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c© TÜBİTAK

doi:10.3906/fiz-1205-1

Turkish Journal of Physics

http :// journa l s . tub i tak .gov . t r/phys i c s/

Research Article

Temperature dependence for the synthetic magnetization of a rotating Bose gas

in harmonic trap

Azza M. El-BADRY∗

Department of Physics, Faculty of Science, El Minia University, El Minia, Egypt

Received: 01.05.2012 • Accepted: 05.07.2012 • Published Online: 20.03.2013 • Printed: 22.04.2013

Abstract: In this paper, the temperature dependence for synthetic magnetization M̄ of a rotating Bose gas in harmonic

trap and the magnetic field dependence of the critical temperature are investigated. A simple semiclassical approximation

for the density of state approach is used in this study. The suggested approach simultaneously gives corrections to

quantities which arise from the finite size and interatomic interaction effects. The calculated results show that the

critical temperature decreases due to the increase of the synthetic magnetic field. The synthetic magnetization also

exhibits a characteristic temperature dependence. It is proportional to T 3 if T̄ < T̄c , while it is proportional to T if

T̄ > T̄c . The calculated results provide a solid theoretical foundation of the current experiments.

Key words: Synthetic magnetization of neutral boson; Static properties of condensates; Semiclassical theories and

applications; Boson systems

1. Introduction

Rotating Bose-Einstein condensation (BEC) offers several promising ways to simulate a number of models,
Hamiltonians, and physical systems. Owing to the mathematical similarity between Coriolis and Lorentz forces,
rotating neutral gases are indeed the exact analogue of an assembly of charged particles plunged in a magnetic
field [1, 2, 3]. This scenario can be seen by exploiting the equivalence of the Lorentz force qv×B in a magnetic

field B = 2(m/q)Ω and the Coriolis force 2mṙ×Ω in a rotating condensate at the frequency Ω. In this case, the

Coriolis force associated with the vector potential is chosen such that A = −1
2B × r . Recently, an alternative

approach to spin-up neutral atomic Bose gases is introducing a synthetic magnetic field instead of rotating the
frame [4, 5, 6].

Physically, both approaches mentioned above lead to trick the neutral condensate into acting as if
electrically charged. However, in a study of charged boson gas, it was indicated that an arbitrarily small
value of the magnetic field can eliminate BEC in 3-dimensions [7]. Furthermore, the orbital motion result in

extremely large Landau diamagnetism and even leads to Meissner effect at low temperatures [8].

Several experimental [9, 10] and theoretical [11, 12] studies have considered the thermodynamic properties
of ideal rotating boson gas as a function of the rotation rate. The studies indicate that the BEC critical
temperature is irrelevant to the magnetic field, conflicting with the established intuition that the critical
temperature decreases with the field increasing. However, in these studies the critical temperature was obtained
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by making a coordinate transformation for the radial harmonic trap frequency to include the rotation effect.
Since the coordinate transformation cannot induce real rotation, rotation effect in this case is a transformation
of the chemical potential to include the centrifugal force effects without affecting the critical temperature.
Another important quantity to discuss is the magnetization. It was pointed out that the magnetization keeps
invariant at all temperatures [13]. Therefore, an alternative modified approach to the standard semiclassical
approximation is needed.

Whereas the preceding papers elaborate on the thermodynamic properties of such a rotating BEC with
finite size and indirect interaction effects, including the condensate fraction, critical temperature and heat
capacity [14], and effective widths, effective area, and the expansion energy [15], the present paper investigates

the temperature dependence for synthetic magnetization M̄ of a rotating Bose gas in harmonic trap. The
semiclassical density of states approach is used [16, 17].

Outline of this paper is as follows. Section Two includes the quantum mechanics of a Bose particle in
a synthetic magnetic field and the derivation of the DOS. The dependence of the critical temperature on the
synthetic magnetization is given in Section Three. Temperature dependence for the magnetization is given in
Section Four. Conclusion is given in the last section.

2. Quantum mechanics of a Bose particle in a synthetic magnetic field

Let us consider a system of an ideal Bose gas with mass m and charge q is placed in anisotropic harmonic
potential and a uniform magnetic field B . For a constant magnetic field the Hamiltonian is given by [2, 3]

Ĥ =
1

2m
(p̂ − qA)2 +

1
2
mω2

⊥(x2 + y2) +
1
2
mω2

zz2. (1)

Here, {ω⊥(≡ ωx,y), ωz} are the effective trapping frequencies of the harmonic potential. For a constant magnetic

field the vector potential A can be written as A = −1
2

r × B . Consequently, expanding (p̂ − qA)2 leads to

Ĥ =
−�

2

2m
∇2 +

q

2m
B · L̂ +

1
2
m

(
ω2
⊥ +

q2

4m
B2

)
(x2 + y2) +

1
2
mω2

zz2. (2)

The term q
2m L̂ ·B is known as the paramagnetic term representing the Lorentz force; L̂ is the angular

momentum operator and follows the Coulomb gauge condition; ∇ · A = 0; and the term q2B2

4m (x2 + y2),

which is known as the diamagnetic term, is obtained by choosing the magnetic field to lie along the z-axis, i.e.
B = B êz .

In a reference frame rotating at frequency Ω about the z -axis, the non-interacting single particle

Hamiltonian for Bose gas is given by Ĥrot = p2/(2m) + 1
2
mω2

⊥(x2 + y2)+ 1
2
mω2

zz2 −Ω · r × p̂ . Completing the

square leads to

Ĥrot =
1

2m
(p̂− mΩ × r)2 +

1
2
m(ω2

⊥ − Ω2)(x2 + y2) +
1
2
mω2

zz2

≡ −�
2

2m
∇2 + Ω · L̂ +

1
2
m(ω2

⊥ − Ω2)(x2 + y2) +
1
2
mω2

zz2 (3)

A direct comparison between equation (2) and equation (3) showed the two Hamiltonian, have the same
mathematical structure. The kinetic term in the rotating Hamiltonian is equivalent to that of a particle with
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charge q∗ = 1 placed in a uniform synthetic magnetic field B = 2m
q∗ Ω and confined in a harmonic potential

of frequencies
√

ω2
⊥ − Ω2 , ωz . Thus the synthetic magnetic field is proportional to the rotation frequency

Ω. The Coriolis force in the rotating frame, which is mΩ × r , plays the same role as the Lorentz force on
a moving charged particle in a uniform magnetic field. One difference arises from the centrifugal potential

−m
2

Ω2(x2 + y2) in the rotation frame which has no analogue in a magnetic field. The centrifugal force acts

to reduce the harmonic confinement potential. However, the stability of a rotating harmonically trapped gas
requires that Ω ≤ ω⊥ .

When Ω < ω⊥ , the eigenvalues of the Hamiltonian given in equation (3) in the rotating frame are given

by [18, 19]

E(nz, mz, nm) = (nz +
1
2
)�ωz + (2nm + |mz |+ 1)�ω⊥ − mz�Ω

= nz�ωz + (2nm + |mz|)�ω⊥ − mz�Ω + E0, (4)

where E0 = (1
2�ωz + �ω⊥) is the ground state energy, while nz = 0, 1, . . . is the vibrational quantum number

along z ; and nm = 0, 1, . . . characterizes the excitation energy in the xy -plane for a state with a given mz ,
where mz is the angular momentum quantum number about the rotation axis z .

In equation (4) the Landau level structure appears when ω⊥ → Ω. The Landau levels are spaced by the

energy �(ω⊥ + Ω), and the lowest Landau level contains states of angular momentum mz = 0, 1, 2, . . ., the first
Landau level states with mz = −1, 0, 1, . . ., and so on. Two adjacent states within a Landau level are separated
by the energy �(ω⊥ − Ω).

2.1. The precise DOS of the synthetic magnetic field

The precise DOS for the synthetic magnetic field can be parametrized using a normalized single particle energy
eigenvalues in terms of �ωz . Thus from equation (4) one has

ε̄nz,mz,nm =
E(nz, mz, nm)

�ωz
− E0

�ωz

= Ē(nz, mz, nm) − Ē0

= nz + (2nm + |mz|)λ − mzB̄, (5)

where λ = ω⊥
ωz

is the harmonic oscillate aspect ratio and B̄ = Ω
ωz

is proportional to the synthetic magnetic

field. In terms of ε̄nz,mz ,nm , the single-particle partition function is given by Q̄(β) =
∑

nz,mz,nm
e−βε̄nz ,mz,nm ,

with β = (1/KBT ) [20], thus

Q̄(β) =
∞∑

nz, nm=0; mz=−nm

e−βnz e−2βnmλ e−β(|mz |λ−mzB̄)

=
∞∑

nz, nm, mz=0

e−βnz e−βnm(λ+B̄) e−βmz(λ−B̄)

=
1

β3(λ2 − B̄2)

{
1 +

β

2
(2λ + 1) +

β2

8
{(2λ + 1)2 − 1

3
[2λ2 + 2B̄2 + 1]}+ · · ·

}
, (6)
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where the asymptotic high-temperature expansion (small β ) is used here.

On the other hand, the single-particle partition function can be calculated from the relation

Q̄(β) =
∫ ∞

0

ρ̄(ε̄)e−βε̄dε̄, (7)

where ρ̄(ε̄) is the DOS. From a direct comparison of equation (7) with equation (6) an approximated formula
for the DOS for the single particle system is obtained as

ρ̄(ε̄) = (λ2 − B̄2)−1

{
1
2

ε̄2 +
1
2
(2λ + 1) ε̄ +

1
8

{
(2λ + 1)2 − 1

3
[2λ2 + 2B̄2 + 1]

}}
(8)

The last term in the DOS parametrized in equation (8) produces ζ(1) function when the DOS is used in

calculating the thermodynamic quantities. Since, ζ(1) = ∞ , then Tc (critical temperature for BEC) is
undefined at the onset of the condensation. This divergence can be removed by using Robinson’s formula

for Bose function, gl(e−a) = (−a)l−1

(l−1)!

{∑l−1
k=1

1
k − ln a

}
+

∑k=∞
k=0,k �=l−1

(−a)k

k! ζ(l − k). Following Klünder and

Pelster [21] for λ/KBT̄ < 1, one has ζ(1) = ln[ 2KBT̄
λ ] ∼= ln[2 T̄

T̄0
(N/ζ(3))1/3] , with T0 being the BEC transition

temperature for the ideal gas. However, in this approximation ζ(1) corresponds to logarithmic corrections in
the particle number. More accurate treatments for the problem can be considered.

Indeed, one can overcome this limitation by multiplying the last term by E0
1
2 �(2ω⊥+ωz)

≡ Ē0
1
2 (2λ+1)

(≡ 1).

Here, Ē0 ≡ E0
�ωz

. (Any other choice in terms of higher energy En is not acceptable.) Moreover, using the

essential criterion for BEC phenomenon, which is μ̄(Ω) ≡ μ(Ω)
�ωz

= Ē0 , the DOS will include the chemical

potential for this system. Thus equation (8) becomes

ρ̄(ε̄) = (λ2 − B̄2)−1

{
1
2

ε̄2 +
2λ + 1

2
ε̄ +

1
8

{
(2λ + 1)2 − 1

3
[2λ2 + 2B̄2 + 1]

}
μ̄(Ω)

1
2 (2λ + 1)

}
. (9)

The dependence of the chemical potential on the rotation frequency is given by [18]

μ̄(Ω) = μ̄(0)
(
1 − Ω2

ω2
⊥

)2/5

, (10)

where μ̄(0) ≡ μ(0)
�ωz

is the chemical potential for the non-rotating condensate. The latter can be expressed

in terms of the dimensionless Dalfovo’s interaction parameter η [17]. This parameter is determined by the

ratio between the chemical potential in the absent of the rotation and the transition temperature T̄0(0) for the
non-interacting particles in the same trap,

T̄0(0) =
λ2/3

KB

( N

ζ(3)
)1/3

. (11)

In terms of η and the synthetic magnetic field, the chemical potential is given by

μ̄(B̄) = η KBT̄0(0)
(
1 − B̄2

λ2

)2/5

(12)
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with KBT̄0(0) = KBT0(0)/�ωz . In the thermodynamic limit η goes to zero [22].

Generalization to the many particle system is straightforward. The accurate DOS for the many particles
system is given by [16]

ρ̄(ε̄) = (λ2 − B̄2)−1

[
1
2

ε̄2 + ε̄

{
2λ + 1

2
+

1
8

{
(2λ + 1)2 − 1

3
[2λ2 + 2B̄2 + 1]

}
μ̄(B̄)

λ(2λ + 1)

}]
. (13)

3. BEC critical temperature

In the DOS approach, most of the thermodynamical quantities can be calculated from the partial derivatives
of the q potential, which is given by the logarithm of the canonical partition function as [23]

q̄ = −
∞∑

n=0

ln(1 − ze−β̄Ēn), (14)

where z = eβ̄(μ̄(Ω)−Ē0) is the fugacity and β̄ = �ωz/KBT . Using the semiclassical approximation (in which the

summation over n is converted into an integral weighted by an accurate DOS) to calculate q requires expanding
the logarithm to express the q potential as a sum over Bose-Einstein distribution:

q̄ = q̄0 +
∞∑

n=1

ze−βε̄n

1 − ze−βε̄n

= q̄0 +
∞∑

j=1

zj

j

∞∑
n=1

e−jβ̄ε̄n

= q̄0 +
∞∑

j=1

zj

j

∫ ∞

0

ρ̄(ε̄)e−jβε̄dε̄. (15)

Here, q̄0 = − ln(1 − ze−β̄Ē0). The first term in q is the part which accounts for a possible condensate, and the
second term is the standard expression for the q potential from statistical mechanics. Substituting equation
(13) in (15) leads to

q̄ = q̄0 + (λ2 − B̄2)−1
{

(KBT̄ )3g4(z) + (KBT̄ )2g3(z)R(B̄)
}

, (16)

where gk(z) =
∑∞

j=1(z
j/jk) is the usual Bose-Einstein function, and the parameter R(Ω) is given by

R(B̄) =
2λ + 1

2
+

η

8
KBT̄0(0)

λ(2λ + 1)
(
1 − B̄2

λ2

)2/5{(2λ + 1)2 − 1
3
[2λ2 + 2B̄2 + 1]

}
. (17)

The synthetic magnetic field dependent critical temperature can be calculated from the total number of

particles N = z
(

∂q
∂z

)
T

,

N = N0 + (λ2 − B̄2)−1
{

(KBT̄ )3g3(z) + (KBT̄ )2g2(z)R(B̄)
}
, (18)

with N0 being the number of condensate particles in the ground state.
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The critical temperature T̄c(B̄) is the value of the temperature at which the chemical potential is equal

to the ground state energy, formally ε̄0− μ̄(Ω) → 0. However, this condition is required to vanish N0 at T̄ = T̄c

[14]. Thus

T̄c(B̄) = T̄0(0)
(

1 − B̄2

λ2

)1/3 [
1 − 1

3
R1(B̄)

]
(19)

In absence of the synthetic magnetic field the critical temperature is just the BEC critical temperature for ideal
Bose gas of N particles confined in anisotropic trap with the frequencies ω⊥ in x, y plane and ωz in the z

direction. As it should be, when B̄ = λ , the trapping force is canceled by the centrifugal effect. In this case
BEC does not take place.

In the thermodynamic limit R1(B̄) → 0 [16, 22], while for finite number of atoms the parameter R1

provides the correction to the result of the ideal gas due to finite size, interaction, and synthetic magnetic field
effects:

R1(B̄) =
ζ(2)
ζ(3)

[
2λ + 1

2[λ2 − B̄2]1/3

(
ζ(3)
N

)1/3

+
η

8
(1 − B̄2/λ2)2/5

λ(2λ + 1)

{
(2λ + 1)2 − 1

3
[2λ2 + 2B̄2 + 1]

}]
. (20)

In the bracket the first term gives the finite size effect while the second term accounts for the interaction effects.
It is interesting to notice that the effect of the synthetic magnetic field is coupled with the finite size and
interaction effects. This entails that within the semiclassical approximation the effect of Coriolis force on the
critical temperature, which is associated with the vector potential A , can be seen as a correction term to the
ideal gas results given in references [11, 19].

Figure 3 graphically shows the calculated results from equation (19) for different values of η . This

figure reveals that the normalized critical temperature T̄c(B̄)/T̄0(0) decreases monotonically with increase of

the synthetic magnetic field B̄ . This behavior is consistent with superconductivity properties when exposed to
a magnetic field, where the transition temperature decreases as the magnetic field is strengthened. At higher

values of B̄ there is no difference between the normalized critical temperature curves for all η values. Thus the

interaction effect is strongly quenched for higher values of B̄ .

4. Synthetic magnetization

In the semiclassical approach the synthetic magnetization is calculated using the relation M̄ = −∂q̄/∂B̄ , which
yields two different behaviors as functions of magnetization temperature:

1. When the temperature T̄ is less than BEC transition temperature for the ideal gas T̄0(B̄) =
[(λ2−B̄2) N

ζ(3) ]
1/3

KB
,

one has the magnetization per particle,

M̄ = −
{

M̄0 −
2B̄

(λ2 − B̄2)2

{
(KBT̄ )3g4(z) + (KBT̄ )2g3(z)

[
R(B̄) − (λ2 − B̄2)

2B̄

∂R(B̄)
∂B̄

]}}

= −
{
M̄0 − M̄c χ1 t2

}
. (21)

Here, M̄c denotes the critical magnetization at the transition temperature; and t = T̄ /T̄0(B̄) is the
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Figure 1. The normalized critical temperature T̄c(B̄)/T̄0(0) as a function of the synthetic magnetic field B̄ .

reduced temperature:

M̄c =
ζ(4)
ζ(3)

2B̄

λ2 − B̄2
; χ1 = t + R2(B̄)

R2(B̄) =
ζ(3)
ζ(4)

(
ζ(3)
N

)1/3 1
(λ2 − B̄2)1/3

{
R(B̄) − (λ2 − B̄2)

2B̄

∂R(B̄)
∂B̄

}
(22)

2. The synthetic magnetization per a particle for T ≥ T0(B̄) becomes

M̄ = −
{

M̄0 −
2B̄

(λ2 − B̄2)2

{
(KBT̄ )3g4(z) + (KBT̄ )2g3(z)

[
R(B̄) − (λ2 − B̄2)

2B̄

∂R(B̄)
∂B̄

]}}

≈ −
{
M̄0 − M̄c χ2

}
(23)

where

χ2 = αt + R3(B̄)

R3(B̄) =
ζ(3)
ζ(4)

(
g3(z)
N

)1/3 1
(λ2 − B̄2)1/3

{
R(B̄) − (λ2 − B̄2)

2B̄

∂R(B̄)
∂B̄

}
(24)

and α = g4(z) ζ(3)
g3(z) ζ(4)

≈ 1 has a very weak dependence on T .

Now we come to our analysis for the obtained results in equations (21) and (23) for the synthetic
magnetization. There are two cases we need to consider: the temperature dependence and the synthetic
magnetic field dependence. For the temperature dependence, we note that the approximation made concerning

the two dimensionless scales KBT̄0 and λ . In most of the traps, the former is about 2 orders of magnitude
greater than the latter, so semiclassical approximation is expected to work well in these systems in a wide range
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of temperatures. Moreover, for high temperature KBT̄ >> λ , as is normal in this case, the contribution from
the condensate can be ignored. In the thermodynamic limit, equations (21) and (23) give

M̄

M̄c
∝ t for T > T0(B̄)

∝ t3 for T < T0(B̄). (25)

Thus the synthetic magnetization is proportional to t3 for T < T0(B̄) and to t for T > T0(B̄). Note that in

the thermodynamic limit N → ∞ , both R2(B̄), R3(B̄) → zero, and one has χ1, χ2 → t .

When condensation is reached, M̄0 �= 0, the synthetic magnetization M̄ decreases faster as the tempera-
ture is lowered. This concluding remark is qualitatively in agreement with the recently experimental measured
data of Pasquiou et al. [9].

Finally, the magnetization dependence on the synthetic magnetic field can be estimated from equations
(21) and (23) as follows. Below the BEC transition temperature, the synthetic magnetization has maximum

value −M̄0 , at t = 0. When the temperature departs from zero, the magnetization decreases to its minimum

value, M̄ = 0 at T̄ = T̄0(B̄).

5. Conclusion

In this paper the semiclassical approximation is used to calculate the critical temperature and the synthetic
magnetization for synthetically charged boson gas. The calculated results are modified significantly due to
inclusion of finite size and interaction effects. The present method and the calculated results are applicable to the
charged atomic Bose gas in external magnetic field. In both systems, the effect of synthetic (external) magnetic
field is coupled with the finite size and interaction effects. The critical temperature decreases with increase in
synthetic (external) magnetic field. The synthetic magnetization vanishes when the synthetic magnetic field is
reduced to zero, implying that the Meissner-Ochsenfeld effect might not exist. Moreover, the magnetization
is stronger and negative at lower temperatures; consequently the trapped rotating boson gas exhibits Landau

diamagnetism. The synthetic magnetization is proportional to t3 for T < T0(B̄) and to t for T > T0(B̄).
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