
Turk J Phys

(2013) 37: 190 – 197

c© TÜBİTAK
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Abstract: The elastic scattering of 180 MeV positively and negatively charged pions, incident on a set of calcium

isotopes and the isotone 48 Ca – 54 Fe, has been analyzed within the framework of a recently updated simple local

optical potential. This potential, particularly at the tail region, has been originally determined from available phase

shifts using inverse scattering theory and the Klein–Gordon equation as a guide. The analysis is carried out with and

without considering the squared potential term in the Klein–Gordon equation. Coulomb effects are accounted for by

implementing Stricker’s prescription. The numerical results for the angular distributions with isotopic and isotonic shifts

have been well reproduced. Relative potential differences, in the imaginary part, for π−−48 Ca,40 Ca and π+−54 Fe,48 Ca

also reveal that the neutron distribution in 48 Ca is more extended by about 0.21 fm.
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1. Introduction
Over the past few decades, it has been scientifically established that the pion’s many properties make it the most
useful probe to study features of strong interactions. As it is now well known, meson factories such as LAMPF,
SIN, and TRIUMF provided a great deal of high-precision pion-nucleus elastic scattering data, spanning a wide
range of targets over many energy regions. Many theoretical models [1,2] were developed to analyze early data,
but many of them had problems accounting for subsequent data.

Twenty years ago, Satchler [3] introduced a local potential of the Woods–Saxon type to describe the
elastic scattering of pions from nuclei in the delta resonance region. Satchler’s potential was determined by

reducing the relativistic Klein–Gordon equation by neglecting the squared term of the potential, V2 /2E, to the
nonrelativistic Schrödinger equation and by redefining the mass and energy of the incident pion. The simplicity
and success of this type of potential determined using this artifact was striking. Despite its remarkable success,
however, it fails to describe large-angle data well [4]. In fact, many theorists, therefore, have used Satchler’s

potential in studying pion-nucleus scattering [5] only at angles of less than 80◦ .

Recently, Shehadeh et al. [6] developed an inverse scattering theory at a fixed energy to determine the
nature of pion-nucleus optical potential. The inverse scattering theory at a fixed energy enunciated in that
work, which will not be included here, was used in determining the potential from the phase shift analyses of
Fröhlich et al. [7] at different incident pion energies. The deduced potential, using inverse scattering theory and
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the full Klein–Gordon potential, shows remarkable success [8] in accounting for the experimental cross-sections
at all angles.

Here, the elastically scattered pions of both positive and negative charges from 40 Ca and its isotopes

and from 54Fe, at 180 MeV [9], will be analyzed. The choice of this energy, Tπ = 180 MeV, is feasible
since all needed experimental measurements are available and the success of different theoretical models used
to analyze these data was marginal. A major importance of using these nuclei is to see the effect of proton
and neutron excesses on the parameters of the potential. In addition, the strength of our potential will be
reexamined in accounting for isotopic and isotonic shifts in the differential cross-sections, and for the total
reaction cross-sections. To account for Coulomb effects, Stricker’s empirical treatment [10] will be used. The
strategy of the Stricker treatment is based on the following observation: when a negative pion approaches the
nucleus it is accelerated by the Coulomb field, whereas a positive pion is decelerated. Stricker argued that the
increasing and decreasing effect of Coulomb potential could be incorporated by increasing and decreasing the

kinetic energy of π−and π+ by the barrier height, respectively. The latter is 7.6 MeV for 40 Ca and 8.5 MeV

for 54 Fe. In this treatment, we adopt his values. As such, this treatment requires no recasting in our equations.

Furthermore, our most recent analyses [11] have proven the success of our potential in explaining the π±−40 Ca
elastic scattering data in the delta resonance energy region. In Section 2, we present the methodology of this
work. Section 3 provides the results and discussion, and the conclusions are presented in Section 4.

2. Methodology

In nuclear physics, it is well known that the interaction between the pion and the target nucleus is represented
by a potential that depends on the relative distance r relating the position of the pion to the center-of-mass of
the nucleus. This potential is then inserted into the Klein–Gordon equation for spinless relativistic cases.

The analytical form of the local optical potential, which was extracted from pion-calcium available phase
shifts using the inverse scattering theory as a guide and the full Klein–Gordon equation, has the following form
[12].

V (r) =
Vo

1 + exp
(

r−Ro

ao

) +
V1[

1 + exp
(

r−R1
a1

)]2 + i
W2

1 + exp
(

r−R2
a2

) + i
W3 exp

(
r−R3

a3

)
[
1 + exp

(
r−R3
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)]2 (1)

Since the potential is spherically symmetric, the radial part of the Klein–Gordon wave function, Rnl (r), satisfies
the following equation: [

d2/dr2 + k2 − U(r) − l (l + 1)
r2

]
Rnl(r) = 0, (2)

where Rnl(r) is r times the radial part of the wave function for a spherical symmetric external potential.

Additionally, in Eq. (2), k2 and U(r) are given by:

k2 =
(
E2 − m2c4

)
/�

2c2, (3)

U(r) =
2E

�2c2

[
V (r) − V 2(r)/2E

]
. (4)

In Eq. (3), E and m are, respectively, the effective pion energy and effective pion mass calculated by following

Satchler’s relativistic correction treatment, and c is the velocity of an electromagnetic wave in vacuum. V (r)
is the complex pion-nucleus potential.
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As is well known, the scattering amplitude f (θ) , at an angle of θ in the center-of-mass system, is given

by [13] :

f (θ) = fc (θ) +
1

2ik

∞∑
�=0

(2� + 1) exp (2iσ�) [exp (2iδ�) − 1] P� (cos θ) , (5)

where fc (θ) is the point Coulomb scattering amplitude, σ� is the point Coulomb phase shift, δ� is the complex

nuclear phase shifts, and P� (cos θ) is the Legendre polynomial.

The differential cross-section for elastic scattering can then be given by:

dσ

dΩ
= | f (θ)|2 . (6)

For relativistic scattering of charged particles Vc �= 0, and the Coulomb part must be considered in the Klein–
Gordon equation. This is well known to have a major effect on the asymptotic solution, especially with
considering the term quadratic in the Coulomb potential. The reason behind that is the interplay between

this term and the centrifugal barrier term. Both terms behaves as 1/r2 asymptotically.

Following Pilkuhn [14], an expression for the scattering amplitude for the Klein–Gordon equation with

the Coulomb potential was determined in [15] and [16]. This has a form similar to that for the nonrelativistic
case but with noninteger �-values and complex gamma functions.

In a recent work, Shehadeh et al. [15] compared the results using this scattering amplitude with those
using Stricker’s treatment along with experimental values. The results obtained in both cases agreed quite well

over the entire angular distribution for π+ scattered elastically by 40 Ca. As such, Stricker’s assumption has
been used in this study to account for the Coulomb part in the Klein–Gordon equation.

3. Results and discussion

The parameters of the real and imaginary parts of the potential for the scattering of positive and negative pions

from the calcium isotopes
(
40
20Ca, 44

20Ca, 48
20Ca

)
and the 48

20Ca,54
26 Fe isotones that give reasonable fits to the

observed angular distributions at Tπ = 180 MeV are listed in the Table.

Table. The potential parameters Vo (in MeV), Ro (in fm), ao (in fm), V1 (in MeV), R1 (in fm), a1 (in fm), W2 (in

MeV), R2 (in fm), a2 (in fm), W3 (in MeV), R3 (in fm), and a3 (in fm), used in Eq. (1) for the 180 MeV incident-energy

charged pions at calcium isotopes and isotones. The blank entries indicate that the parameters are unchanged.

Target Pion Vo Ro ao V1 R1 a1 W2 R2 a2 W3 R3 A3
40
20Ca π+ 33.5 4.669 0.053 580 2.5 0.563 250 3.151 0.330 211.6 3.137 0.70

π− 2.937
44
20Ca π+ 3.137

π− 3.137
48
20Ca π+ 3.137

π− 3.337
54
26Fe π+ 3.537

π− 3.537

The real and imaginary parts of the potential for 40Ca derived from the inverse scattering theory are
shown as solid dots in Figure 1. The solid lines represent the real and imaginary parts of the potential used in

192



SHEHADEH/Turk J Phys

fitting the π± −40 Ca data. As is well known, the inverse scattering method is most reliable in determining the
exterior of the potential, which is the case here. Unfortunately, and to the best of our knowledge, no available

phase shifts for pion 44Ca, 48 Ca, and 54 Fe cases exist. However, it is interesting that the π+ and π− elastic
data at 180 MeV incident energy can be fitted very well by changing the absorption slightly.

–600

–400

–200

0

200

0 1 2 3 4 5 6 7 8

Tπ = 180 MeV

r (fm)

V R
E

A
L

 (M
eV

)

–1000

–800

–600

–400

–200

0

200

0 1 2 3 4 5 6 7 8

Tπ = 180 Me V

r (fm)

V
IM

AG
 (M

eV
)

Figure 1. The real and imaginary parts of our potential (solid lines), given by Eq. (1) with the parameters listed in the

Table, are compared with the potential points (solid dots) extracted from available phase shifts using inverse scattering

theory.

The agreement between our calculated angular distributions, represented by solid lines neglecting the
squared term of the potential and dashed lines including the squared term, and observed (solid circles) angular

distributions [17], shown in the Figures 2–5, is excellent. It is worth noticing, as the Table shows, that the slight
and systematic change is only in one free parameter, namely the absorption radius, R3 . One may also notice

that our calculated reaction cross-sections, which are 886 and 951 mb for the π+ − 40Ca and π−− 40Ca cases,
respectively, agree very well with the ones published by Akhter et al. [18] and underestimate the calculated values

by others [19]. It is also impressive to see the good agreement between the calculated angular distributions, with
and without the squared potential term, and the available experimental data at forward angles. Nevertheless,
our calculations predicted the angular distributions at backward angles. As such, good accurate data at large
angles are needed. This could be significant in determining the correct potential.

To show the effect of neutron and proton excesses on the scattering of negative and positive pions,

respectively, the relative potential differences have been calculated from the (48 Ca, 40Ca) isotope and (54 Fe,
48 Ca) isotone, and the corresponding graphs are shown in Figure 6.

In Figure 6, it is clear that the maximum for the neutron excess case
(
48
20Ca, 40

20Ca
)

occurs at a radius

smaller than that for the proton excess case
(
54
26Fe,48

20 Ca
)

by about 0.21 fm, but the maximum values are the
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Figure 2. The angular distributions (solid line and dashed line, without and including the squared term of the potential,

respectively) obtained by using our potential with the parameters listed in the Table are compared with the observed

angular distributions [9] (solid circles) for the scattered charged pions from 40 Ca.
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Figure 3. Same as Figure 2, but for 44 Ca.
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Figure 4. Same as Figure 2, but for 48 Ca.
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Figure 5. Same as Figure 2, but for 54 Fe.
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Figure 6. Comparison between the relative potential difference (the absorption part) for π−− 48Ca, 40Ca (solid curve)

and π+ − 54Fe, 48Ca (dashed curve). The peaks indicate that π− favors the interaction with neutrons while π+ favors

that with protons. The shift in the peaks is due to the difference in the neutron and charge root-mean-square radii.

same. This result agrees with that obtained by Boyer [9] and differs from the value reported by Akhter et

al. [18]. The result is also closer to that predicted by Hartree–Fock calculations than the one obtained by

shell-model calculations [19]. In addition, it is greater than the one calculated for oxygen isotopes [20,21], as it
should be.

4. Conclusions

The present work confirms the success of our recently updated potential in explaining, for the first time, the

elastic scattering of charged pions from calcium isotopes and the 48Ca − 54Fe isotone at 180 MeV incident
energy. It is nice that this has been achieved by a systematic change in only one parameter, R3 . Isotopic
and isotonic shifts in the angular distributions are also well reproduced. The calculated angular distributions,
with and without squared potential term in the Klein–Gordon equation, show a remarkable agreement with the
measured values available at forward angles. They differ, however, at large angles. Precise large angle data are
needed and may be crucial in determining the true nature of the potentials. In addition, this study confirms

that neutron distribution in 48Ca is more extended by 0.21 fm, i.e. r48
n − r40

n ≈ 0.21fm .
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