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Abstract: A short-range force constant model was applied to investigate the phonons in wolframite ZnWO4 crystals

in their monoclinic phase having space group P2/c and symmetry C2h . The normal symmetry coordinates for the

monoclinic wolframite were computed. The zone center phonons were calculated by using 8 stretching and 6 bending

force constants. The calculated results are in very good agreement with the observed ones. The infrared frequencies

were assigned for the first time. The potential energy distribution was also investigated for determining the significance

of the contribution from each force constant toward the Raman and infrared wavenumbers.
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1. Introduction
Materials belonging to the tungstate family (AWO4) are studied because of their many practical applications.
On the basis of optical and luminescence properties, these materials have wide applications as phosphors,
laser host crystals, and scintillator detectors in high energy particle physics, rare-event searches, and medical
diagnosis [1–4]. In particular, ZnWO4 , with large band gap energy, is a promising material for a new generation

of radiation detectors [5].

ZnWO4 , also known by the mineral name sanmartinite, belongs to the divalent transition-metal tungstates
of general formula AWO4 , which crystallize in either tetragonal scheelite structures or monoclinic wolframite
structures depending on the size of cation A [6]. ZnWO4 exhibits wolframite phases at zero and low pressure
up to ∼39 GPa. With an increase in pressure the fraction of the wolframite structure decreases and at about
39 GPa phase transition occurs from the wolframite structure to a monoclinic fergusonite-type structure. This
monoclinic fergusonite-type phase of ZnWO4 remains stable up to a pressure of 57.6 GPa. On further increase
in pressure (beyond 57.6 GPa) the fergusonite-type phase of ZnWO4 disappears and an orthorhombic Cmca

structure is formed [7]. According to Trots et al. [8], ZnWO4 is stable in a wolframite structure and there is
no occurrence of phase transition from 3 K up to 1486 K.

Vibrational studies have been used to give information about the displacements of atoms or ions, some
of which are related to the polarization of the material, and Raman scattering is a useful tool for exploring the
microscopic origin of the ferroelectricity of materials and to detect changes in local order involving significant
variations in the anion–cation bond forces. Therefore, the Raman and infrared phonons must be studied
experimentally as well as theoretically.
∗Correspondence: mm sinha@rediffmail.com
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Errandonea et al. [7] studied the Raman wavenumbers in ZnWO4 experimentally as well as theoretically.

A few infrared modes were observed and calculated by Evarestov et al. [9] and a few were experimentally

observed by Clark et al. [10]. Hence in this study an attempt was made to calculate both Raman and infrared
wavenumbers theoretically using normal coordinate analysis with 8 stretching and 6 bending force constants.
Very good agreement was obtained between the theoretically calculated values and the experimentally observed
results. We obtained better results compared to the theoretical results obtained by Errandonea et al. [7]. The
potential energy distribution was also investigated for determining the significance of the contribution from each
force constant toward the Raman and infrared wavenumbers.

2. Structure
ZnWO4 crystallizes in a monoclinic wolframite structure (space group symmetry P2/c = 13-C2h). The
primitive cell contains 2 formula units, i.e. it contains 12 atoms in a unit cell. In the structure of wolframite
ZnWO4 , both cations Zn and W have octahedral oxygen coordination and each octahedron shares 2 corners

with its neighbors [11]. The structure is shown in the Figure. The lattice parameters are a = 4.6902(1) Å, b

= 5.7169(9) Å, c = 4.9268(1) Å, β = 90.62◦ (1), V = 132.14(1) Å3 and Z = 2 [8]. Table 1 represents the site

symmetry, atomic coordinates [8], and the phonon contribution at the Γ point.
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Figure. Crystal structure of ZnWO4 crystals in their wolframite structure.

Table 1. Site symmetry, atomic coordinates for ZnWO4 , and phonon contribution at Γ point.

Atoms Sites X Y Z Phonon contribution at point
Zn 2f 0.500 0.6838 0.250 Ag+ 2Bg+ Au+ 2 Bu

W 2e 0.000 0.1820 0.250 Ag+ 2 Bg+ Au+ 2 Bu

O1 4g 0.217 0.8953 0.4373 3 Ag+ 3 Bg+ 3 Au+ 3 Bu

O2 4g 0.256 0.3747 0.3996 3 Ag+ 3 Bg+ 3 Au+ 3 Bu

The total number of zone center phonon modes present for each species of space group is

Γtotal = 8Ag + 10Bg + 8Au + 10Bu
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Out of these, 1 Au and 2 Bu are acoustical modes. Therefore, the active optical modes are given as

Γoptical = 8Ag + 10Bg + 7Au + 8Bu

Here 8 Ag and 10 Bg are Raman active modes and 7 Au and 8 Bu are infrared active modes.

3. Theory

The determination of the frequency of normal vibrations involves the kinetic and potential energies of the
system. It is necessary to solve the secular equation (containing the kinetic and potential energy matrix) to
determine the normal vibrational frequency. Wilson developed the GF matrix method to solve the secular
equation, which is also known as normal coordinate analysis [12]. If the potential energy matrix is represented

by F and the kinetic energy matrix is represented by G−1 , then the secular equation can be written as

det|F − G−1λ| = 0

In order to make the calculations easy, the above equation can also be written as

det|FG− Eλ| = 0

where F is a matrix of force constants bringing the potential energies of vibrations into the equation. As
the potential energy develops from the interaction between the atoms, so potential energy provides valuable
information about the nature of interatomic forces. G is a matrix that involves the masses of the atoms and their
geometrical arrangement in the molecule, bringing the kinetic energies into the equation, E is a unit matrix,
and the eigenvalue λ bringing the frequency ν into the equation is defined by

λ = 4π2c2ν2

The matrix F was constructed by using short-range stretching force constants K i and the bending force constants
H i . The stretching forces between 2 atoms were assumed to be obeying Hook’s law [13]. Potential energies
include short-range valence forces between nearest neighbors W–O1, W–O2, Zn–O1, Zn–O2, O2–O2, and W–
Zn and bending forces between O1–Zn–O2, O1–W–O2, O1–W–Zn, O2–W–Zn, W–O1–W, and Zn–W–O1. The
input parameters used for the calculation are the lattice parameter, masses of the atoms, symmetry coordinates,
and the available Raman and infrared wavenumbers. The symmetry coordinates for the Raman and the infrared
zone center modes are given in Table 2. The short-range force constants are optimized to give the best fit of the
observed Raman and infrared wavenumbers. These inter-atomic force constants thus obtained are presented in
Table 3.

4. Results and discussion

In this work we calculated the Raman as well as the infrared modes using the force constants, which are given
in Table 3. These values are compared with the experimentally determined Raman modes by Errandonea et
al. [7] and by Basiev et al. [14] in Table 4. Infrared wavenumbers calculated in the present work are compared

with graphically shown values in the paper by Evarestov et al. [9]. It is clear from Table 4 that the present
calculations with 8 stretching and 6 bending short-range force constants provide very good agreement with the
experimental results of Raman modes. Errandonea et al. [7] also performed ab initio calculations to calculate
Raman modes, which are also given in Table 4. From Table 4 it can be seen that our calculated results are

109



JINDAL et al./Turk J Phys

Table 2. Symmetry coordinates of ZnWO4 in P2/c structure.

Species S. no. Symmetry coordinates Species S. no. Symmetry coordinates
Ag Au

1. (Zn1y – Zn2y) /
√

2 19. (Zn1y+ Zn2y) /
√

2
2. (W1y – W2y) /

√
2 20. (W1y+ W2y) /

√
2

3. (O11X – O12X – O13X+ O14X) /2 21. (O11X – O12X+ O13X – O14X) /2
4. (O11Y + O12Y – O13Y – O14Y ) /2 22. (O11Y + O12Y + O13Y + O14Y )/2
5. (O11Z – O12Z – O13Z + O14Z) /2 23. (O11Z – O12Z+ O13Z – O14Z) /2
6. (O21X – O22X – O23X+ O24X) /2 24. (O21X – O22X+ O23X – O24X) /2
7. (O21Y + O22Y – O23Y – O24Y )/2 25. (O21Y + O22Y + O23Y + O24Y ) /2
8. (O21Z – O22Z – O23Z + O24Z) /2 26. (O21Z – O22Z+ O23Z – O24Z) /2
Bg Bu

9. (Zn1X – Zn2X) /
√

2 27. (Zn1X+ Zn2X) /
√

2
10. (Zn1Z – Zn2Z) /

√
2 28. (Zn1Z+ Zn2Z) /

√
2

11. (W1X – W2X) /
√

2 29. (W1X+ W2X) /
√

2
12. (W1Z – W2Z) /

√
2 30. (W1Z+ W2Z) /

√
2

13. (O11X+ O12X – O13X – O14X) /2 31. (O11X+ O12X+ O13X + O14X) /2
14. (O11Y – O12Y – O13Y + O14Y ) /2 32. (O11Y – O12 Y + O13Y – O14Y ) /2
15. (O11Z+ O12Z – O13Z – O14Z) /2 33. (O11Z+ O12Z+ O13Z + O14Z) /2
16. (O21X+ O22X – O23X – O24X) /2 34. (O21X + O22X+ O23X+ O24X) /2
17. (O21Y – O22Y – O23Y + O24Y ) /2 35. (O21Y – O22Y + O23Y – O24Y ) /2
18. (O21Z+ O22Z – O23Z – O24Z) /2 36. (O21Z+ O22Z+ O23Z + O24Z) /2

Table 3. Interatomic force constant values for ZnWO4 .

Force Between Coordination Interatomic Force constant
constant atoms number distance (Å)/angle∗ values (N/cm)

K1 W–O2 4 1.78 3.701
K2 W–O1 4 1.90 2.073
K3 Zn–O1 4 2.02 1.102
K4 Zn–O2 4 2.08 0.643
K5 W–O1 4 2.13 0.570
K6 Zn–O2 4 2.23 0.541
K7 O2–O2 2 2.80 0.067
K8 W–Zn 4 3.68 2.495
H1 O1–Zn–O2 4 96.51 0.254
H2 O1–W–O2 4 96.92 0.123
H3 O1–W–Zn 4 26.38 0.432
H4 O2–W–Zn 4 154.78 0.016
H5 W–O1–W 4 105.93 1.690
H6 Zn–W–O1 4 62.54 0.411

*Angles are in degrees.

better than the theoretically calculated values of Raman modes reported by Errandonea et al. [7]. The potential
energy distributions for each mode are investigated to determine the contribution of different force constants to
various frequencies. The interpretations drawn from the PED are described below.

From theoretical calculations, the W–O1–W force constant was found to be the leading force constant

for the high frequency mode, i.e 865 cm−1 of Ag mode, 870 cm−1 of Bg mode, 868 cm−1 of Au mode, and

911 cm−1 of Bu mode.
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Table 4. Calculated and observed Raman and infrared active zone centre modes (in cm−1) for ZnWO4 .

Observed Observed Present Calculated Two dominant
Species wavenumbers by wavenumbers by calculated wavenumbers contributions

Errandonea Basiev et al. [14] wavenumbers Errandonea as per PED
et al. [7] et al. [7]

Ag,1 123.1 123 122 119 H2-54%, K7-12%
Ag,2 196.1 195 169 186 K3-30%, H5-28%
Ag,3 276.1 275 272 264 K4-36%, H6-22%
Ag,4 342.1 342 325 324 H6-26%, H1-18%
Ag,5 407.0 408 389 384 K8-48%, H6-17%
Ag,6 545.5 544 471 515 K2-41%, K5-14%
Ag,7 708.9 708 705 679 K1-84%, K6-5%
Ag,8 906.9 906 865 862 H5-61%, K3-15%
Bg,1 91.5 91 91 84 H2-61%, H3-12%
Bg,2 145.8 145 138 137 K6-25%, H1-20%
Bg,3 164.1 166 165 163 K5-38%, H5-19%
Bg,4 189.6 190 188 182 H6-24%, H2-21%
Bg,5 267.1 267 291 261 K4-38%, K8-19%
Bg,6 313.1 314 347 298 H6-30%, K6-17%
Bg,7 354.1 355 368 342 K8-25%, H6-20%
Bg,8 514.5 515 486 481 K2- 55%, K5-16%

K1-84%, K6-5%
Bg,9 677.8 680 711 636 H5-59%, K3-16%
Bg,10 786.1 785 870 753
Au1 —– 0.0
Au2 —– 125 H2-56%, K7-13%
Au3 —– 263 K4-37%, K8-25%
Au4 320 330 H6-40%, H1-21%
Au5 430 450 417 K8-47%, H6-15%
Au6 528 525 469 K2-46%, K5-22%
Au7 628 567 704 K1-83%, K6-7%
Au8 830 785 869 H5-60%, K3-15%
Bu1 —– 0.0
Bu2 —– 0.0
Bu3 —– 95 H2-61%, H3-14%
Bu4 —– 187 H6-35%, H2-15%
Bu5 —– 318 K4-40%, H6-18%
Bu6 —– 331 K4-26%, H6-23%
Bu7 375 353 387 K8-41%, K3-21%
Bu8 475 472 475 K2-44%, K5-21%
Bu9 710 685 711 K1-83%, K6-5%
Bu10 880 900 911 H5-59%, K3-13%

For frequencies 705 cm−1 of Ag mode, 711 cm−1 of Bg mode, 704 cm−1 of Au mode, and 711 cm−1 of
Bu mode, the W–O2 force constant plays an important role. Therefore, we infer that W–O stretching vibrations
are very important for higher frequencies.

The internal vibrations of W atoms are dominant for frequencies 471 cm−1 of Ag mode, 486 cm−1 of

Bg mode, 469 cm−1 of Au mode, and 475 cm−1 of Bu mode.
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For frequencies 389 cm−1 of Ag mode, 368 cm−1 of Bg mode, 417 cm−1 of Au mode, and 387 cm−1

of Bu mode, the force constant W–Zn is of utmost significance. It is worth mentioning that the W–Zn bond
is very important; when the calculation was done without it, the lowest frequency of Bg mode was very small

compared to the experimental value.

The force constant Zn–W–O1 plays a vital role for frequencies 325 cm−1 of Ag mode, 347 cm−1 of Bg

mode, 330 cm−1 of Au mode, and 331 cm−1 of Bu mode.

From PED we arrived at the result that the Zn–O2 stretching bond is responsible for frequencies 272

cm−1 of Ag mode, 291 cm−1 of Bg mode, 263 cm−1 of Au mode, and 317 cm−1 of Bu mode.

According to these calculations, the lower frequencies, i.e. 122 cm−1 of Ag mode, 91 cm−1 of Bg mode,

125 cm−1 of Au mode, and 95 cm−1 of Bu mode, are dominated by the vibrations of oxygen ions (O1,O2) in
the W–O plane represented by the O1–W–O2 force constant.

A precise determination of experimental infrared wavenumbers is required to further verify the present
results.

References

[1] W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, Y. Usuki, Opt. Commun., 194, (2001), 401.

[2] P. Lecoq, I. Dafinei, E. Auffray, M. Scheegans, M. V. Korzhik, O. V. Missetvich, V. B. Pavlenko, A. A. Fedorov,

A. N. Annenkov, V. L. Kostylev, V. D. Ligun, Nucl. Instrum. Methods Phys. Res. A, 365, (1995), 291.

[3] M. Ishii and M. Kobayashi, Prog. Cryst. Growth Charact. Mater., 23, (1992), 245.

[4] D. Errandonea, F. J. Manjon, Prog. Mater. Sci., 53, (2008), 711.

[5] F. A. Danevich, V. V. Kobychev, S. S. Nagorny, D. V. Poda, V. I. Tretyak, S. S. Yurchenko, Y. G. Zdesenko, Nucl.

Instrum., Methods Phys. Res. A, 544, (2005), 553.

[6] A. W. Sleight, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 28, (1972), 2899.

[7] D. Errandonea, F. J. Manjon, N. Garro, P. Rodriguez-Hernandez, S. Radescu, A. Mujica, A. Muñoz, C. Y. Tu,
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