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Abstract: In this study, we employed the interacting boson model (IBM-1) to determine the most appropriate

Hamiltonian for the study of 94−108Mo, 94−110Ru, and 96−114Pd isotopes in the region A ∼= 100. The soft rotor

formula (SRF) calculation was also done to study these isotopes. Using the best fit values of parameters to construct

the Hamiltonian of the IBM-1 we calculated energy levels and B(E2) values for number of transitions in Mo, Ru, and Pd

nuclei. The results obtained from the IBM-1 and SRF were compared with experimental data and IBM-2 calculation. On

comparing the results it was observed that they were in good agreement with each other. The γ -band energy staggering

in low-spin, back bending effect, low energy spectra of even–even Mo, Ru, and Pd nuclei is also discussed.

Key words: Interacting boson model (IBM-1), soft rotor formula (SRF), Mo, Ru, Pd isotopes, collectives levels,

staggering effect

1. Introduction

The interacting boson model (IBM) model [1, 2, 3, 4, 5] proposed in 1974, is now 40 years old and has undergone

many tests [6, 7]. The quantum shape-phase transition as well as the structural evolution of the low-lying

states of nuclei can be investigated, as a function of proton and/or neutron number within the framework of

an interacting boson model. This kind of analysis has usually been carried out in the IBM-1, in which no

distinction is made between proton pairs and neutron pairs. The nuclear shape among which the transitions

take place is associated with SU(5), O(6), and SU(3) dynamic symmetries of the IBM-1 model.

A new classification scheme was provided, all nuclei being distributed on the border of a symmetry triangle

[8]. The vertices of this triangle symbolize the SU(5) (vibrator), O(6) (γ -soft), and SU(3) (symmetric rotor),

while the legs of the triangle denote the transitional region. It was proved that on the SU(5)–O(6) transition

leg there exists a critical point for a second order phase transition, while the SU(5)–SU(3) leg has a first order

phase transition [9, 10]. It was proved that most nuclei are mapped not on the border of the symmetry triangle

but in the interior of the triangle [11, 12]. Examples of such nuclei are the Os and Th isotopes [13, 14]

Iachello [15] pointed out that these critical points correspond to distinct symmetries, namely, E(5) and

X(5). For the critical value of an ordering parameter, energies are given by the zeros of a Bessel function of half

integer and irrational indices [16, 17, 18]. The X(5) description was extended to the first octupole vibrational

band in nuclei close to axial symmetry and also close to the critical point of the SU(5) to SU(3) phase transition

[19]. Other symmetries are Y(5) and Z(5) [20, 21]. The former symmetry corresponds to the critical point of
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the transition from axial to triaxial nuclei, while the latter is related to the critical point of the transition from

prolate to oblate through a triaxial shape.

The odd–even staggering (OES) effect observed in the γ -bands is among the most sensitive phenomena

carrying information about the symmetry changes. It is quite strongly pronounced in nuclear regions character-

ized by SU(5) and O(6) and relatively weaker in nuclei near the SU(3) region. In the framework of interacting

boson model (IBM), the OES effect has been explained as the result of the interaction between the even angular

momentum states of the γ -band and the respective states in the ground state band (gsb) united in the vector

boson model with broken SU(3) symmetry [22, 23]. The purpose of this paper is to set some even–even nuclei

around the mass region A ∼= 100. The neutron-rich even–even Mo, Ru, and Pd isotopes around the mass region

A ∼= 100 are very important for understanding the gradual change from a spherical to a deformed state via a

transitional phase [24]. We shall also discuss the properties of the IBM-1 and comparison with the IBM-2 and

soft rotor formula (SRF).

The outline of the remaining part of this paper is as follow: The theoretical background of IBM-1 is

reviewed in Section 2, the E2 and B(E2) transitions are described in Section 2.1, and the soft rotor formula is

reviewed in Section 2.2. The calculated energy values and B(E2) values are compared with the experimental

and other dynamical symmetries (SU(3), SU(5), O(6), and X(5)) limits in Section 3. We discuss the calculated

and experimental γ -band energy staggering pattern as a function of angular momentum in Section 3.1 and the

back bending effect in Section 3.2. The last section, Section 4, contains some concluding remarks.

2. The interacting boson model

There are several equivalent ways of writing Hamiltonian H [3]. The most general Hamiltonian that has been

used to calculate the level energies is

H = ϵnd + a0P
†.P + a1L.L+ a2Q.Q+ a3T3.T3 + a4T4.T4 (1)

where

nd = (d†.d̃), P =
1

2
(d̃.d̃)− 1

2
(s̃.s̃)

L =
√
10

[
d† × d̃

](1)
Q =

[
d† × s̃+ s† × d̃

](2)
− 1

2

√
7
[
d† × d̃

](2)
T3 =

[
d† × d̃

](3)
, T4 =

[
d† × d̃

](4)
.

Here nd is the number of operator of d bosons; s† , d† and s, d represent the s- and d- boson creation and

annihilation operators. Also P, L, Q , T3 , and T4 in Eq. (1) are the pairing, angular momentum, quadrupole,

octopole, and hexadecapole operators, respectively.

The computer program code PHINT [25] was used for the construction of the IBM-1 Hamiltonian and for

its solution in the SU(5) basis. The input parameters EPS, PAIR, ELL, QQ, OCT, and HEX are presented in

Table 1 related to the coefficients ϵ , a0 , a1 , a2 , a3 , a4 , respectively, (EPS = ϵ , PAIR = a0/2, ELL = 2a1 ,

QQ = 2a2 , OCT = a3/5, HEX = a4/5) [26]. The parameters are free parameters that have been determined

so as to reproduce the excitation-energy of all positive parity levels as closely as possible.
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Table 1. The best fit values of the Hamiltonian parameters for 102−108Mo, 102−108Ru, and 104−110Pd.

Nuclei EPS ELL QQ OCT HEX
102Mo 0.500 –0.350 0.22 0.0011 –2.98504
104Mo 0.400 –0.350 0.22 0.0011 –2.98504
106Mo 0.410 –0.350 0.22 0.0011 –2.98504
108Mo 0.510 –0.300 0.22 0.0011 –2.98504
Nuclei EPS ELL QQ OCT HEX
102Ru 0.700 –0.350 0.22 0.0011 –2.98504
104Ru 0.620 –0.400 0.22 0.0011 –2.98504
106Ru 0.600 –0.350 0.22 0.0011 –2.98504
108Ru 0.550 –0.450 0.22 0.0011 –2.98504
Nuclei EPS ELL QQ OCT HEX
104Pd 0.800 –0.0350 0.30 0.0010 –2.98504
106Pd 0.650 –0.0300 0.30 0.0010 –2.98504
108Pd 0.600 –0.0310 0.28 0.0010 –2.98504
110Pd 0.500 –0.250 0.30 0.0010 –2.98504

The interacting boson model has a very definite group structure, that of the group U(6). Different

reductions of U(6) give 3 dynamical symmetry limits known as harmonic oscillator, deformed rotor, and

asymmetric deformed rotor, which are labeled by U(5), SU(3), and O(6), respectively,

U(6) ⊃ U(5) ⊃ O(5) ⊃ O(3) ⊃ O(2)

U(6) ⊃ SU(3) ⊃ O(3) ⊃ O(2)

U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) ⊃ O(2).

The energy eigenvalue for 3 chains are

E(I)(N,nd, ν, n∆, L,M) = ϵnd + α
1

2
nd(nd − 1) + β[nd(nd + 3)− ν(ν + 3)] + γ[L(L+ 1)− 6nd]

E(II)(N,λ, µ,K,L,M) =

(
3

4
κ− κ′

)
L(L+ 1)− κ[λ2 + µ2 + λµ+ 3(λ+ µ)]

E(III)(N, σ, τ, ν∆, L,M) = A
1

4
(N − σ)(N + σ + 4) +B

1

6
τ(τ + 3) + CL(L+ 1).

2.1. The E2 and B(E2) transitions

For the E2 transitions one uses the transition operator T(E2), which is related to the quadrupole operator Q

of the Hamiltonian

T (E2) = ebQ = α[d†s+ s†d̃](2) + β[d†d̃](2). (2)

Also the charge parameters α(= eb) and β(= ebχ) in Eq. (2) are called E2SD and E2DD, respectively. In the

consistent Q formalism [27], one uses the same form of the quadrupole operator for the Hamiltonian as well as

the T(E2) operator (i.e. the same value of χ). For this, one employs the level energy data as well as the B(E2)

values to determine the parameters of H and T(E2). In the alternative procedure, one uses the SU(3) value of

χ for the Hamiltonian and the variables α and β (or χ) for the T(E2) operator.
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The B(E2) branching ratio for 2 transitions from a particular level in a given band to the 2 states of

other band i.e. (Ii → If/If ), depends on the Alaga value [28]. In the SU(3) [3] these rules are slightly modified

because the (γ → g) and (β → g) transitions are prohibited, but in slightly broken symmetry the (γ → g)

transition should be faster than the (β → g) transition. The observed B(E2) ratios are obtained from the γ -ray

spectrum data, using the relation [29]

B(E2; Ii → If )

B(E2; Ii → I ′f )
=

Iγ
I ′γ

×
(E′

γ)
5

(Eγ)5
(3)

where Iγ and I ′γ are the intensities and Eγ and E′
γ are the γ -ray energies for (Ii → If ) and (Ii → I ′f )

transitions.

2.2. Soft rotor formula (SRF)

Brentano et al. [30] obtained the 2-parameter formula called the soft rotor formula (SRF)

E =
J(J + 1)

α(1 + βJ)
(4)

The values of α and β are calculated by fitting 2+γ , 4+γ energies in even sequence and 3+γ , 5+γ energies in odd

sequence. For all these calculations the experimental data are taken from www.nndc.bnl.gov [31].

3. Results and discussion

Figure 1 shows the variation in energy ratio R4/2 = E(4+1 )/E(2+1 ) with neutron number (N) for 94−108Mo,

96−110Ru, and 100−114Pd isotopes. In 94−108Mo isotopes the R4/2 varies from 1.8 to 3.04. These isotopes show

the transition from SU(5) to SU(3). In 96−110Ru the R4/2 lies between 1.8 and 2.7 . Hence these nuclei show

the transition from vibrational to γ -soft and X(5) critical point. In 100−114Pd nuclei the R4/2 lies from 2.1 to

2.5 and nuclei show transition from vibrational to the γ -soft.

In 102Mo nuclei the 2+1 energy is large compared to higher isotopes of Mo. The R4/2=E(4+1 )/E(2+1 )

value for 102Mo is 2.5, which is close to γ -soft nuclei. The 104−108Mo nuclei have a low 2+1 , indicating a

large moment of inertia compared to lighter isotopes of the Mo nuclei. The energy ratio R4/2 is greater than

2.9, which is near SU(3) values, and so these nuclei may be termed deformed. The quadrupole moment and

deformation β2 for 104Mo [0.33(1)], 106Mo [0.35(1)], 108Mo [0.35(4)] [32] are also large. The calculated band

energies in 104−108Mo are shown in Figures 2 and 3. In 104Mo the calculated values of level energies obtained

from IBM-1 and SRF come close to experimental and IBM-2 values. The slopes of g- and γ -bands are almost

the same. Thus their dynamic moments of inertia are the same. The rotational structure of the g-band and the

γ -band are well given in IBM-1 and SRF calculations. Similarly, good fit to the energies of the g- and γ -band

is obtained for 106Mo. The calculated and experimental energy levels are equal. In 108Mo, IBM enables a good

fit to the energies of γ -band, but SRF calculation gives good agreement with the experimental values.

In particular, Ru isotopes have recently been investigated within the IBM-1 model [33, 34]. Troltenier et

al. [35] also studied the Ru isotopes by using the “geometrical” general collective model (GCM). According to

their study the isotopes were found to exhibit spherical structure with a tendency to triaxiality. It is proposed

that change in structure is related to experimentally strong neutron–proton interactions. It is also suggested
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Figure 1. Theoretical (open circle) and experimental (solid circle) energy ratio E(J)/E(21) for the J = 2+, 4+, 6+, 8+

levels for even Mo, Ru, and Pd isotopes.

that the neutron–proton effective interactions are of spheriphying nature [36, 37]. The ratio of the energies of

the first 4+1 and 2+1 states is a good criterion for shape transition. The value of R4/2 ratio has the limiting

value of 2.0 for vibrator, 2.5 for nonaxial γ -soft rotor, and 3.33 for an ideally symmetric rotor. The R4/2 ratio

increases gradually with neutron number until N = 62 and remains constant for N = 64 and 66. The estimated

values change from 2.25 to 2.36. It means that their structure seems to be varying from vibrator to γ -soft.

In Figures 4 and 5 we compared the IBM-1 and SRF calculated values with experimental data and IBM-2

calculation. In 102Ru nuclei the R4/2 = 2.32, which means their structure seems to be varying from vibrator

to γ -soft nuclei. There is transition from SU(5) to O(6) symmetry. In these nuclei the g-, γ - and β -band are

well produced by IBM-1 and SRF. In 104Ru the R4/2 = 2.48, which means nuclei are γ -soft in nature. In this

case the γ -band is not well generated by IBM-1 but SRF calculations are successful to produce the γ -band.

In 106−108Ru nuclei the R4/2 = 2.6, 2.7 respectively. Hence structure seems to be varying from γ -soft to the

X(5) critical point. The experimental and calculated values show good agreement with each other except for

the γ -band in 108Ru nuclei.
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Figure 2. Result of experimental, IBM-1, soft rotor model (SRF), and IBM-2 [42] of ground, quasi-beta, and quasi-

gamma band for 102−104Mo isotopes.
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Figure 3. Result of experimental, IBM-1, soft rotor model (SRF), and IBM-2 [42] of ground, quasi-beta, and quasi-

gamma band for 106−108Mo isotopes.
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Figure 4. Result of experimental, IBM-1, soft rotor model (SRF), and IBM-2 [43] of ground, quasi-beta, and quasi-

gamma band for 102−104Ru isotopes.
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Figure 5. Result of experimental, IBM-1, soft rotor model (SRF), and IBM-2 [43] of ground, quasi-beta, and quasi-

gamma band for 106−108Ru isotopes.
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Next Figures 6 and 7 show the comparison of the IBM-1, SRF calculation with experimental and IBM-2

calculation. They show good agreement with each other. Also SRF calculations are successful to calculate some

new g- and γ -bands, but not successful in calculating the β -band. The R4/2 is 2.4 for 104−110Pd nuclei. The

structure of nuclei seems to be γ -soft in nature.
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Figure 6. Result of experimental, IBM-1, soft rotor model (SRF), and IBM-2 [44] of ground, quasi-beta, and quasi-

gamma band for 104−106Pd isotopes.

In Figure 8 some B(E2) transition ratios of 96−98Mo isotopes are given as R1 = B(E2; 41 → 21)/B(E2; 21 →
01), R2 = B(E2; 22 → 21)/B(E2; 21 → 01), R3=B(E2; 22 → 01)/B(E2; 22 → 21) and the calculated ratios

are compared with those of SU(5), O(6), SU(3) ratio limits. The results shown in Figure 8 indicate the quality

of the fits presented in the paper. In this figure the IBM-1 calculated B(E2) transition ratios are compared with

experimental and IBM-2. In most of the cases they show good agreement with the experimental values.

In Figure 9 we present the B(E2; J → J − 2) reduced transitions strength for 102−108Pd nuclei, which

are normalized to their respective B(E2; J → J − 2) values and compared with the expected behavior for an

harmonic vibrator, axially deformed rotor, and the X(5) predictions. It is clear from the figure that 102−108Pd

nuclei with yrast energies closely follow the X(5) predictions.

Tables 2 and 3 present some B(E2) (e2fm4) transition values for 96−100Mo, 102−104Pd, 106−110Pd, and

98−104Ru nuclei. These IBM-1 calculated values are compared with the experimental and IBM-2 values. We

observed that both formalisms describe fairly well intra-transition in the ground and γ -band. Both calculations

show small variation in their B(E2) values but are comparable to the experiment. In the most cases the

deviations from the experimental values are smaller than 10%.
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Figure 7. Result of experimental, IBM-1, soft rotor model (SRF), and IBM-2 [44] of ground, quasi-beta, and quasi-

gamma band for 108−110Pd isotopes.7
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Figure 9. Experimental B(E2) ratios of the g.s. band in 102−108Pd compared with the predictions of the IBM-1, X(5),

rotor, and vibrator limit.

3.1. γ -Band energy staggering patterns as a function of angular momentum

For the study of the staggering effect we consider the following 3-point formula [38]:

S(J) = E(J)− (J + 1)E(J − 1) + JE(J + 1)

2J + 1
, (5)

where E(J) denotes the energy of the level with angular momentum J . The odd–even staggering is shown

in Figure 10 for 104−106Mo, 104,108Ru, and 108Pd isotopes. In 104−106Mo isotopes the observed staggering

is generally small as compared to the 104−108Ru and 108Pd nuclei, as 104−106Mo nuclei are deformed and

staggering is small in SU(3) as compared to O(6) and SU(5). 104,108Ru and 108Pd nuclei show the transition

from SU(3) to O(6). Hence odd–even staggering is pronounced with large amplitude. From the above details

we deduce that for the considered nuclei the increasing neutron numbers and decreasing proton numbers lead

to a systematic suppression of the odd–even staggering effect in the γ -bands. In such a way a region of a better

formed rotation structure in these bands is outlined [39].

We used another test of triaxiality on the basis of energy relation ∆E1 = E(3+1 ) −
[
E(2+1 ) + E(2+2 )

]
[14] for triaxial nucleus and ∆E2 = E(3+1 ) −

[
2E(2+1 ) + E(4+1 )

]
for γ -soft nucleus given by Wilets and Jean
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Table 2. The experimental and calculated values of BE(2) transitions for 96−100Mo [42] and 102−104Pd [45] isotopes.

B(E2)e2fm4 Exp. IBM-1 IBM-2
96Mo

B(E2; 2+1 → 0+1 ) 540.5(7.8) 537.3 543.8
B(E2; 2+2 → 0+1 ) 31.2(2.6) 18 0.2
B(E2; 2+2 → 2+1 ) 470.0(78) 668 698.3
B(E2; 4+1 → 2+1 ) 1044.4(209) 932.2 905.1
B(E2; 4+2 → 2+2 ) 49.6(15.7) 0.096 1.7
B(E2; 4+2 → 2+2 ) 600.5(183) 569.9 125.7
B(E2)e2fm4 Exp. IBM-1 IBM-2
98Mo

B(E2; 2+1 → 0+1 ) 536.8(10.7) 531.6 536.2
B(E2; 2+1 → 0+2 ) 563.6(53.7) 143.5 153
B(E2; 2+3 → 0+1 ) 25.8(1.9) 19 5.9
B(E2; 2+2 → 0+1 ) 1.1(1) 29.5 41.3
B(E2; 2+3 → 0+2 ) 64.4(21.5) 35.8 139.6
B(E2; 2+2 → 0+2 ) 214.7(187.9) 114.7 4.2
B(E2; 2+3 → 2+1 ) 1180.9(107) 998.8 594.6
B(E2; 2+2 → 2+1 ) 161.0(134) 905.4 99.2
B(E2; 4+1 → 2+1 ) 1234.6(134) 905.4 914.9
B(E2)e2fm4 Exp. IBM-1 IBM-2
100Mo

B(E2; 2+1 → 0+1 ) 937.4(55) 935.9 950.2
B(E2; 2+2 → 0+1 ) 17.1(1.4) 59.5 1.3
B(E2; 2+2 → 0+2 ) 151.6(22) 219.6 9.9
B(E2; 2+3 → 0+2 ) 386(110) 465.6 82.6
B(E2; 2+2 → 2+1 ) 1406(137.8) 1367.6 1330.9
B(E2; 2+3 → 2+1 ) 30.9(2.2) 44.7 11.1
B(E2; 2+3 → 2+2 ) 661.7(220.6) 555.3 1.6
B(E2; 4+1 → 2+1 ) 1902.4(110) 1573.3 1659.1
B(E2; 4+2 → 2+2 ) 827.1(165) 933.7 1006.8
B(E2; 4+2 → 4+1 ) 772(165) 668.8 756.1
B(E2; 6+1 → 4+1 ) 2591.7(386) 1837.9 2091.6
B(E2; 8+1 → 6+1 ) 3391.2(496.3) 1877.6 2256.3
B(E2)e2fm4 Exp. IBM-1 IBM-2
102Pd

B(E2; 2+1 → 0+1 ) 923(65) 930.3 899
B(E2; 2+2 → 2+1 ) 425(57) 638.4 959
B(E2; 2+2 → 0+1 ) 48(24) 59.8 9
B(E2; 4+1 → 2+1 ) 1440(71) 1553.5 1225
B(E2)e2fm4 Exp. IBM-1 IBM-2
104Pd

B(E2; 2+1 → 0+1 ) 1045(58) 1046.8 1157
B(E2; 2+2 → 2+1 ) 4633(49) 1117 1211
B(E2; 2+2 → 0+1 ) 35(4) 53.9 13
B(E2; 4+1 → 2+1 ) 1423(203) 1714 1690
B(E2; 2+3 → 2+1 ) <32 32.1 1
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Table 3. The experimental and calculated values of BE(2) transitions for 106−110Pd [45] and 98−104Ru[46] isotopes.

B(E2)e2fm4 Exp. IBM-1 IBM-2
106Pd

B(E2; 2+1 → 0+1 ) 1332(45) 1329.4 1416
B(E2; 2+2 → 2+1 ) 1548(140) 1330.6 1666
B(E2; 2+2 → 0+1 ) 35(4) 76.5 14
B(E2; 4+1 → 2+1 ) 2175(297) 2263.8 2035
B(E2)e2fm4 Exp. IBM-1 IBM-2
108Pd

B(E2; 2+1 → 0+1 ) 1561(40) 1563.3 1616
B(E2; 2+2 → 2+1 ) 2383(214) 2012.2 2059
B(E2; 2+2 → 0+1 ) 25(3) 31.6 13
B(E2; 4+1 → 2+1 ) 2810(366) 2657 2389
B(E2)e2fm4 Exp. IBM-1 IBM-2
110Pd

B(E2; 2+1 → 0+1 ) 1711(118) 1714 1869
B(E2; 2+2 → 2+1 ) 1681(294) 1521.4 2431
B(E2; 2+2 → 0+1 ) 24(3) 35.9 19
B(E2; 4+1 → 2+1 ) 2920(383) 2886.3 2795
B(E2)e2fm4 Exp. IBM-1 IBM-2
98Ru

B(E2; 2+1 → 0+1 ) 78.4(24) 76.2 78.3
B(E2; 4+1 → 2+1 ) 107.7(122) 105.6 108.8
B(E2; 2+1 → 0+2 ) 2.6 7.1
B(E2; 2+2 → 0+1 ) 1.7 0.9
B(E2; 2+2 → 2+1 ) 147(25) 65.4 39.1
B(E2)e2fm4 Exp. IBM-1 IBM-2
100Ru

B(E2; 2+1 → 0+1 ) 100.2(2) 107.8 102.2
B(E2; 4+1 → 2+1 ) 144.4(122) 135.7 143
B(E2; 2+1 → 0+2 ) 3.4 6.5
B(E2; 2+2 → 0+1 ) 4.1(46) 3.2 1.5
B(E2; 2+2 → 2+1 ) 88(13) 76.4 95
B(E2)e2fm4 Exp. IBM-1 IBM-2
102Ru

B(E2; 2+1 → 0+1 ) 130.2(32) 131.3 130.1
B(E2; 4+1 → 2+1 ) 211.6(233) 232.5 181.9
B(E2; 2+1 → 0+2 ) 40.5 3.5
B(E2; 2+2 → 0+1 ) 4.2(4) 4.4 0.6
B(E2; 2+2 → 2+1 ) 117(15) 96 160.3
B(E2)e2fm4 Exp. IBM-1 IBM-2
104Ru

B(E2; 2+1 → 0+1 ) 167.0(9) 163.8 167
B(E2; 4+1 → 2+1 ) 239(26) 234.9 239
B(E2; 2+1 → 0+2 ) 24 6
B(E2; 2+2 → 0+1 ) 0.6 3.6 5
B(E2; 2+2 → 2+1 ) 167(20) 145.8 147
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[40]. In Table 4 we present the experimental and IBM-1 calculated values of ∆E1 and ∆E2 for the different

isotopes of the 94−108Mo, 96−108Ru and 100−110Pd. In this study we observed that their are some isotopes

like 106Mo,108Mo, 104Ru, and 106Ru), which have ∆E1=3.2, 3.3, 8.9, and 3.2, respectively. These deviations

suggested that these nuclei have some triaxial nature.
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Figure 10. Theoretical (open circle) and experimental (solid circle) odd–even staggering plots in keV for 104−106Mo,

104,108Ru, and 108Pd nuclei.

3.2. Back bending

The discrete derivatives of the resulting energies with respect to the angular momentum [41] are

ℏω =
dE(J)

dJ
≈ 1

2
[E(J + 2)− E(J)]. (6)

Alternatively, the angular velocity can also be defined by using the expression for E(J) provided by symmetric

rotor Hamiltonian:

E(J) =
J(J + 1)

ℑ
. (7)

342



DEVI/Turk J Phys

Table 4. The experimental and calculated difference △E1 (keV) and △E2 (keV).

Nuclei 94Mo 96Mo 98Mo 100Mo 102Mo 104Mo 106Mo 108Mo

Exp.△E1 69.0 425 441.2 392.3 195.9 23.9 3.2 3.3
Exp.△E2 510 1206 980.2 599 91.5 83.5 20.1 167.3
Th.△E1 641 500 71.7 26.2 251.2 292.2 175.6 739.7
Th.△E2 14.06 1273 543 448 16.4 109.2 1.4 934
Nuclei 94Ru 96Ru 98Ru 100Ru 102Ru 104Ru 106Ru 108Ru

Exp.△E1 3940.6 133.6 53.3 20.49 56.5 8.9 3.2 24.78
Exp.△E2 5048 286.1 688.6 424.2 534.8 362.0 361.2 174.8
Th.△E1 4650 420.3 19 170.3 124.4 33.6 20.8 55.4
Th.△E2 6171.9 348.7 634 334.1 614.1 305.4 385.3 180.9
Nuclei 100Pd 102Pd 104Pd 106Pd 108Pd 110Pd

Exp.△E1 106.6 20.6 528.9 516.3 29.9 1588.3
Exp.△E2 386.6 277.3 614.5 695.2 580.8 1668.4
Th.△E1 326.8 402.8 212.3 162.2 280.5 1328.6
Th.△E2 288.2 96.62 827.3 670.8 765.3 1712.9
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Figure 11. Back bending in 94−100Mo isotopes.
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Then the discrete derivative of this expression yields

ℏω(J) =
2J + 3

ℑ
, (8)

from where one derives a simple expression for the moment of inertia:

ℑ =
4J + 6

E(J + 2)− E(J)
(9)

The back bending plot is shown in Figures 11–13 for even–even 94−100Mo, 102−106Pd and 98−106Ru nuclei.

The back bending plot is a graph in which moment of inertia versus (ℏω)2 is plotted. The IBM-1 and IBM-2

results and experimental data are usually compared in terms of these plots. The back bending is associated

with the breaking of the first neutron (h11/2)
2 pair. In Figures 11 and 12, 94−100Mo and 102−106Pd isotopes

show backbending effect at J = 8+ . Similarly in Figure 13, 98−106Ru isotopes also show this backbending

effect below J = 12+ . It means there is a band crossing and this is also confirmed by calculating the staggering

effect of these isotopes. A disturbance of the angular band structure has been observed not only in the moment

of inertia but also in the decay properties.
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Figure 12. Back bending in 102−106Pd isotopes.

344



DEVI/Turk J Phys

0.10 0.15 0.20 0.25
0

20

40

60

0.05 0.10 0.15 0.20 0.25

20

40

60

80

0.05 0.10 0.15 0.20 0.25
20

40

60

80

0.05 0.10 0.15 0.20

20

40

60

80

J
[h

2
/M

e
V

]

 Exp

 IBM-1

98
Ru

J
[h

2
/M

e
V

]

 Exp

 IBM-1

102
Ru

J
[h

2
/M

e
V

]

(h• )
2
[Me V

2
]

 Exp

 IBM-1 104
Ru

J
[h

2
/M

e
V

]

(h• )
2
[Me V

2
]

 Exp

 IBM-1
106

Ru

Figure 13. Back bending in 98,102−106Ru isotopes.

4. Conclusion

The results of this work show that the IBM-1 provides a good description of even–even Mo, Ru, and Pd

isotopes of the nuclei. The results of our phenomenological analysis indicate that the interacting boson model

can reproduce a considerable quantity of experimental data. It gives useful indications where data are lacking.

One observes the transitions between 3 limit symmetries of the model, corresponding to different nuclear shapes

along the isotopes chain, collective levels, and electromagnetic transitions between them. The calculated level

structure of the 102−108Mo isotopes in empirical IBM-1 provides fairly good energy fits for the g-, γ -, and

β -band, while the moment of inertia related to E(2+1 ), the B(E2; 21 → 01) and the quadrupole moment

and energy ratio R4/2 do correspond to the deformed nuclei. The shape transition predicted by this study

is consistent with the spectroscopic data for these nuclei. 102−108Ru are the typical examples of the isotopes

that exhibit a smooth phase transition from vibrational nuclei to the γ -soft nuclei. The predictions show that
102−108Ru isotopes are lined up along the SU(5)–O(6) side of the IBM triangle. In the above discussion we also

observed the back bending and odd–even staggering effect in the gamma-bands.

As seen in Table 2, estimated B(E2) transitions are mostly in agreement with the IBM-2 and experimental

values. Table 3 is devoted to the description of the triaxial nuclei. In the table we calculate the most distinctive

signature of the triaxial rigid rotor relating the energies of the 3 particular states. The deviations obtained

suggested that some isotopes have a near triaxial nature. Bending for Mo and Pd isotopes has been observed

at angular momentum 8+ and bending for Ru isotopes observed at angular momentum 12+ .
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In view of the growing pursuit in this kind of theoretical interest, it is assumed that a new study

investigating the properties of neutron rich full isotopic mass chains around A ∼= 100 mass region will also

be carried out.
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