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Möbius square potential

Hassan HASSANABADI, Bentol Hoda YAZARLOO∗, Saber ZARRINKAMAR
Physics Department, Shahrood University of Technology, Shahrood, Iran

Received: 31.07.2012 • Accepted: 31.10.2012 • Published Online: 19.06.2013 • Printed: 12.07.2013

Abstract: The Klein–Gordon equation under the equal scalar and vector Möbius square potentials in D-dimensions is

solved by using the Nikiforov–Uvarov method. The energy eigenvalues and the corresponding eigenfunctions are obtained

and numerically calculated. The oscillator strengths are determined and discussed in terms of parameters of the system.
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1. Introduction

In relativistic quantum mechanics, solution of the Klein–Gordon equation under different potentials plays an

important role because one can understand the physics that can be brought by such solutions. The Klein–

Gordon equation is one of the most frequently used wave equations that describes spin-zero particles. Among

the most successful methods that have been used to solve the Schrödinger, Dirac, Duffin–Kemmer–Petiau,

and Klein–Gordon equations, the Nikiforov–Uvarov (NU) and supersymmetric quantum mechanics (SUSYQM)

methods have received great attention [1–5]. In the present work, we have approximately solved the Klein–

Gordon equation under equal scalar and vector Möbius square potentials, which is the more general case of both

Hulthén and Morse potentials. In addition the Klein–Gordon equation has been solved and investigated with

different potentials [6,7]. For instance, Egrifes and Sever obtained bound-state solutions of the Klein–Gordon

equation for the generalized PT-symmetric Hulthén potential [8], and Soylu et al. considered the Klein–Gordon

equation under Rosen–Morse-type potentials [9]. Here, for the sake of generality, we investigate the Klein–

Gordon equation in D-dimensional space. This paper is organized as follows: in Section 2, we introduce the

radial part of the Klein–Gordon equation and solve this equation under the Möbius square potential. The

oscillator strengths are obtained in Section 3. Finally, our conclusion is given in Section 4.

2. Radial part of the Klein–Gordon equation in D-dimensions

The radial part of the Klein–Gordon equation in the presence of vector and scalar potentials in the D-dimensional

space is written as [10,11]:

[
d2

dr2
+ E2

n,l + V 2(r)− 2En,lV (r)−m2 − S2(r)− 2mS(r)− (D + 2l − 1)(D + 2l − 3)

4r2
]un,l(r) = 0. (1)
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Here, we consider the Möbius square potential as below [12]:

V (r) = V0(
A+B exp(−αr)
C +D′ exp(−αr)

)2. (2)

Here V0, A,B,C,D
′ , and αare constant coefficients. The good approximation for the centrifugal barrier is

taken as [13]:

1

r2
≈ α2(

C

C +D′ exp(−αr)
)2, (3)

where C = −D′ and Eq. (3) is a quite logical alternative for α < 0.1 (see Figure 1).
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Figure 1. 1
r2

and its approximation (C = 1, D′ = −1).

For the equal scalar and vector Möbius square potentials, by substituting Eqs. (2) and (3) into Eq. (1),

we obtain:

[
d2

dr2
+ (E2

n,l −m2)− 2V0(En,l +m)(
A+B exp(−αr)
C +D′ exp(−αr)

)2

−α
2C2(D + 2l − 1)(D + 2l − 3)

4

1

(C +D′ exp(−αr))2
]un,l(r) = 0.

(4)

By a change of variable of the form

z = exp(−αr), (5)

Eq. (4) is written as:

{ d2

dz2 +
1+D′

C z

z(1+D′
C z)

d
dz + 1

[z(1+D′
C z)]2

[(
E2

n,l−m2

α2
D′2

C2 − 2V0B
2

α2C2 (m+ En,l))z
2

+(
2(E2

n,l−m2)

α2
D′

C − 4V0AB
α2C2 (m+ En,l))z + (

E2
n,l−m2

α2 − (D+2l−1)(D+2l−3)
4 − 2V0A

2

C2α2 (m+ En,l))]}un,l(z) = 0.

(6)

Bearing in mind Eq. (1), and comparing Eq. (6) with Eq. (I) (Appendix), one can find

ξ1 = −(
E2

n,l −m2

α2

D′2

C2
− 2V0B

2

α2C2
(m+ En,l)), ξ2 =

2(E2
n,l −m2)

α2

D′

C
− 4V0AB

α2C2
(m+ En,l) (7a)

ξ3 = −
E2

n,l −m2

α2
+

(D + 2l − 1)(D + 2l − 3)

4
+

2V0A
2

C2α2
(m+ En,l), α1 = 1, α2 = α3 = −D

′

C
(7b)
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where:

α4 = 0, α5 = D′

2C , α6 = D′2

4C2 − E2
n,l−m2

α2
D′2

C2 + 2V0B
2

α2C2 (m+ En,l),

α7 = − 2(E2
n,l−m2)

α2
D′

C + 4V0AB
α2C2 (m+ En,l), α8 = −E2

n,l−m2

α2 + (D+2l−1)(D+2l−3)
4 + 2V0A

2

C2α2 (m+ En,l),

α9 = D′

C ξ2 +
D′2

C2 (−
E2

n,l−m2

α2 + (D+2l−1)(D+2l−3)
4 + 2V0A

2

C2α2 (m+ En,l))− (
E2

n,l−m2

α2
D′2

C2 − 2V0B
2

α2C2 (m+ En,l)) +
D′2

4C2 ,

α10 = 1 + 2

√
−E2

n,l−m2

α2 + (D+2l−1)(D+2l−3)
4 + 2V0A2

C2α2 (m+ En,l),

α11 = −2D′

C + 2(
√
α9 − D′

C

√
−E2

n,l−m2

α2 + (D+2l−1)(D+2l−3)
4 + 2V0A2

C2α2 (m+ En,l)),

α12 =

√
−E2

n,l−m2

α2 + (D+2l−1)(D+2l−3)
4 + 2V0A2

C2α2 (m+ En,l),

α13 = D′

2C − (
√
α9 − D′

C

√
−E2

n,l−m2

α2 + (D+2l−1)(D+2l−3)
4 + 2V0A2

C2α2 (m+ En,l)).

(8)

Thus, from Eq. (II) (Appendix), the eigenfunction of the system is:

un,l(r) = Nn,l exp(−αα12r)(1 +
D′

C
exp(−αr))−α12+

α13C

D′ P
(α10−1,−Cα11

D′ −α10−1)
n (1 +

2D′

C
exp(−αr)). (9)

The energy spectrum of the system, by using Eq. (III) (Appendix), satisfies

−D
′

C
n− D′

2C
(2n+ 1) + (2n+ 1)(

√
α9 −

D′

C

√
α8)−

D′

C
n(n− 1) + α7 −

2D′

C
α8 + 2

√
α8α9 = 0. (10)

In the Table, we report some numerical results for some values of n and l . The behavior of En,l versus V0, α,A

and B is plotted in Figures 2–5. From Figures 2–4, we see that the energy of the system has an increasing

behavior as V0, α , and A increase. As B increases, the energy of the system decreases and tends to a constant

value.

3. Oscillator strengths

Here, we want to calculate the oscillator strength. Absorption of light yields a transition from one quantum

state to another. The spectra of stars are an important source of transition data. Calculation of the transition

probabilities is important because one can determine the chemical abundances in the sun and other stars. The

oscillator strength gives additional information on the fine structure and selection rules of the optical absorption.

This quantity is, in many cases, an important part of scientific reports. In transition from a lower state ψi to

an upper state ψf , we have the following forms for the absorption oscillator strength [14]:

f lij =
2

3

m

ℏ2
(Ej − Ei) |⟨ψj |r|ψi⟩|2 , (11a)

fvij =
2

3

1

m(Ej − Ei)
|⟨ψj |p|ψi⟩|2 . (11b)

These are respectively called the length and velocity strengths in the jargon. In Figures 6 and 7, we have plotted

the variation of the length and velocity oscillator strengths versus V0 , respectively.
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n = 2, 1 = 0 n = 3, 1 = 0 n = 4, 1 = 0 n = 5, 1 = 0 n = 0, 1 = 0 n = 1, 1 = 0 n = 2, 1 = 0 n = 3, 1 = 0

Figure 2. En, l versus V0 for A = −1, B = 2, C = 1,

D′ = −1, D = 3, m = 1, α = 0.1.

Figure 3.En, l versus α for A = −1, B = 2, C = 1,

D′ = −1, D = 3, m = 1, V0 = 3.

Table. Energy eigenvalues of the system for A = −1, B = 2, C = 1, D′ = −1, α = 0.1,m = 1, V0 = 3.

|n,l

D
|1, 0 |1, 1 |1, 2 |1, 3

0 1.831514077 1.820142563 1.831514077 1.865088323

1 1.822994127 1.822994127 1.845600166 1.889761315

2 1.820142563 1.831514077 1.865088323 1.919359381

3 1.822994127 1.845600166 1.889761315 1.953591721

4 1.831514077 1.865088323 1.919359381 1.992147820

5 1.845600166 1.889761315 1.953591721 2.034707800

6 1.865088323 1.919359381 1.992147820 2.080951273

7 1.889761315 1.953591721 2.034707800 2.130564471

8 1.919359381 1.992147820 2.080951273 2.183245604

9 1.953591721 2.034707800 2.130564471 2.238708601

10 1.992147820 2.080951273 2.183245604 2.296685450

11 2.034707800 2.130564471 2.238708601 2.356927405

12 2.080951273 2.183245604 2.296685450 2.419205319

13 2.130564471 2.238708601 2.356927405 2.483309332

14 2.183245604 2.296685450 2.419205319 2.549048115

15 2.238708601 2.356927405 2.483309332 2.616247838
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n = 2, 1 = 0 n = 3, 1 = 0 n = 4, 1 = 0 n = 5, 1 = 0 n = 2, 1 = 0 n = 3, 1 = 0 n = 4, 1 = 0 n = 5, 1 = 0

Figure 4. En, l versus A for α = 0.1, B = 2, C = 1,

D′ = −1, D = 3, m = 1, V0 = 3.

Figure 5. En, l versus B for α = 0.1, A = −1, C = 1,

D′ = −1, D = 3, m = 1, V0 = 3.
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Figure 6. Length of oscillator strength versus V0 for

A = −1, B = 2, C = 1, D′ = −1, α = 0.1, m = 1,

D = 3.

Figure 7. Velocity of oscillator strength versus V0 for

A = −1, B = 2, C = 1, D′ = −1, α = 0.1, m = 1,

D = 3.

4. Conclusion

An approximately analytical solution of the Klein-Gordon equation in the case of equal scalar and vector

potentials was obtained. The potential that we focused on was the Möbius square potential, which is the more

general case of both Hulthén and Morse potentials.

As a further guide to interested readers, we have provided some numerical data that discuss the energy

spectrum. As shown in the Table, for l = 0, D = 1 and D = 3 are symmetric w.r.t. D = 2. This symmetry

exists between D = 0 and D = 4. Additionally, the energy shows a degenerate behavior when l increases to

l+1 and D reduces by 2 units, i.e. to D− 2, (ED
n,l = ED−2

n,l+1 ). We have also calculated the oscillator strengths

for different values of V0 . From Figures 6 and 7, we understand that as V0 increases the length and velocity

strengths have decreasing and increasing behavior, respectively.
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Appendix

The NU method solves many linear second-order differential equations by reducing them to a generalized

equation of the hypergeometric type. Here, instead of the original formulation, we use the parametric version,

which enables us to solve a second-order differential equation of the following form [4,5,15]:

{ d
2

ds2
+

α1 − α2s

s(1− α3s)

d

ds
+

1

[s(1− α3s)]2
[−ξ1s2 + ξ2s− ξ3]}ψ = 0. (I)

According to the NU method, the eigenfunction is:

ψ(s) = sα12(1− α3s)
−α12−α13

α3 P
(α10−1,

α11
α3

−α10−1)
n (1− 2α3s). (II)

The energy of the system satisfies

α2n− (2n+ 1)α5 + (2n+ 1)(
√
α9 + α3

√
α8) + n(n− 1)α3 + α7 + 2α3α8 + 2

√
α8α9 = 0, (III)

where

α4 =
1

2
(1− α1), α5 =

1

2
(α2 − 2α3), α6 = α2

5 + ξ1, α7 = 2α4α5 − ξ2, α8 = α2
4 + ξ3

α9 = α3α7 + α2
3α8 + α6, α10 = α1 + 2α4 + 2

√
α8 (IV)

α11 = α2 − 2α5 + 2(
√
α9 + α3

√
α8), α12 = α4 +

√
α8α13 = α5 − (

√
α9 + α3

√
α8)

P (α,β)
n (x) =

Γ(α+ n+ 1)

n!Γ(α+ β + n+ 1)

n∑
m=0

(
n
m

)
Γ(α+ β + n+m+ 1)

Γ(α+m+ 1)
(
x− 1

2
)m.

Here, P
(α,β)
n is a Jacobi polynomial.
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