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Abstract: The smoothed experimental dynamical moment of inertia J (2) values were fitted with a theoretical version

using the Harris three parameter formula in even powers of angular frequency ω , derived for results from the cranking

model. The expansion parameters were adjusted by using a computer simulated search program. The best expansion

parameters from the fit were used to assign the spins of the superdeformed (SD) rotational bands (RB) by integrating

the calculated J (2) . The data set includes 23 RB’s in 11 SD nuclei, which show no evidence of either irregular behavior

near the bottom of the bands or abrupt angular momentum at low rotational frequency in the mass region ranging from

A = 142 to A = 154. We used the differences of angular momenta at constant frequency as effective alignment. The

relative properties of superdeformed rotational bands (SDRB’s) are analyzed in terms of the effective alignment of the

valence nucleons. The effective alignment is a powerful tool to assign the configurations, to select the identical bands as

well as to predict new SD bands from other combination of the orbitals. The ΔI = 2 energy staggering observed in 3 of

our selected SDRB’s are also described from a smooth reference representing the finite difference approximation to the

fourth derivative of the γ -ray transition energies.
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1. Introduction

Superdeformed rotational bands (SDRB’s) in nuclei occur when there are large gaps in the energy level spectrum
of the various single-particle orbitals. In the region around mass number A ∼ 150, the gap corresponds to
deformed prolate nuclear shape whose axis lengths are in the ratio 2 : 1 : 1. The first SD bands found in the

region A ∼ 150 was in 152Dy [1], but several more cases are now known [2–4]. The spectroscopic properties of
the different bands in this region can generally be understood from the occupation of the highest spin orbitals
N = 6 and N = 7 protons and neutrons.

For all SD bands, gamma ray energies are unfortunately the only spectroscopic information universally
available. The spin assignments for SD bands represent the most difficult and unsolved problem. Several
theoretical procedures for assigning spins and studying the structure properties of SD nuclei have been proposed
[5–19].

One of the most interesting discoveries in the A ∼ 150 region was the existence of SD bands in both
151Tb (SD-2) and 152Dy (SD-1) with identical gamma ray energies [20]. The energies are the same to within

2 KeV over the whole range of the bands (16 transitions). The dynamical moments of inertia for both bands
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are also identical. The population of high spin orbitals is the same for both bands, π 64 and ν 72 . Also, it has
been demonstrated that some SDRB’s with nuclear spins differing by two may split into two branches [21–24].
This phenomenon is called ΔI = 2 staggering or ΔI = 4 bifurcation. The amplitudes of bifurcation are very
small. In order to investigate the structure of SDRB’s we will base our interpretation on the relative properties
of the bands. Application are made to some SDRB’s in the Gd / Tb / Dy nuclei.

The motivation of the present paper is to highlight some theoretical aspects that are used to describe
the properties of SD nuclei, in particular to introduce a method to assign and to concern the origin of ΔI = 2
staggering and identical bands in SDRB’s in A∼150 mass region.

The paper is organized as follows. In section 2 three parameters formula described by Harris for rotational
bands is presented and is used to predict the spins of the band heads and to examine the main properties of the
SD rotational bands. Understanding the configurations of SDRB’s by using the relative alignment is presented
in section 3. In section 4 the relative alignment is used to select pairs of identical SD bands. Section 5 is devoted
to explore the ΔI = 2 staggering in A ∼ 50 region. In section 6 we present calculations and obtained results
for SD bands in Gd/Tb/Dy nuclei.

2. Spin Assignment of SDRB’s

For the SD bands, gamma ray energies are unfortunately the only spectroscopic information universally available.
Spin assignment for RB is one of the most difficult and still unsolved problems in the study of nuclear
superdeformation. This is due to the difficulty of establishing the de-excitation of a SD band into known
yrast states. Obviously, unless the direct transition from the SD band to the yrast band is measured, it is
impossible to be sure how many units of angular momentum have been carried away during the de-excitation,
therefore, a ±2 � uncertainly is expected in general. Several related fitting procedures to assign the spins of
SDRB’s in terms of the observed gamma ray energies have been proposed [19]. The most important approach

used to assign spin is the Harris parameterizations [25], grounded on extension of the cranking model.

Cranking analysis leads to the level energies E as a function of rotational frequency ω in the following
Harris formula for third order cranking:

E =
1
2
αω2 +

3
4
βω4 +

5
6
γω6 . (1)

The standard way to analyze SD bands is to consider the dynamical moment of inertia J (2) because it does not
require any knowledge of the spin value which is not determined experimentally.

The corresponding expression for J (2) is given by

J (2) = 1
ω

dE
dω

= α + 3 β ω2 + 5 γω4 .
(2)

The expansion parameters α, β, γ , which result from fitting J (2) with the experimental values, are used to
determine the spin from the expression

I =
∫

dwJ (2)

= αω + βω3 + γ ω5.
(3)
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The corresponding expansion for the kinematic moment of inertia J (1) is given from

J (2) = dI
dω

= ω dJ(1)

dω
+ J (1),

(4)

which turns out to be
J (1) = α + β ω2 + γ ω4. (5)

3. Understanding of SDRB’s using relative alignment

The relative alignment of two bands is defined as the difference in the spin of the two bands of constant rotational
frequency ω .

Recalling definition of the dynamical moment of inertia for odd and even mass nuclei,

J (2)
o =

dIo

dω
(6)

J (2)
e =

dIe

dω
, (7)

the odd-even difference in dynamical moment of inertia δJ
(2)
oe is given by

δJ
(2)
oe = J

(2)
o − J

(2)
e

= d(Io−Ie)
dω

= di
dω ,

(8)

where i is the relative alignment of the two bands. Combining equations (6)–(8) results in

δJ
(2)
oe

J
(2)
o

=
di

dIo
, (9)

which implies that the fractional change in the dynamical moment of inertia of the odd-A nucleus relative to
its even-even neighbor is simply the slope of the i versus Io curve. In case where the fractional change in
dynamical moment of inertia is dependent of spin or rotational frequency, the relative alignment becomes a
linear function of spin.

4. Identical bands in superdeformed nuclei

In our analysis we employ the simple approximation in which the independent particle motion of one or more
valence particles with angular momentum j is coupled to rotating deformed core with angular moment R and

moment of inertia J (1) , forming the total angular momentum I = R + j . If the coupling of the odd particle
to the core is much stronger than the perturbation of the single particle motion by the Coriolis interaction,
the odd particle will follow the core deformation adiabatically. This strong coupling limit is expected to work
particularly well for SD nuclei where the splitting of the Nilsson levels is large and the Coriolis interaction is
small.
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The energy spectrum of an odd-A nucleus with axial symmetry in first order perturbation theory can be
given by the relation

JE(I) = Eo(1/2) +
1

2J (1)
[I(I + 1) + a(−1)I+1/2(I + 1/2)δk,1/2]. (10)

γ -ray energy for ΔI = 2 in band transition takes the form

Eo
γ(I) = E(I) − E(I − 2)

= 1
2J(1) [4I − 2 + 2a(−1)I+1/2δk,1/2].

(11)

Here, k is the projection of j onto the symmetry axis and a is the decoupling parameter.

From expression (11), one can obtain special relations between the γ -ray energies of the nucleus and the
core as follows:

i. For strong coupled bands (CB) (a = 0, k �= 1/2) The signature splitting disappears and the transition
energies follow the simple rule

Eo
γ(R ± 1/2) = 1

2J(1) [4 R ± 2 − 2]

= 3
4 Ec

γ(R) + 1
4Ec

γ(R ± 2)
(12)

or
1
2

[Eo
γ(R + 1/2 ) + Eo

γ( R − 1/2 )] = Ec
γ(R)

ii. For k = 1/2 band

Eo
γ(R ± 1/2) =

1
2J (1)

[ 4 R ± 2 ∓ 2 a − 2 ]. (13)

Transitions from both signature form degenerate doublets with a = 1 case giving identical to those of the core,
i.e. twin bands (TB)

Eo
γ( R ± 1/2 ) = 1

2 J(1) [ 4 R − 2 ]

= Ec
γ(R),

(14)

while the a = −1 case has energies midway between those of adjacent transition in the core, i.e. indirect twin
bands (ITB)

Eo
γ(R ± 1/2) = 1

2J(1) [ 4 R ± 4 − 2 ]

= 1
2

[Ec
γ(R) + Ec

γ(R ± 1/2 )].
(15)

If the decoupling parameter a takes an another values (a �= 0, a �= ±1), the previous rules can be generalized
in the form

Eo
γ(I) = x Ec

γ(R) + ( 1 − x )Ec
γ(R + 2 ). (16)

5. ΔI = 2 Staggering in SDRB’s

It has been found that some SD nuclear bands show unexpected ΔI = 2 staggering effects in the γ -ray
energies [21–24]. The curve found by smoothly interpolating the band energy of the spin sequence I = Io + 4n
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(n = 0, 1, 2, ...) is somewhat displaced from the corresponding curve of the sequence I = Io + 4 n + 2. The
magnitude of the displacement in the gamma transition energies is found to be in the range of some hundred
eV to a few KeV .

To explore more clearly the ΔI = 2 staggering, for each band the derivation of the γ -ray energies from

a smooth reference, Δ4Eγ , was determined by calculating the finite difference approximation to the fourth

derivative of the γ -ray energies at a given spin, d4Eγ/ dI4 . This smooth reference is given by [21] the relation

Δ4Eγ(I) = 1
16 [ Eγ( I − 4 ) − 4 Eγ( I − 2 ) + 6 Eγ(I)

−4 Eγ(I + 2 ) + E γ( I + 4 )].
(17)

This formula includes five consecutive transition energies Eγ and is denoted by a five-point formula. We say

that ΔI = 2 staggering is observed if the parameter Δ4Eγ(I) exhibits alternating signs with increasing spin
or rotational frequency ω .

6. Calculations and analysis

In our calculations, all γ -ray transition energies were assumed to be Io, Io + 2 , Io + 4 , ... (Δ I = 2 ). The
spins of the 23 SDRB’s in the A : 150 mass region are predicted by fitting the experimental dynamical moment

of inertia J
(2)
exp(i) with the expression calculated from the Harris three parameters formula. The optimized

expansion parameters in question were adjusted by using a computer simulated search program in order to
obtain a minimum root mean square deviation between the calculated and the experimental dynamical moment
of inertia. The spin of the band head is taken as the nearest integer or half integer of the fitted Io . The Table
summarizes the Harris parameters α, β, γ obtained by best fitting procedure and the correct band head lowest
level spin Io and also the lowest gamma transition energies Eγ(Io +2 → Io) for all the above selected SDRB’s.

The systematic behavior of dynamical moment of inertia J (2) seems to be very useful to the understanding

of the properties of the SD bands. The extracted J (2) at the assigned spin values are calculated as a function of
rotational frequency �ω and are illustrated in Figures 1 and 2. From these figures, it is seen that the agreement
between calculated (solid lines) and the values extracted from the observed data (solid circle with error bars)

is excellent. Because of the large single particle SD gaps at Z = 66 and N = 86, the nucleus 152Dy is

expected to be a very good doubly magic SD core. Moreover, the pairing correlation in the SD band of 152Dy

is very weak, which leads to a rigid like rotational pattern. The new data on neighboring nuclei in the region
A ∼ 150 allow a test of the stability of this core with respect to the addition of a valence particle or hole.

In our analysis we will use the differences of calculated spins at constant frequency which is a measure
of the contribution from different Nilsson orbitals as effective alignment ieff . The contribution of ieff comes

from the alignment of the orbital being occupied when going from even A to odd (A+1). In our calculations,
we considered the third and fourth N =6 proton orbitals π 63, π 64 and the second N = 7 neutron orbitals
ν72 . The orbitals, being filled with increasing particle number for Gd/Dy superdeformed bands, are mainly

down-sloping, thus leading to increased deformation. The large slopes on i(ω) in yrast SD bands of N = 85,

86 nuclei seen in Figure 3 are due to the occupation of the π63 and ν72 orbitals, while in 152Dy the π64

level is also occupied and this leads to a more constant i(ω). A plot of i(ω) for the excited SD band SD-2

in 151Tb gives a curve that is practically constant and which clearly follows the i(ω) curve traced out by the

yrast SD band in 152Dy , but which is very different from the yrast SD band in 151Tb . It is concluded from
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these comparisons that the excited SD band in 151Tb has the same N orbitals occupied as the yrast SD band

in 152Dy .

Table. Spin proposition I0 and adopted best parameters α,β, γ Harris parameterizations for the selected SD rotational

bands in the A ∼ 150 mass regions.

Bands α (�2MeV −1)
β γ Eγ I0

(�2MeV −3) (�2MeV −5) KeV (�)
142Sm (SD-1) 67.9476 -2.5313 -0.44976 679.7 25
144Gd (SD-2) 64.1064 7.7816 -6.24926 774.5 25
148Gd (SD-1) 93.0826 -30.8826 16.18054 699.9 29

(SD-5) 91.6343 -8.75047 3.75808 853.70 38
(SD-6) 100.9703 -37.6449 20.85396 802.2 38

150Gd (SD-1) 140.0079 -73.531 36.93994 815.0 30

(SD-5) 93.1604 -30.54297 18.77032 712.5 28

(SD-7) 95.7162 -33.03713 19.33374 733.2 29

(SD-8) 94.5086 -29.58147 16.1051 711.2 28

(SD-9) 93.3919 -34.66237 20.16158 800.6 31

(SD-10) 97.8442 -32.6218 18.38964 827.8 33
152Dy (SD-1) 92.5951 -14.51377 9.6349 602.4 24

(SD-3) 80.0752 -0.0067 -7.63074 793.0 36

(SD-5) 72.9304 10.04747 -5.15676 642.1 26

(SD-6) 92.4278 -8.6054 9.10208 761.5 32
154Dy (SD-1) 91.5166 -14.04857 11.37638 701.7 30

odd-A Nuclei
147Gd (SD-2) 84.0128 -10.1879 -1.73307 730.21 30.5
149Gd (SD-1) 85.4885 -8.7058 -0.52232 617.8 23.5

(SD-2) 112.247 -22.81526 -10.9783 858.5 31.5
151Tb (SD-1) 93.1017 -5.9703 -2.79292 726.5 28.5

(SD-2) 87.8335 -4.6605 -2.4597 602.1 24.5

odd-odd Nuclei
151Tb (SD-1) 79.7532 -4.1087 -0.1712 596.8 24

From plots in Figure 3, one sees that all N = 86 isotones have identical super shell structure, but generally
different alignment configurations. These nuclei are more sensitive to the high-j alignment, therefore, even for

the same nucleus its excited bands may not be the same as its yrast band. The excited band of 151Tb (150Gd)

has a proton hole. The SD shell configurations for N = 86 isotones relative to the core 152Dy (π64ν2) are:
150Gd (yrast) : π(3)0̄[(4)10(5)12] (i13/2)2

(excited) : π(3)1̄[(4)10(5)12] (i13/2)3
151Tb (yrast) : π(3)0̄[(4)10(5)12] (i13/2)3

(excited) : π(3)1̄[(4)10(5)12] (i13/2)4
152Dy (yrast) : π(3)0̄[(4)10(5)12] (i13/2)4

(excited) : π(3)1̄[(4)10(5)12] (i13/2)5.
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Figure 1. Dynamical moment of inertia J (2) as a function of rotational frequency �ω for even-even SD nuclei in

region A ∼ 150. The solid curve represents the calculated results extracted from Harris parameterization with best fit

parameters. The experimental solid circles with error bars are presented for comparison.
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Figure 1. Continued.
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Figure 2. Dynamical moment of inertia J (2) versus rotational frequency �ω for odd-A SD nuclei in region A ∼ 150

and for the odd-odd nucleus 151Tb .
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The neutron configuration is ν(4)14 [( 5 ) 14 ( 6 ) 16 ] ( j15/2) 2 .

Identical bands are two bands which have essentially identical transition energies (difference in energies

up to 2.0–3.0 keV) and thus essentially identical. The excited SD band (β2 ≈ 0.6) in 151Tb has a band of levels

whose transition energies are essentially equal to those of the yrast SD band in 152Dy . The observed difference
is much smaller than the approximate 1% variation one would expect in the limit of a rigid body moment of
inertia because of their mass difference. More dramatic is the difference compared to the 10 − 15% increase
in moment of inertia expected and previously observed in neighboring odd-A nuclei compared to an even-even
one because of the reduction of the pairing correlations by the odd particle. In these bands the role of the 1/2

+ [301] orbital is believed to be important. This orbital is at the Fermi surface for the N =86 isotones and it

is thought that the excited bands in these nuclei are based on a proton excitation 1/2 + [301] orbital to the

low-lying intruder state 3/2 + [651].

The remarkable similarities between the excited SD bands and the previously observed yrast SD bands
in the Z + 1 isotones are further illustrated when direct comparisons of the γ -ray energies are made. Figure

4 shows the difference between the γ -ray energies observed in the identical bands in the pairs of nuclei 151Tb

(SD-2) / 152Dy (SD-1). It can be seen that on average the deviation is less than 1.5 KeV over the whole energy

range. This identical band has been associated with 1/2 + [301] hole in the 152Dy core.

Another result from the present work is the observation of ΔI = 2 staggering effects in the γ -ray

energies in 148Gd (SD-1), 148Gd (SD-6) and 149Gd (SD-1). The two sequences for spins I = 4 j , I = 4j + 1

(j = 0, 1 , 2 , ...) and I = 4j + 2 (j = 0, 1, 2, ...) are bifurcated. A few theories have been advanced to explain

the ΔI = 2 staggering [21–24]. For SD-1 in 149Gd , deviation of the γ -ray energies from a smooth reference

ΔEγ was determined by calculating the fourth derivative of the γ -ray energies ΔEγ(I) of a given spin. The

yrast bands in 148Gd and 149Gd and the excited band in 148Gd show an unexpected staggering, Δ4Eγ , in the
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E
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Figure 4. The difference in γ -ray energies ΔEγ between the excited band in 151Tb and the yrast band in 152Dy .
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γ -ray energies at a given spin. Plots of Δ4Eγ versus rotational frequency �ω are shown in Figure 5. Until

now, only several SD bands have been identified to exist the transition from SD levels to ND levels [26–28]. For
152Dy (SD-1) our band head spin is I0 = 24+ , which is consistent with the experimental value [28].
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Figure 5. The ΔI = 2 energy staggering obtained by the five point formula Δ4Eγ versus rotational frequency �ω for

148Gd (SD-1), 148Gd (SD-6), and 149Gd (SD-1).

The main conclusions of the present paper are summarized as follows:

i. Transition energies of many nuclear SD bands in the A ∼ 150 mass region have been calculated. The
corresponding rotational frequencies and dynamical moments of inertia are also tabulated.

ii. Optimized model parameters for each nucleus have been adjusted by using a computer simulation search
program to fit the calculated dynamical moments of inertia with the corresponding experimental values.

iii. The values of the band head spins of our selected SD band from the present paper are excellent with all
the spin assignments of other approaches.

iv. The appearance of identical bands and ΔI = 2 nuclear staggering effects in the transition energies in
some SD nuclei have been examined.
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