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doi:10.3906/fiz-1207-14

Turkish Journal of Physics

http :// journa l s . tub i tak .gov . t r/phys i c s/

Research Article

Improved Hilbert moment thermal QCD sum rules for Bs meson and stability

with respect to moment parameter
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Abstract: In this paper, we deal with the temperature dependence of the leptonic decay constant and mass of Bs

meson in the framework of the Hilbert moment QCD sum rule. In our calculations, we improve the thermal QCD sum

rules, taking into account the thermal spectral density and the perturbative 2-loop order corrections to the correlation

function. Moreover, we investigate the stability of the results with respect to the Hilbert moment parameter. Our

numerical calculations demonstrate that the mass and decay constant are insensitive to the variation of temperature up

to T ∼= 100 MeV; however, after this value, they start to decrease with increasing temperature. We observe that the

results are stable for different values of the Hilbert moment parameter, n . At deconfinement or critical temperature,

the decay constant and mass approach to roughly 16% and 78% of their values at zero temperature, respectively. The

obtained results at zero temperature are in good agreement with the existing experimental data as well as predictions of

the other nonperturbative models.
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1. Introduction

The investigation of properties of the pseudoscalar mesons with 1 heavy and 1 light quark can give information
for understanding the nature of CP violation. As is known, the pseudoscalar meson decay width in the lowest
order is related to the Cabibbo–Kobayashi–Maskava (CKM) matrix element and is given by:

Γ (P → lv) =
G2

F

8π
f2

P m2
l mp

(
1 − m2

l

m2
P

)
|Vq1q2 |2 , (1)

where mP and ml are the pseudoscalar meson and lepton masses, respectively; Vq1q2 is the CKM matrix

element; GF is the Fermi coupling constant; and fP is the leptonic decay constant. Since theoretical values of
fP are known, the CKM matrix element can be determined.

In this paper, the thermal QCD sum rules obtained in [1,2] are improved by taking into account the
thermal spectral density and perturbative 2-loop order corrections to the correlation function. The determina-
tion of properties of the decay constants, masses, coupling constants, and form factors of mesons in medium is
one of the most important research areas in particle physics. A large number of experimental and theoretical
studies have been performed in the literature during the last 2 decades in this respect. In order to understand
the hadronic properties and explain the related experimental results, we need to evaluate the hadronic matrix
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VELİ et al./Turk J Phys

elements of the operators in QCD beyond the perturbation theory. Some of the nonperturbative approaches are
QCD sum rules, lattice theory, heavy quark effective theory, chiral perturbation theory, and phenomenological
quark models. The QCD sum rule approach [3] is one of the most powerful theoretical tools in meson studies

[3–5] and this method was extended to finite temperatures in [6]. This method is one of the reliable and powerful

approaches in understanding the thermal properties of light-light [7–9], heavy-light [2,10,11], and heavy-heavy

[12–16] mesons.

To obtain the thermal sum rules, we need to calculate the correlation function in 2 different ways: from
the QCD side by using quark degrees of freedom and from the phenomenological side by using the hadronic
parameters. In the QCD side, the correlation function is evaluated with the help of operator product expansion
(OPE). The thermal version of QCD sum rules has some new features compared to the one in vacuum [17–21].
The Lorentz invariance is broken in medium with the choice of the thermal rest frame. In comparison to the
vacuum QCD sum rules, additional operators also appear in thermal OPE. In the phenomenological side, the
correlation function is obtained by inserting a complete set of intermediate hadronic states having the same
quantum numbers as the interpolating current J (x). Matching then these 2 representations, the thermal sum
rules for the leptonic decay constant and mass of hadrons are obtained.

The decay constant of Bs meson with quantum numbers I(JP ) = 0(0−) is defined by the following

matrix element: 〈0|s̄γμγ5b|〉 = ifBsqμ . The properties of this meson were deeply investigated in [1,2]. In this
paper, we reanalyze the temperature dependences of the leptonic decay constant and mass of the Bs meson
by choosing its interpolating current as J (x) = (mb + ms) : s̄ (x) iγ5b (x) : . In our calculations, we take into
account the thermal spectral density and the perturbative 2-loop order corrections to the correlation function
and improve the thermal QCD sum rules obtained in [1,2]. As a result, we show that the final calculations
with additional contributions are significantly important in the investigation of the temperature behavior of the
leptonic decay constants and the results are stable for different values of Hilbert moment parametern .

2. Improved thermal QCD sum rules for Bs meson

To calculate the Bs meson mass and its leptonic decay constant at a finite temperature, we start with the
following 2-point thermal correlator:

Π(q, T ) = i

∫
d4xeiq·xTr

(
ρT

(
J(x)J+(0)

))
, (2)

where T indicates the time ordered product and ρ = e−βH/Tre−βH is the thermal density matrix of QCD at

temperature T = 1/β .

The correlation function can be written in terms of a dispersion integral [2]:

Π(q2) =

0∫
∞

ds
ρ(s)

s − q2
+ subtractions (3)

where ρ(q, T ) = 1
π Π(q, T ) tanh

(
βq0
2

)
is called the thermal spectral density at fixed |q| .

In order to remove the subtraction terms, we use the Hilbert moment method. The Hilbert moment
transformation is expressed as follows:
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MnF
(
Q2

)
=

(−1)n+1

(n + 1)!

(
d

dQ2

)n+1

F
(
Q2

)∣∣∣∣∣
Q2=0

. (4)

To obtain the QCD side, we need to evaluate the correlation function via the OPE in which the short distance and
long distance contributions are separated. The short distance contribution is calculated with the perturbation
theory. For this aim, we need to calculate the thermal spectral density in the lowest order of the perturbation
theory. Using the thermal fermion propagator at real-time formalism in Eq. (2) and carrying out the integration
over k0 , we obtain the imaginary part of the correlation function in the following form:

ImΠ(q,T) = −Nc

∫ dk
8π2

1
ω1ω2

{(
m2

b − ω1q0 − mbms

)
× [(1 − n1 − n2 + 2n1n2) δ (q0 − ω1 − ω2) − (n1 + n2 − 2n1n2) δ (q0 − ω1 + ω2)]

+
(
m2

b + ω1q0 − mbms

)
× [(1 − n1 − n2 + 2n1n2) δ (q0 + ω1 + ω2) − (n1 + n2 − 2n1n2) δ (q0 + ω1 − ω2)]} ,

(5)

where mb and ms are quark masses, ω1 =
√

k2 + m2
b , ω2 =

√
k2 + m2

s , n(x) = [exp(βx) + 1]−1 is the

Fermi distribution function, n1 = n(ω1), and n2 = n(ω2). The terms including and not including the Fermi
distribution functions express the medium and the vacuum contributions, respectively. The delta-functions in
the different terms of Eq. (5) control the regions of nonvanishing parts of spectral density, which define the

position of the branch cuts. As seen, the term including δ (q0 − ω1 − ω2) contributes when q0 = ω1 + ω2 and

the term including δ (q0 − ω1 + ω2) contributes when q0 = ω1−ω2 . Taking into account the mentioned features
above and using

(n1 + n2 − 2n1n2) tanh
βq0

2
= n2 − n1 for q0 = ω1 − ω2, (6)

(1 − n1 − n2 + 2n1n2) tanh
βq0

2
= 1 − n2 − n1 for q0 = ω1 + ω2, (7)

the annihilation and scattering parts of the thermal spectral density are obtained in the following forms [20]:

ρa (s, T ) = ρ0 (s)
[
1 − n

(√
s

2

(
1 +

m2
b − m2

s

s

))
− n

(√
s

2

(
1 − m2

b − m2
s

s

))]
, (8)

for (mb + ms)
2 ≤ s ≤ ∞ ,

ρs (s, T ) = ρ0 (s)
[
n

(√
s

2

(
1 +

m2
b − m2

s

s

))
− n

(√
s

2

(
1 − m2

b − m2
s

s

))]
, (9)

for 0 ≤ s ≤ (mb − ms)
2 . Here, ρ0 (s) is the spectral density in the lowest order of the perturbation theory at

zero temperature:

ρ0 (s) =
3 (mb + ms)

2

8π2s
v (s) q2 (s) , (10)

where q (s) = s− (mb − ms)
2 and v (s) = (1 − 4msmb/q (s))1/2 [22,23].
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In our calculations, we also take into account the perturbative 2-loop order αs correction to the spectral
density, which is given in [4]:

ραs (s, T ) = 4αs

3π
ρ0(s)

[
3
8

(
7 − v2

)
+

2∑
i=1

(
v + v−1

)
[Li2 (α1α2) − Li2 (−αi) − ln αi lnβi]

+Ai lnαi + Bi ln βi

, (11)

where Li2 (x) is the Spence function, Li2 (x) = −
x∫
0

dt t−1 ln (1 − t). Furthermore, Ai, Bi, αi , and βi are

expressed in the following forms:

A1 =
3
4

3ms + mb

ms + mb
− 19 + 2v2 + 3v4

32v
− ms (ms − mb)

q2 (s) v (1 + v)

(
1 + v +

2v

1 + α1

)
, (12)

B1 = 2 +
2

(
m2

s − m2
b

)
q (s) v

, α1 =
ms

mb

1 − v

1 + v
, β1 =

√
1 + α1 (1 + v)2

4v
, (13)

where v ≡ v (s) . The expressions of A2, B2, α2 , and β2 are obtained from Eqs. (12) and (13) by the
interchanging of the strange and bottom quark masses.

Matching the OPE and the hadron representations of the correlation function, and using the quark-hadron
duality, the improved sum rule is obtained as:

f2
Bs

m4
Bs

Q2 + m2
Bs

=

s0(T )∫
(mb+ms)2

ds
ρa (s, T ) + ραs (s, T )

s + Q2
+

(mb−ms)2∫
0

ds
ρs (s, T )
s + Q2

+ Πnp
(
Q2

)
, (14)

where Q2 = −q2 . We apply the Hilbert moment transformation to both sides of this sum rule and we get:

m2
Bs

(T ) = Fn (T )/Fn+1 (T ), (15)

f2
Bs

(T ) = m2n
Bs

(T )Fn (T ) , (16)

where Fn (T ) function has the following form:

Fn (T ) =

s0(T )∫
(mb+ms)2

ds
ρa (s, T ) + ραs (s, T )

sn+2
+

(mb−ms)2∫
0

ds
ρs (s, T )

sn+2
+ MnΠnp. (17)

Here, s0(T ) is the temperature-dependent continuum threshold. In Eq. (17), MnΠnp shows the nonperturbative
part of the QCD side in the Hilbert moment transformed scheme, which is given by:

MnΠnp = − 〈q̄q〉
m2n+1

b

K (ε) + 〈αsG2〉
12π

1
m2n+2

b

L (ε) + 1
4M2

0 〈q̄q〉 (n+1)(n+2)

m2n+3
b

N (ε)

+ 4
81παsρ 〈q̄q〉2 1

m2n+4
b

(n + 2)
(
n2 + 10n + 9

) , (18)

where K (ε) , L (ε), and N (ε) express the contributions of operators with various dimensions and are given
by:

K (ε) = 1 − 1
2
ε (n − 1) +

1
2
ε2 (n + 2) (n + 1) − 1

2
ε3 (n + 3)

(
1 +

1
3

(n + 2) (n − 2)
)

,

162
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L (ε) = 1 + ε
(
3n2 + 7n + 5

)
+ ε

[(
6 + 9n + 3n2

)
ln ε + 3

n+1∑
r=1

1
r

(n + 2 − r) (n + 1 − r)

]
, (19)

N (ε) = 1 − 1
3
ε (n − 3) ,

where ε = ms

mb
.

For the quark and gluon condensates at finite temperature, we use the results obtained in chiral pertur-
bation theory [24,25]. The temperature dependency of these condensates are written as:

〈q̄q〉 = 〈0|q̄q|0〉
[
1 − 0.4

(
T

Tc

)4

− 0.6
(

T

Tc

)8
]

, (20)

〈
αsG

2
〉

=
〈
0|αsG

2|0
〉 [

1 −
(

T

Tc

)8
]

. (21)

For the numerical evaluation of the improved sum rule, we use ms = 120 MeV, mb = 4.4 GeV for quark

masses and 〈0 |q̄q| 0〉 = −(0.015 ± 0.001)GeV3 and
〈
0

∣∣αs

π G2
∣∣ 0

〉
= (0.024 ± 0.012)GeV4 for quark and gluon

condensates at zero temperature. The sum rules also include 2 auxiliary parameters: continuum threshold s0

and Hilbert moment parameter n . The continuum threshold is not completely arbitrary and it is related to the
energy of the first excited state with the same quantum numbers of the interpolating current. The continuum
threshold is also temperature-dependent and is given as [10]:

s0(T ) = s0(0)
〈q̄q〉

〈0|q̄q|0〉

[
1 −

(
(mb + ms)2

s0(0)

)]
+ (mb + ms)2. (22)

Therefore, we look for regions of these parameters such that the dependencies of the mass and decay constant

on these parameters are weak. We use the interval s0(0) = (34 − 35)GeV2 for the continuum threshold and
n = 1, n = 4, and n = 5 for the Hilbert moment parameters. Finally, we plot the temperature dependency
of the leptonic decay constant and the mass of the Bs meson in Figures 1 and 2. As shown in these graphs,
the decay constant and the mass remain insensitive to the variation of the temperature up to T ∼ 100 MeV;
however, after this point, they start to diminish. At deconfinement or critical temperature, the decay constant
and the mass approach to roughly 16% and 78% of their values at zero temperature, respectively. As seen, the
mass and the leptonic decay constant are stable for different Hilbert moment parameters, n .

Our investigations show that the vacuum values of the mass and the decay constant of Bs meson are
mBs = 5.367 GeV and fBs = 0.24 GeV. These results are in good agreement with the existing experimental

data mBs = 5.36677 ± 0.00024 GeV[26], with predictions of other nonperturbative models [13–16] (for more

details, see [2]) and with lattice QCD calculations mBs = 5.385±0.044GeV, fBs = 0.253±0.015GeV [27]. We
also make an error analysis to understand the sensitivity of obtained results to uncertainties on the continuum
threshold and quark and gluon condensates. Our investigations show that the decay constant and the mass
values are insensitive to these uncertainties; to demonstrate this situation, we give the decay constant and the
mass values in the Table at T = 150 MeV. Our results for the leptonic decay constants as well as their behavior
with respect to the temperature can be verified in future experiments.
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Figure 1. The temperature dependence of the mass of

Bs meson for values of s0(0) = 35 GeV2 , 〈0 |q̄q| 0〉 =

−0.014 GeV3 ,
�
0
�
�αs

π
G2

�
� 0

�
= 0.012 GeV4 , n = 1, n = 4,

and n = 5.

Figure 2. The temperature dependence of the leptonic

decay constant of Bs meson for values of s0(0) = 35GeV2 ,

〈0 |q̄q| 0〉 = −0.014 GeV3 ,
�
0
�
�αs

π
G2

�
� 0

�
= 0.012 GeV4 ,

n = 1, n = 4, and n = 5.

Table. The calculated mass and decay constant of Bs meson at T = 150 MeV .

s0(0)(GeV)
〈
0

∣∣αs

π G2
∣∣0〉

〈0 |q̄q| 0〉 (GeV3)
mBs (GeV) fBs (GeV)(GeV4) (GeV3)

34 0.024 ± 0.012 0.015 ± 0.001 5.10 ± 0.03 0.082 ± 0.002
35 0.024 ± 0.012 0.015 ± 0.001 4.15 ± 0.05 0.042 ± 0.002
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