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Abstract:Considering a spherically symmetric nonstatic cosmological flat model of the Robertson–Walker universe, the

problem of perfect fluid distribution interacting with the gravitational field in the presence of a zero-rest-mass scalar

field and electromagnetic field in Brans–Dicke (B-D) theory has been investigated. Exact solutions are obtained by using

a general approach of solving the partial differential equations and it has been observed that the electromagnetic field

cannot survive the cosmological flat model due to the action caused by the presence of the zero-rest-mass scalar field,

and the isotropic pressure p turns out to be negative. The pressure and density are found to be independent of time.
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1. Introduction

The study of the coupled electromagnetic and scalar field has drawn the attention of many researchers as a result

of the discovery of meson particles interacting with charged electrons and masses of the order of magnitude of

200 electron masses present in the cosmic rays. Various problems relating to the charged particles in presence

of a scalar field have been investigated by various authors. By the method of approximation, Stephenson

[1] obtained exact solutions by taking a source-free electromagnetic and scalar field for a static spherically

symmetric space-time. Exact solutions for the static coupled electromagnetic and zero-rest-mass meson fields

were obtained by Janis et al. [2], and Penny [3] generalized the Reissner–Nordström solutions in the presence

of a point charge by considering coupled gravitational and zero-rest-mass scalar meson fields. Ibotombi et al.

[4] investigated the same problem by using a different method of finding exact solutions where electromagnetic

fields survive. Many studies, such as [5–12], involved charging the well-known uncharged perfect fluid solutions.

In view of the above investigations and with respect to the scalar fields, the present authors have developed

a different approach of solving the problem and exact solutions have been obtained for a cosmological model

where electromagnetic fields cannot survive. This implies that charged perfect fluid cannot have interaction with

the zero-rest-mass scalar fields in Brans–Dicke (B-D) theory for a cosmological model. In Section 2, we present

the field equations and their solutions. In Section 3, physical interpretations of the solutions are presented.
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2. Field equations and their solutions

The B-D field equations in Dicke’s unit transformation are given by:

Gi
j ≡ Ri

j −
1

2
δijR = −8π

(
T i
j + Ei

j + Si
j

)
− 2ω + 3

2

1

φ2

[
φ,iφ,j −

1

2
δijφ

,µ
,µ

]
, (1)

and the wave equation for the scalar field is

□ (ℓnφ) ≡ (ℓnφ)
,µ
;µ =

8π

2ω + 3
T, (2)

where T i
j , E

i
j , and S i

j are the energy-momentum tensors for the perfect fluid, electromagnetic field, and zero-

rest-mass scalar field, respectively, and are given by the following equations.

T i
j = (p+ ρ)uiuj − pδij , (3)

where p is the isotropic pressure, ρ is the fluid density, and u i is the 4-velocity vector of the flow satisfying

uiui = 1. (4)

Ei
j =

1

4π

[
−F iαFjα + 1

4δ
i
jFαlF

αl
]
, (5)

where F ij are the electromagnetic field tensors, and

Si
j =

1

4π

[
V ,iV,j − 1

2δ
i
jV

,kV,k

]
, (6)

where V is the scalar potential satisfying the wave equation

gijV;ij = σ(r, t), (7)

where σ is the source density of the scalar potential.

Using the co-moving coordinate system, we get

u1 = u2 = u3 = 0 and u4 = 1. (8)

The electromagnetic field equations are given by

F ij
;j = −J i (9)

and
F[ij,k] = 0, (10)

where J i is the current 4-vector and, in general, is the sum of the convention current and conduction current,

i.e.

J i =∈0 ui − σ0u
γF i

γ , (11)

where ∈0 is the rest charge density and σ0 is the conductivity.
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The metric taken for the present problem is

ds2 = dt2 −R2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
, (12)

where t is the cosmic time, R(t) is the radius of the Universe, and K is the curvature index, which takes

the values +1, 0, and –1. Here a comma or semicolon followed by a subscript denotes partial or covariant

differentiation, respectively. A dot and a dash over a letter denote partial differentiation with respect to time t

and radial distance r.

The surviving field equations for the metric (12) are:

G1
1 ≡ 2RR̈+ Ṙ2 +K

R2
= −8πp+ 8πE1

1 − 1− kr2

R2
V ′2 − V̇ 2 − 2ω + 3

4

[
1−Kr2

R2

(
φ′

φ

)2(
φ̇

φ

)2
]
, (13)

G2
2 ≡ 2RR̈+ Ṙ2 +K

R2
= −8πp+ 8πE2

2 +
1−Kr2

R2
V ′2 − V̇ 2 +

2ω + 3

4

[
1−Kr2

R2

(
φ′

φ

)2

−
(
φ̇

φ

)2
]
, (14)

G3
3 ≡ G2

2, (15)

G4
4 ≡ 3

(
Ṙ2 +K

R2

)
= 8πρ+ 8πE4

4 +
1−Kr2

R2
V ′2 + V̇ 2 +

2ω + 3

4

[
1−Kr2

R2

(
φ′

φ

)2

+

(
φ̇

φ

)2
]
, (16)

G1
4 ≡ 0 = 4πE1

4 + V ′V̇ +
2ω + 3

4

(
φ′

φ

)(
φ̇

φ

)
, (17)

G1
2 ≡ 0 = − 1−Kr2

R4r2 sin2 θ
F13F23 +

1−Kr2

R2
F14F24, (18)

G1
3 ≡ 0 =

1

R2r2
F12F23 + F14F34, (19)

G2
3 ≡ 0 = −1− kr2

R2
F12F13 + F24F34, (20)

G2
4 ≡ 0 = −(1− kr2)F12F14 +

1

r2 sin2 θ
F23F34, (21)

and

G3
4 ≡ 0 = (1− kr2)F13F14 +

1

r2
F23F24. (22)

The wave equation (2) reduces to

−1− kr3

R2
(lnφ)

′′ − 2− 3kr3

R2r
(lnφ)

′
+

3Ṙ

R
(lnφ)̇ + (lnφ)̈ =

8π

2ω + 3
(ρ− 3p) +

2

2ω + 3

[
1− kr2

R2
V ′2 − V̇ 2

]
. (23)

Also, from equation (7), we get:

−1− kr2

R2
V ′′ − 2− 3kr2

R2r
V ′ + 3

Ṙ

R
V̇ + V̈ = σ(r, t). (24)
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Again from equation (9), we obtain the following 4 equations:

∂F 14

∂t
+ 3

Ṙ

R
F 14 = σ0F

1
4 , (25)

∂F 14

∂r
+

{
kr

1− kr2
+

2

r

}
F 14 = ε0, (26)

∂F 23

∂θ
+ F 23 cot θ = 0, (27)

and

∂F 23

∂φ
= 0. (28)

Also, from equation (10), we obtain

∂F14

∂θ
=

∂F14

∂φ
= 0 (29)

and

∂F23

∂r
=

∂F23

∂t
= 0. (30)

From equations (18) through (22), we have the following 3 possible cases:

i) F12 = F13 = F34 = F24 = 0, at least one of F14 , F23 being nonzero.

ii) F12 = F14 = F34 = F23 = 0, at least one of F24 , F13 being nonzero.

iii) F14 = F24 = F13 = F23 = 0, at least one of F12 , F34 being nonzero.

Hence, the electromagnetic field is nonnull and consists of an electric and/or magnetic field, both of which

are in the direction of the same space axis. Without loss of generality we may consider case (i), in which also

the component F14 ̸= 0, F23 = 0, which is directed in the direction of the x-axis.

Using the above assumption in equation (5), we obtain

E1
1 = −E2

2 = −E3
3 = E4

4 =
1

8π
.
1− kr2

R2
(F14), (31)

and
Eij = 0, (i ̸= j; i, j = 1, 2, 3, 4). (32)

Using equation (31), the field equations (13), (14), and (16) respectively become

2RR̈+ Ṙ2 + k

R2
= −8πp+

1− kr2

R2
(F14)

2 − 1− kr2

R2
V ′2 − V̇ 2 − 2ω + 3

4

[
1− kr2

R2

(
φ′

φ

)2

+

(
φ̇

φ

)2
]
, (33)

2RR̈+ Ṙ2 + k

R2
= −8πp− 1− kr2

R2
(F14)

2
+

1− kr2

R2
V ′2 − V̇ 2 +

2ω + 3

4

[
1− kr2

R2

(
φ′

φ

)2

−
(
φ̇

φ

)2
]
, (34)
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and

3Ṙ2 + 3k

R2
= 8πρ+

1− kr2

R2
(F14)

2
+

1− kr2

R2
V ′2 + V̇ 2 +

2ω + 3

4

[
1− kr2

R2

(
φ′

φ

)2

+

(
φ̇

φ

)2
]
. (35)

By using equation (32) in equation (17), we get

0 = V ′V̇ +
2ω + 3

4

(
φ′

φ

)(
φ̇

φ

)
. (36)

Solving equation (36), we obtain

V =

√
−(2ω + 3)

2
logφ+ a1, (37)

where a1 is an arbitrary constant.

From equations (33), (34), and (37), we get

F14 = 0. (38)

Making use of equations (37) and (38) in (33) or (34) and (35), we obtain

8πp = −2RR̈+ Ṙ2 + k

R2
(39)

and

8πρ =
3Ṙ2 + 3k

R2
. (40)

When the curvature index k = 0, we obtain the following from equation (23):

− 1

R2
(lnφ)

′′ − 2

R2r
(lnφ)

′
+

3Ṙ

R
(lnφ). + (lnφ).. =

8π

2ω + 3
(ρ− 3p) +

2

2ω + 3

(
1

R2
V ′2 − V̇ 2

)
. (41)

Using the well-known Hubble’s principle

Ṙ

R
= α, (42)

where α is the Hubble’s constant, we obtain the following from (41):

3

2

(
φ′

φ

)2

− φ′′

φ
− 2

r

φ′

φ
= R2

[
12α2

2ω + 3
+

3

2

(
φ̇

φ

)2

− 3α

(
φ̇

φ

)
− φ̈

φ

]
. (43)

From equation (43), we obtain

φ = ent.
r2

(A−Br)2
, (44)

with the relation on constants

24α2 + (n2 − 6αn)(2ω + 3) = 0, (45)

where n, A, and B are arbitrary constants.
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From equations (37) and (44), we obtain

V =

√
−(2ω + 3)

2
log

[
entr2

(A−Br)2

]
+ a1. (46)

Using equations (42) and (44) in equation (24), we obtain

σ(r, t) =
√
−(2ω + 3)

[
3

2
αn− A2e−2αt

A2
1r

2(A−Br)2

]
, (47)

where A1 is an arbitrary constant. Equations (39) and (40) become

p = − 3

8π
α2 (48)

and

ρ =
3

8π
α2. (49)

From equation (26), we obtain

ε0 = 0. (50)

From equation (11), we obtain

J i = 0, i = 1, 2, 3, 4. (51)

3. Physical interpretation of the solutions

It is clear from equation (38) that the electromagnetic field, when interacting with the scalar field and B-D

field in the presence of perfect fluid, does not survive. From (44), it is observed that the B-D scalar field φ is

an exponentially increasing function of time when we take A = 0, and it is a quadratically increasing function

of radial coordinate r when B = 0. However, when t tends to infinity with r remaining constant, φ tends to

infinity. From (46), we see that the scalar field, V, is physically realistic provided the coupling constant ω < −
3/2.

It is also observed that the scalar field V is a linear function of time t only when A = 0. When both r

and t tend to infinity simultaneously, φ and V tend to infinity provided B ̸= 0. The source density σ of the

scalar potential reduces to a constant quantity when both r and t tend to infinity, but the magnitude of the

source density is constrained to satisfy the relation 3
2αn > A2e−2αt

A2
1r

2(A−Br)2
, for all values of r and t. It is seen that

the model of the Universe does not satisfy the fluid energy condition ρ+ p > 0. The pressure P is found to be

negative because of the interaction caused by the presence of scalar field V and the fluid acquires a repulsive

character in nature. At the same time, the electromagnetic field gives no contribution in yielding the pressure

P to be negative. Since the charged density ε0 and the current density J0 become zero, it is thereby shown

that the matter becomes electrically neutral.

The present work deals with a closed form of exact solutions of nonstatic static, spherically symmetric per-

fect fluid interacting with zero-rest-mass scalar field in B-D theory corresponding to the Friedmann–Robertson–

Walker (FRW) model. The solutions will play a physically significant role in studies of the interaction of

electromagnetic and zero-rest-mass scalar fields in a FRW model universe. Such solutions will also help in the

study of B-D gravitational theory and the relationship between this theory and Einstein’s theory. We hope that

some physical insight can be gained from these solutions obtained in this paper.
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