity
for T > T0 still depends on T and μ0 . The slightly more difficult point here is that N has to be considered

as a fixed and so μ0 has to be considered as a function of N and T . However the quantity ∂
∂β (βμ) will be

needed in calculating C(T > T0)/NkB . This quantity can be found from equation (9) given that N is fixed.

Following Grossmann and Holthaus [5], one has

CV(T > T0)
NkB

=
1
γ3

{[
12

g4(z)
ζ(3)

( T

T0

)3

+ 6
g3(z)
ζ(3)

R
( T

T0

)2]
−

[3g3(z)
ζ(3)

( T

T0

)3

+ 2
g2(z)
ζ(3)

R
( T

T0

)2]3g3(z) + 2R(T0/T )g2(z)
g2(z) + R(T0/T )g1(z)

}
. (14)

In absence of the optical potential, i.e. γ → unity, the results previously obtained by Crossmann and
Holthaus [5] can be obtained by setting η = 0 in equation (13). In the thermodynamic limit, R = 0, and

equations (12) and (14) are considerably simplified to

C(T < T0)
NkB

=
12
γ3

ζ(4)
ζ(3)

(
T

T0

)3

(15)

C(T ≥ T0)
NkB

=
3
γ3

[
4

g4(z)
g3(z)

− 3
g3(z)
g2(z)

]
. (16)

364



El-BADRY

Thus the heat capacity is discontinuous at T = T0 .

According to the Ehrenfest definition, this discontinuity characterizes the phase transition to be of second
order. Furthermore, one observes that the heat capacity, equation (15), obeys the third law of thermodynamics,
which demands a vanishing heat capacity at zero temperature, and reproduces the Dulong-Petit law type in the

very high temperature limit, (C(T ≥ T0)/NkB)T→∞ = 3γ−3 .

In Figure 1 the results calculated from equations (12) and (14) are plotted for γ = 1. This figure shows
that the BEC is accompanied by a peak in the specific heat capacity at temperature equal to the condensation
temperature, T/T0 = 1, for the isotropic harmonic trap. For anisotropic harmonic trap ω̄

Ω
= 3.0, the peak is

shifted to the high temperature range, but less than the transition range T0 . These results are in agreement
with the results obtained by Van Druten and Ketterle [16].

Figure 2 shows that the BEC, in a combined isotropic harmonic potential with anisotropic hopping
lattice potential, γ > 1, is accompanied by a peak in the heat capacity. Peaks for the combined isotropic
harmonic-lattice potential are at higher temperature than that observed for the anisotropic harmonic potential
case. However, this result does not agree with the results of Ramakumar and Das [17] for isotropic harmonic
potential. Their numerical calculations showed that when bosons are in an isotropic harmonic with highly
anisotropic hopping in the optical lattice, the peak is not shifted.

Figure 3 shows that the BEC in a combined anisotropic harmonic potential with anisotropic hopping
lattice potential, γ > 1, is also accompanied by a peak in the heat capacity. In the high temperature limit, the
heat capacity still reproduces the Dulong-Petit law type.
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Figure 1. Variation of the specific heat capacity capacity

CV/NkB is plotted against reduced temperature T/T0 , for

harmonically confined bosons in isotropic and anisotropic

harmonic traps. The horizontal solid line corresponds to

the Dulong-Petit law.

Figure 2. Variation of the heat capacity CV/NkB is

plotted against reduced temperature T/T0 , in a combined

isotropic harmonic potential with anisotropic hopping lat-

tice potential. The horizontal solid line corresponds to the

Dulong-Petit law.
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Figure 3. Variation of the heat capacity C/NkB is plotted against reduced temperature T/T0 , in a combined anisotropic

harmonic potential with anisotropic hopping lattice potential. The horizontal solid line corresponds to the Dulong-Petit

law.

4. Discussion and conclusion

The heat capacity for interacting bosons trapped in a combined harmonic lattice potential has been in-
vestigated in this work. Among other results, the heat capacity has a significant dependence on the temperature
and the lattice depth. Morover, it shows a λ anomaly at T0 , and is accompanied by a peak at the transition
temperature. The heat capacity peak’s for high lattice depth occurs at lower temperature than that of low
lattice depth. This behavior is due to the fact that the transition temperature decreases with the increased lat-
tice depth. There is a discontinuity in the heat capacity, and this discontinuity remains finite for the combined

potential. In the thermodynamic limit, N → ∞ , the discontinuity becomes smaller by a factor of γ−3 . It is
interesting to notice that the interaction effect is still visible, even in the presence of the optical potential, but
it is strongly quenched. In contrast to previous work, the DOS approach involves only analytical calculations
without technical complication.
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