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Abstract: A Gaussian laser pulse propagating through plasma in the presence of a magnetic wiggler produces third-

harmonic radiation. The wiggler’s magnetic field provides additional momentum required for phase matching. The

required wiggler wave number is sensitive to pulse duration and amplitude. The efficiency of the process is significant at

the instant at which the phase matching condition is satisfied.
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1. Introduction

Harmonic generation in plasma and semiconductors has been an area of significant interest for the past

several decades [1–10]. Harmonic generation offers an alternative source for short wavelength generation and

an important tool for diagnostics of nonlinear media. In plasmas the nonlinearity arises due to 3 effects:

relativistic effects, ponderomotive force, and collisions between electrons and ions. With the development

of high intensity (≥ 1020W
/
cm2) short-pulse (∼ fs) lasers, the electron motion becomes highly nonlinear,

giving rise to nonlinearity rather than the anharmonicity of the bounded electron oscillation in atoms and

molecules; thus, the relativistic nonlinearity plays a dominant role. The efficiency of the harmonic generation

process is significantly affected due to the phase mismatch between the fundamental and generated harmonic

radiation. Several schemes have been proposed to make the harmonic generation process a resonant one.

Parashar and Pandey [11,12] proposed the employing of a density ripple or a magnetic wiggler to compensate

for the momentum mismatch between the pump and second-harmonic wave in plasma and semiconductors,

respectively. Their studies showed significant enhancement in the efficiency of the second-harmonic process.

Shkolnikov et al. [13] demonstrated the feasibility of optimal quasiphase matching for higher-order harmonic

generation in gases and plasmas with modulated density. Rax and Fisch [14] studied phase-matched relativistic

third-harmonic generation employing a resonant density modulation in a plasma. Averchi et al. [15] proposed

a different approach to obtain phase-matched generation of high-order harmonics based on the use of pulsed

Bessel beams. Sheinfux et al. [16] demonstrated a scheme for creation of periodic plasma structures by ablating

a lithographic pattern for quasiphase matched harmonic generation. Recently, Sapaev et al. [17] demonstrated a

novel method of quasiphase matching for third-harmonic generation in noble gases employing ultrasound. Sodha
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et al. [18] derived the phase matching conditions for generation of third-harmonic and combination frequency

in collisional magnetoplasma. Kuo et al. [19] reported enhancement of relativistic third-harmonic generation by

using an optically preformed periodic plasma waveguide. Katzir et al. [20] also reported quasiphase matching

and increase of laser interaction length by periodically modulated plasma guide formed by a discharge current

ablating the inner capillary walls. Shibu and Tripathi [21] studied phase-matched third-harmonic generation

of a laser beam guided through a plasma channel. Chen et al. [22] reported observation of phase-matched

relativistic third-harmonic generation in plasmas employing a T: sapphire - Nd: glass laser system of ≤2 J and

400 fs pulse at 1.053 µm.

In this paper we study the third-harmonic generation of a Gaussian laser pulse in a plasma in the presence

of a wiggler magnetic field, including the relativistic effects. The wiggler provides the additional momentum

required to make the process a resonant one. The physics of the process is as follows: the oscillatory velocity

of the plasma electrons due to pump laser field at (ω, k⃗) beats with a laser magnetic field to produce a second-

harmonic ponderomotive force at (2ω, 2k⃗). The oscillatory velocity due to this ponderomotive force beats with

wiggler magnetic field (0,⃗kw) to exert a ponderomotive force at (2ω,2k⃗ + k⃗w). The oscillatory velocity due

to this ponderomotive force at (2ω,2k⃗ + k⃗w) couples with electron density oscillations at (ω,⃗k) to produce a

nonlinear current at (3ω,3k⃗+ k⃗w), which drives the third-harmonic radiation. In the following sections we give

the analysis for nonlinear current density and third-harmonic field, and in the end, we discuss our results.

2. Nonlinear current density

Consider the propagation of a Gaussian laser pulse through a plasma of electron density n0
0 . The electric and

magnetic fields of laser pulse are given by:

E⃗ = x̂Ae−i(ωt−kz),

B⃗ = ŷ
ck

ω
Ae−i(ωt−kz),

A2 = A2
0e

−(t−z/vg)
2/τ2

, (1)

where k = (ω/c) η, η is the refractive index of the plasma, and vg = cη ≈ c is the group velocity. The oscillatory

velocity of electrons due to the laser on solving the equation of motion m (dv⃗/dt) = −eE⃗ − (e/c) v⃗ × B⃗ is

v⃗ = x̂
eA

miωγ0
e−i(ωt−kz), (2)

where -e and m are electronic charge and mass, respectively, and γ0 ≈
(
1 + a2

/
2
)1/2

, a = eA/mωc , and a < 1.

In terms of γ0 and the plasma frequency ωp =
(
4πn0e

2
/
m
)1/2

, the refractive index η (in the limit ω2
p

/
ω2 << 1)

can be written as

η (ω) = 1− ω2
p

/
2ω2γ0. (3)

There also exists a wiggler magnetic field given by

B⃗w = ŷB0e
ikwz. (4)
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For third-harmonic generation, the third-harmonic wave vector is k3 > 3k1 . For the process to be a resonant

one, the phase matching conditions demand

ω3 = 3ω1,

and

ℏk3 = 3ℏk1 + ℏkw. (5)

To satisfy the phase matching conditions, the required wiggler wave number kw is

kw ≈ 4

3

ω

c

ω2
p

ω2γ0
. (6)

In Figures 1 and 2, we show the variation of normalized wiggler wave number ckw/ωp with t′/τ(t′ = t− z/c) at

different values of a0 = (eA0/mωc) and ωp/ω . The required wiggler wave number is smaller for higher values

of a0 and larger for higher plasma density and pulse duration.
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Figure 1. Variation of normalized wiggler wave number

ckw/ωp with t′/τ for a0 = 0.1, 0.25, and 0.50, respec-

tively, at ωp/ω = 0.1.

Figure 2. Variation of normalized wiggler wave number

ckw/ωp with t′/τ for a0 = 0.1, 0.25, and 0.50, respec-

tively, at ωp/ω = 0.25.

Using Eq. (2) in the equation of continuity ∂n/∂t+∇. (n0v⃗1) = 0, the electron density perturbation n1

at (ω, k⃗) is obtained as

n1 =
k

ω

n0eA

mωiγ0
e−i(ωt−kz). (7)
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The electron velocity v⃗ beats with laser magnetic field B⃗ to produce a ponderomotive force,

F⃗p2 = − e

2c
v⃗ × B⃗ = −ẑ

e2A2k

2miω2γ0
e−2i(ωt−kz). (8)

The electron velocity v⃗ at (2ω, 2k⃗) due to F⃗p is

v⃗2 = −ẑ
e2A2k

4m2ω3γ0
e−2i(ωt−kz). (9)

v⃗2 beats with B⃗w to exert a ponderomotive force F⃗ ′
p2 at (2ω1,2k⃗ + k⃗w),

F⃗ ′
p2 = − e

2c
v⃗2 × B⃗w = −x̂

e

2c

e2A2kB0

4m2ω3γ0
e−i[2ωt−(2k+kw)z]. (10)

Electron oscillatory v⃗ ′at
2 (2ω1,2k⃗ + k⃗w) due to F⃗ ′

p2 is

v⃗ ′
2 = −x̂

e

2c

e2A2B0k

4m2ω3γ02miω
e−i[2ωt−(2k+kw)z]. (11)

The electron velocity v⃗ ′
2 beats with electron density perturbation n1 to produce a nonlinear current density

J⃗NL
3 at (3ω,3k⃗ + k⃗w) as

J⃗NL
3 = −1

2
n1ev⃗

′
2 = −x̂

1

16

n0e
5A3B0k

2

ω6m4γ2
0c

. (12)

There also exists a self-consistent third-harmonic field E⃗3 = x̂A3e
−i[3ωt−(3k+kw)z] . The linear current density

J⃗L
3 due to E⃗3 is

J⃗L
3 = −n0e

2E⃗3

3imω
. (13)

3. Third-harmonic field

The wave equation governing the third-harmonic field is

∂2E⃗3

∂z2
− 1

c2
∂2E⃗3

∂t2
− 1

c2
∂J⃗L

3

∂t
= −4π

c2
3iωJ⃗NL

3 = x̂αe−i[3ωt−(3k+kw)z], (14)

where α = 3i
16

ω2
p

ω2
a2

γ2
0

ωc

ω k2A , ωc =
eB0

mc and a = eA
mωc .

On further simplification of Eq. (14) considering the group velocity of the third harmonic as c and

k3 = (3ω/c)
(
1− ω2

p

/
18ω2γ0

)
, we obtain

∂A3

∂z
+

1

c

∂A3

∂t
=

α

2ik3
. (15)

Introducing a new set of variables z′ = z , t′ = t− z/c , Eq. (15) reduces to

∂A3

∂z′
=

α

2ik3
e−i∆z

′

. (16)
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Here, ∆ = k3 − 3k − kw . For the Gaussian pulse a2 = a20 exp(− t′
2
/τ2), a0 = eA0/mωc ,

γ0 =
[
1 +

(
a20
/
2
)
exp

(
−t′

2
/
τ2
)]1/2

is a function of time. For a given kw , one cannot have phase matching

(∆ = 0) for harmonic generation at all times. If one matches the wiggler wave number at the peak of the laser

pulse (t′ = 0), kw ≈ 4
3
ω
c

ω2
p

ω2γ00
, where γ00 =

(
1 + a20

/
2
)1/2

. At all other times we have ∆ = kw

(
γ00

γ0
− 1

)
, and

Eq. (16) gives

A3 =
α
[
e−i∆(γ00/γ0−1)z′ − 1

]
2k3kw (γ00/γ0 − 1)

. (17)

At a distance z = L we obtain the following expression for a normalized third-harmonic wave amplitude from

Eq. (17): ∣∣∣∣A3

A0

∣∣∣∣ =
[
1

16

ω2
p

ω2

ωc

ω

k

k3

k

kw
a20

]
e−3t′2/τ2

γ2
0

sinkwL (γ00/γ0 − 1)

(γ00/γ0 − 1)
. (18)

In Figures 3 and 4 we show the variation of |A3/A0| with t′/τ at a0 = 0.1 and 0.25, respectively. The other

parameters are ωp/ω = 0.1& 0.25, ωc/ω = 0.01, and Lωp/c = 6×103 . The efficiency of the process is sensitive
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Figure 3. Variation of normalized third-harmonic field

|A3/A0| with t′/τ for ωp/ω = 0.1 and 0.25, respectively,

at a0 = 0.1, ωc/ω = 0.01, and Lωp/c = 6× 103 .

Figure 4. Variation of normalized third-harmonic field

|A3/A0| with t′/τ for ωp/ω = 0.1 and 0.25, respectively,

at a0 = 0.25, ωc/ω = 0.01, and Lωp/c = 6× 103 .
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to laser pulse duration and is maximum at t′/τ = 0, i.e. when the phase matching condition is perfectly

satisfied.

4. Discussion

A magnetic wiggler can be employed to provide the additional momentum required for resonant third-harmonic

generation. However, for a laser pulse of short duration, the phase matching can be achieved for an instant

only at a particular wiggler wave number. At a later duration of laser pulse, one requires a larger wiggler wave

number, kw . The required wiggler wave number is smaller for higher values of a0 and plasma frequency ωp .

The efficiency of the process is maximum at an instant when the phase matching is satisfied and thereafter

decreases sharply at later durations of laser pulse. The maximum efficiency of the process is |A3/A0| ∼ 0.017

for ωp/ω = 0.25, a0 = 0.25, ωc/ω = 0.01, and Lωp/c = 6 × 103 . This set of parameters can be realized by

using a CO2 laser (10.6 µm, 1014 W/cm2) in a plasma of electron density of ∼1017 cm−3 , wiggler with λw =

2 mm, B0 = 100 kG, and plasma length L = 10 cm. The efficiency of the process can be increased for a larger

duration by using a tapered wiggler magnetic field or plasma with a tapered density. We have ignored the other

nonlinear effects arising due to the relativistic nonlinearity, namely self-phase modulation and filamentation of

the laser beam. These effects can significantly alter the efficiency of the process. The filamentation of the laser

beam can be checked by employing beam-smoothening techniques [23].
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