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Abstract: The nuclear potential energies of neutron-deficient even-even rare earth nuclei 150−160Dy , 150−160Er ,
150−160Y b , 158,162,166−176Hf , 160,164−178W , and 162,166,170−180Os are computed within the framework of the cranked

Nilsson–Strutinsky shell correction method. The ground state potential energy surface diagrams of these nuclei are

analysed in terms of quadrupole deformation and the triaxiality parameter. The nuclear shapes and deformations in the

ground state are found to be functions of Z and N. Even though most of the isotopes in this region seem to be prolate

in the ground state, oblate and triaxial shapes are also predicted for some isotopes. It is also found that the rare earth

nuclei provide a platform for the study of phenomena such as nuclear shape changes and shape coexistence.

Key words: Cranked Nilsson–Strutinsky shell correction method, PES diagram, deformation, quadrupole deformation

parameter, triaxiality, spin, ground state shape

1. Introduction

The atomic nucleus is a highly complicated quantum mechanical system consisting of many nucleons. It can
adopt different configurations according to the interacting forces between the nucleons. The most significant
forces are the short-ranged attractive nuclear force between nucleons and the long-ranged repulsive Coulomb
force between protons. The shell effects and pairing correlation also contribute to the determination of nucleonic
configuration. Depending on the configurations, the atomic nuclei exhibit spherical, quadrupole, and higher
order multipole deformed shapes. It is also found that different shapes may coexist at the same spin and similar
energies, which is considered to be the result of an interplay between a single particle and collective degrees of
freedom [1],[2],[3],[4]. Hence, a mere spherical picture can not reflect the real nuclear structure.

Nuclei having spherical shape in their ground state (g.s) are few in number [2]. The deformed nuclei
are classified as prolate, oblate, and triaxial. Prolate and oblate nuclei are axially symmetric. If the third axis
of the nucleus is longer than the others, the nucleus is prolate, and if it is shorter, the nucleus is oblate. For
triaxial nuclei, the 3 axes are different. In nature, prolate nuclei dominate over oblate ones [3]. It is found that

86% of the even-even nuclei are prolate in the ground state [5] and triaxial shapes are very rare for them. The
effect of Coulomb repulsion between protons is to deform the nucleus into an elongated shape more than to a
flattened shape. The difference in the volume element of the collective coordinates between prolate and oblate
shapes is pointed out to be another reason for the prolate dominance over the oblate shape. The spin-orbit
∗Correspondence: ajvar@rediffmail.com
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potential (coupling) between nucleons plays a role in favouring a stable prolate shape for nuclei [5], [6]. The
shell structure of nuclei is also responsible for the variety of shapes, depending on the position of the Fermi level
between 2 closed shells [4]. The nuclear deformation is characterised by 2 collective parameters, the deformation

parameter β or ε and the triaxiality γ . Positive and negative quadrupole deformations (β2 or ε2 ) correspond
to prolate and oblate shapes, respectively. For γ = 60◦, 0◦,−60◦ , and −120◦ , the nucleus is axially symmetric,
and it is triaxial for all other γ values. γ = 0◦ and 60◦ represent prolate and oblate shapes, respectively.

Depending on the extent of deviation from spherical symmetry, the deformed nuclei fall into different
groups. Nuclei with major to minor axes ratios around 1.3:1 are normally deformed and those with 1.5:1 are
highly deformed. If the ratios are 2:1 and 3:1, the nuclei are superdeformed and hyperdeformed, respectively
[2]. Nuclear deformation causes change in the potential energy of the nucleus. Thus, the nuclear potential

energy surface (PES) can be exploited in the estimation of the shape evolution of nuclei with respect to
angular momentum. At minimum potential energy, the nucleus will be in equilibrium. Hence, the deformation
corresponding to the minimum potential energy decides the shape of the nucleus in its ground state.

The PES diagram is a 3D contour plot that indicates the variation of energy as a function of ε2 and
γ . Hence, it is an effective tool to predict the shape and deformation of nuclei in the g.s as well as in the
excited states. It can also point out the possible superdeformed and hyperdeformed states of the nuclei. Stable
deformed nuclei with β2 < 0.3 are commonly found in the rare earth region [7], [8],[9]. These nuclei also

provide a fertile region for the study of phenomena such as shape changes and shape coexistence [10]. Even
though many attempts, both theoretical and experimental, have already been reported in the structural study
in this region [1],[10],[11], [12],[13],[14],[15], the investigation of nuclear shapes and its evolution has been an
outstanding problem in nuclear physics. In this paper, we make an attempt to investigate the g.s deformation and

shapes of neutron-deficient even-even rare earth nuclei 150−160Dy , 150−160Er , 150−160Y b , 158,162,166−176Hf ,
160,164−178W , and 162,166,170−180Os exploring the cranked Nilsson–Strutinsky shell correction method and PES
diagrams.

2. Theoretical formalisms
Nuclear deformation, which is the departure from spherical shape without density change, is expressed in terms
of the shape parameters αλμ and spherical harmonics Y μ

λ (θ, φ) [16],[17],[18], as:

R(θ, φ) = R0[1 +
∑

λμ

αλμ(t)Y μ
λ (θ, φ)], (1)

where R(θ ,φ) is the distance of the nuclear surface at angles θ and φ from the centre and R0 is the radius at

spherical equilibrium. For each mode of order λ , μ has (2 λ+1) values, i.e. from −λ to +λ . λ = 1 corresponds
to dipole oscillation, λ = 2 to quadrupole oscillation, and λ = 3 to octupole oscillation. For quadrupole shapes,

R = R0[1 +
∑

μ

α2μY μ
2 (θ, φ)]. (2)

The deformation parameter β and the triaxiality γ are defined as [17]:

α20 = βcosγ (3)

and

α22 = α2−2 =
1√
2
βsinγ (4)
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so that
∑

|α2μ|2 = β2, (5)

since α21 = α2−1 = 0. ε is defined as (Rmajor −Rminor)/R0 [19] and the quadrupole deformations β2 and ε2

are related as: ε2 = 0.95 β2 [19], [20].

For collective rotation of a nucleus [20],

Hrot =
L2

2j
, (6)

where j is the moment of inertia and L is the collective angular momentum, which equals the total angular
momentum I (total spin) in pure collective rotation. The rotational spectrum is then represented by [20]:

EI =
�
2

2j
I(I + 1). (7)

The cranked Nilsson model accounts for the collective rotation of a deformed nucleus around an axis perpendic-
ular to the symmetry axis. The nuclear potential energy is computed as a function of deformation and angular
momentum. Here the rotation of an average field unsymmetric with respect to the rotation axis introduces a
time dependence to the Schrodinger equation. Considering a rotating frame, with Z as the symmetry axis and
X as the cranking axis, this may be reduced to a stationary equation [21]:

i�
∂

∂t
ψintr = Hωψintr, (8)

where
Hω = Hintr − �ωIx (9)

is called the cranking Hamiltonian or Routhian. Here, the suffix intr stands for intrinsic, i.e. Hintr is the
Hamiltonian and ψintr is the corresponding eigenvector in the rotating frame (body fixed frame, rotating with

an angular frequency ω ). Ix denotes the X component of total angular momentum. Since Hω does not depend
on time, the solution of the equation can be reduced to the eigenvalue problem of Hω .The diagonalisation of
the Hamiltonian gives the eigenvalues eω

i and the eigenvector ψω
i . The single particle energies in the laboratory

system and the single particle spin contributions mi are obtained as [22]:

ei =< ψω
i |h0|ψω

i > (10)

and
mi =< ψω

i |jx|ψω
i >, (11)

h0 being the single particle Hamiltonian. The total single particle energy and spin are defined as:

Esp =
∑

occ

ei =
∑

occ

eω
i + �ω

∑

occ

mi (12)

I =
∑

mi. (13)
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Here, summation is over all occupied orbitals. The shell correction is given in such a way that [22]:

Eshell(I) = Esp(I)− < Esp(I) > . (14)

Now, the total energy is dependent on I and ε̄ :

Etot(ε̄, I) = EShell(ε̄, I) + ERLD(ε̄, I) (15)

where ERLD is the energy in the rotating liquid drop model[22],[23],[24] and

ε̄ = (ε, γ). (16)

The constraint incompressibility of nuclear matter is taken into account by restricting a constant volume to the
deformed nucleus. This is made possible by varying the cranking frequency ω0(ε, γ) from its value at spherical

shape ω0
0 [22]. The moment of inertia is employed as done by Anuradha et al. [25]. The calculations are

performed in a stretched coordinate system with the modified single particle oscillator potential [22], [26]:

h0 =
p2

2m
+

1
2
m(ω2

xx2 + ω2
yy2 + ω2

zz2) + Cl.s + D(l2− < l2 >), (17)

where C = – 2 κ�ω0 and D = –κμ�ω0 , κ and μ being the Nilsson parameters. The values of κ and μ employed
in the calculation are taken from Ref 22.

The 3 oscillator frequencies are given as [20], [22]:

ωx = ω0[1 − 2
3
εcos(γ +

2π

3
)] (18)

ωy = ω0[1−
2
3
εcos(γ − 2π

3
)] (19)

ωz = ω0[1−
2
3
εcosγ], (20)

so that
ωxωyωz = (ω0

0)
3. (21)

Energy values corresponding to each combination of I, ω , and γ were then estimated.

3. Results and discussion

The total energy calculations are performed for the rare earth nuclei 150−160Dy , 150−160Er , 150−160Y b ,
158,162,166−176Hf , 160,164−178W , and 162,166,170−180Os , in the spin range of 0–60 in steps of 10 units. The
range of triaxiality parameter used is 0–60◦ and a frequency range of 0–1.5 MeV is employed. The quadrupole
deformation parameter ε2 is varied from 0 to 1. The major role of the deforming quadrupole force rather than
the hexadecapole force in deciding the equilibrium state was well established in the studies of Baranger and
Kumar [27]. Hence, the hexadecapole deformation ε4 is not considered in these calculations.

The change in total energy with respect to the quadrupole deformation parameter ε2 is illustrated in

Figure 1 for 158Er and 164W (at γ = 0) for different spin values. In both cases, energy decreases initially with
ε2 and then increases, with a minimum at g.s ε2 . There is an appreciable change in energy with respect to ε2

for 158Er at all spin values, but 164W shows a significant change only at low spins.
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Figure 1. Total energy of 158Er (left) and 164W (right) as a function of quadrupole deformation ε2 (at γ = 0).

Figure 2 indicates the variation in energy with respect to γ for 152Dy , 158Er , and 172Os (at ε2 = 0.2)

for spins 0–60. In the first 2 cases, at low spins Etot increases as γ changes from 0 to 60◦ (prolate to oblate),

and at high spins it decreases as the nucleus makes an evolution from prolate (γ = 0) to oblate (γ = 60◦ ).
172Os shows an increase in energy as it evolves from prolate (γ = 0) to oblate (γ = 60◦ ) shape in the entire
range of spin 0–60.
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Figure 2. Total energy of 152Dy (top left), 158Er (top right), and 172Os (bottom) as a function of trixiality parameter

γ (at ε2 = 0.2).
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From the PES diagrams, the g.s quadrupole deformations and equilibrium shapes of the selected isotopes
are identified and are tabulated in Table 1. The calculated values are in agreement with the values from mass
and deformation tables [28]. The g.s deformations were evaluated by Naik et al. [10] with nonrelativistic and
relativistic Hartree–Fock approximations for some Hf, W, and Os isotopes in the same mass range. Lalazissis
et al. [11] made a quantitative as well as qualitative estimation of g.s deformations of some Dy, Er, and Yb
isotopes with the relativistic mean field theory. Our results are comparable with the findings of both of these
groups. The available experimental values of g.s quadrupole deformations from atomic data and nuclear data
tables [29] are also displayed in Table 1 and are in support of the calculated values. The experimental values of

deformations quoted by Naik et al. [10] and Lalazissis et al. [11] in their works are also included in the same
table. Our calculated values are in good agreement with these. The systematics of nuclear deformation for rare
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Figure 3. PES diagrams of 158
68 Er (top left), 160

70 Y b (top right), 162
72 Hf (bottom left), and 166

74 W (bottom right), showing

the coexistence of prolate and triaxial minima.
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Table 1. The computed ground state quadrupole deformations and shapes of selected nuclei.

Ground state ε2 Ground state β2 Predicted
Nucleus Cal. From tables [28] Cal. Expt.[29] Expt.[10] Expt.[11] g.s shape
150
66 Dy –0.099 0 –0.104 Oblate
152
66 Dy 0.191 0.142 0.201 0.086 0.086 Prolate
154
66 Dy 0.225 0.192 0.237 0.237 0.237 Prolate
156
66 Dy 0.247 0.217 0.260 0.293 0.293 Prolate
158
66 Dy 0.260 0.242 0.274 0.326 0.326 Prolate
160
66 Dy 0.263 0.250 0.277 0.337 0.337 Prolate
150
68 Er –0.089 –0.008 –0.094 Oblate
152
68 Er –0.101 –0.017 –0.106 Oblate
154
68 Er 0.160 0.133 0.168 Oblate
156
68 Er 0.203 0.175 0.214 0.189 0.189 Prolate
158
68 Er 0.236 0.200 0.248 0.254 0.254 Prolate

0.240 0.253 Triaxial
160
68 Er 0.254 0.233 0.267 0.303 0.303 Prolate
150
70 Y b –0.138 –0.150 –0.145 Oblate
152
70 Y b –0.077 0 –0.081 Oblate
154
70 Y b –0.095 –0.008 –0.100 Oblate
156
70 Y b 0.142 0.117 0.150 Oblate
158
70 Y b 0.178 0.150 0.187 0.193 0.193 Triaxial
160
70 Y b 0.214 0.192 0.225 0.222 0.222 Prolate

0.223 0.235 Triaxial
158
72 Hf 0.122 0.100 0.128 Triaxial
162
72 Hf 0.182 0.167 0.192 Prolate

0.191 0.201 Triaxial
166
72 Hf 0.208 0.208 0.219 0.249 0.249 Triaxial
168
72 Hf 0.231 0.233 0.243 0.274 0.274 Triaxial
170
72 Hf 0.265 0.250 0.279 0.296 0.296 Triaxial
172
72 Hf 0.265 0.258 0.279 0.274 0.274 Triaxial
174
72 Hf 0.264 0.258 0.278 0.284 0.284 Triaxial
176
72 Hf 0.258 0.250 0.272 0.295 0.295 Triaxial
160
74 W 0.109 0.083 0.115 Triaxial
164
74 W 0.165 0.150 0.174 Prolate
166
74 W 0.177 0.167 0.186 Prolate

0.189 0.199 Triaxial
168
74 W 0.191 0.192 0.201 0.232 0.232 Prolate
170
74 W 0.203 0.208 0.214 0.242 0.242 Prolate
172
74 W 0.251 0.233 0.264 0.308 0.309 Triaxial
174
74 W 0.245 0.242 0.258 0.251 Triaxial
176
74 W 0.233 0.242 0.245 Triaxial
178
74 W 0.231 0.242 0.243 Prolate
162
76 Os 0.094 0.042 0.099 Oblate
166
76 Os 0.137 0.125 0.144 Nearly prolate
170
76 Os 0.186 0.158 0.196 Prolate
172
76 Os 0.205 0.175 0.216 0.255 Prolate
174
76 Os 0.228 0.208 0.240 0.266 Prolate
176
76 Os 0.228 0.225 0.240 Prolate
178
76 Os 0.227 0.225 0.239 Prolate
180
76 Os 0.227 0.217 0.239 0.226 Prolate
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earth nuclei were prepared by Tanaka et al. [12]. Since most of the isotopes that we considered are lighter than
those that appeared in these systematics, a direct comparison is not made.

In most cases, we got one minimum. The isotopic chains of Dy, Er, and Os show a shape change from

oblate to prolate as N increases. In addition, 158Er possesses a triaxial yrast with ε2 = 0.240, which is as
equally deep as the prolate yrast (3.2 MeV). The isotopic chain Yb follows the oblate g.s minimum up to A

= 156, whereas it is triaxial at A = 158. In 160Y b , the competition between prolate and triaxial g.s minima
with ε2 = 0.214 and 0.223, respectively, and with same depth of 3 MeV is seen. All of the members in the

Hf isotopic chain have a triaxial g.s minimum. In 162Hf , the coexistence of a prolate (ε2 = 0.182) yrast with

the triaxial (ε2 = 0.191) minimum with the same energy, 2.1 MeV, is also evident. W isotopes exhibit a shape
change from triaxial to prolate, and then to triaxial and again to prolate as N changes from 86 to 104. Here
also we could observe the coexistence of stable prolate (ε2 = 0.177) and triaxial (ε2 = 0.189) shapes at A =

166. Only in 166W is the prolate minimum (1.6 MeV) deeper than the triaxial minimum (2.1 MeV). It is worth

mentioning that the coexistence of prolate and triaxial shapes are predicted at N = 90, except for W (for which
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Figure 4. The ground state quadrupole deformations ε2 (axial) of 66Dy (top left), 68Er (top right), 70Y b (middle left),

72Hf (middle right), 74W (bottom left), and 76Os (bottom right) isotopes as functions of mass number. Comparison

is made with the values from deformation tables [28].
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it is at N = 92). The coexistence of prolate and triaxial shapes in these nuclei are depicted in Figure 3 by the

PES diagrams, which show that in an isotonic chain (only 158Er , 160Y b , and 162Hf ) as Z increases, the nuclei
exhibit coexistence of prolate and triaxial shapes at a lower energy.

The g.s quadrupole deformations (axial) against mass number for the isotopic chains of Dy, Er, Yb, Hf,
W, and Os are plotted in Figure 4. Since the experimental values do not depict the sign of deformation, these
are not shown here. Such calculations were done by Anuradha et al. [25] for some odd Z nuclei in the range of
60 < Z < 80. Here, the change in ε2 with mass number in the case of Z = 67, 69, and 79 is in contradiction
with what we obtained in the case of neighbouring even-even nuclei. This confirms the significance of proton
number (odd or even) in fixing the g.s shape and deformation of nuclei. An analysis of Table 1 and Figure 4
reveals the mass number or N dependence of g.s quadrupole deformation. At N = 82, the magic number, g.s
quadrupole deformation is minimum, which indicates an approach towards spherical shape for the nucleus. As
N departs from 82, g.s quadrupole deformation increases. Around N = 100 (the middle of the closed shell), it is
nearly constant and thereafter reduced. It is also found that the g.s quadrupole deformation decreases gradually
with increasing proton number (Z) from the middle of the closed shell (Z = 66) towards the next magic number,

82, at a fixed neutron number (N), which is evident from Table 2 for N = 86 and 90. The same was verified

by Robledo et al. [13] for N = 110–122 in Yb, Hf, W, Os, and Pt nuclei with the Gogny D1S interaction. This
reiterates the dominant role of particle numbers and closed shell effects in deciding the g.s deformation.

Table 2. The computed ground state quadrupole deformations and shapes for different Z at constant neutron number.

Nucleus Z Ground state quadrupole deformation ε2 and shape
For N = 86 For N = 90

Dy 66 0.191 Prolate 0.247 Prolate
Er 68 0.160 Oblate 0.236 Prolate

0.240 Triaxial
Yb 70 0.142 Oblate 0.214 Prolate

0.223 Triaxial
Hf 72 0.122 Triaxial 0.182 Prolate

0.191 Triaxial
W 74 0.109 Triaxial 0.165 Prolate
Os 76 0.094 Oblate 0.137 Prolate

4. Conclusions

The cranked Nilsson–Strutinsky shell correction method and PES diagrams were found to be powerful tools
in the investigation of nuclear structure. Within this framework, the values of g.s quadrupole deformation in
the well-established mass and deformation tables could be reproduced. It was also found that the calculated
quadrupole deformations are comparable with the results of other models. The available experimental values
of quadrupole deformation are also in support of our estimated quantities, which indicates the validity of the
methodology that we used. The g.s shapes and deformations of nuclei are strongly dependent on Z and N. The
major role played by closed shell effects is also revealed. Even though most of the nuclei possess a single g.s

minimum, the coexistence of prolate and triaxial shapes is confirmed in the case of 158Er , 160Y b , 162Hf , and
166W isotopes. A region of coexistence around N = 90 is also predicted.
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