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doi:10.3906/fiz-1301-7

Turkish Journal of Physics

http :// journa l s . tub i tak .gov . t r/phys i c s/

Research Article

Quantum chemical calculations of the polymorphic phase transition temperatures

of ZnS, ZnSe, and ZnTe crystals
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Abstract:Molecular models of polymorphs modifications of zinc chalcogenides have been designed. Based on the results

of ab initio quantum chemical calculations of the crystal structure of clusters the temperature dependences of the Gibbs

energy of sphalerite and of wurtzite have been found. Phase transformations “sphalerite–wurtzite” temperatures have

been evaluated.
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1. Introduction

Zinc chalcogenides are advanced materials for light diodes and photoresistors, and sources of spontaneous and

coherent radiation [1]. However, practical applications of ZnS, ZnSe, and ZnTe need reliable information about

the crystal structure of these materials. Semiconductors are crystallized in such way that each atom of Zn(X)

(X = S, Se, Te) is located in the center of a regular tetrahedron; the 4 vertices are the atoms of another element

X (Zn). These tetrahedrons form 2 types of structures: sphalerite and wurtzite. Low-temperature modification

3C ZnX (sphalerite) refers to the cubic system, space group F43m. High-temperature modification 2H ZnX

(wurtzite) refers to the hexagonal crystal system, space group P6mc. Sphalerite’s structure is more stable than

wurtzite’s structure below the transition temperature, while wurtzite’s structure is much more stable above the

transition temperature [2]. There are quite contradictory data about the polymorphism of zinc chalcogenides in

the literature. According to [3], the polymorphic transition ”sphalerite–wurtzite” for ZnS occurs at Tm = 1250–

1450 K, and for ZnSe at 1420–1713 K [4–6]. We were unable to find this information for ZnTe. Therefore, the

evaluation of the characteristics of the polymorphic phase transition for zinc chalcogenides remains relevant.

According to the technological complexity of production and the investigation of these materials there are

extremely useful quantum chemical calculation methods. In this work these methods are used and the phase

transition temperatures of “sphalerite–wurtzite” for zinc chalcogenides crystals have been determined.

2. Calculation methods

For the calculation of the thermodynamic parameters we used the cluster approach [7]. The calculations were

performed with the software package Firefly [8] within the limited Hartree–Fock approximation, using the
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valence basis set SBKJC, which includes an effective core potential [9]. Visualization of spatial structures was

carried out using Chemcraft.

For the calculation of sphalerite we used 2 cluster models of zinc chalcogenides: clusters A and B. Model

A includes a zinc atom surrounded by 2 ligands and has the general formula ZnC2H2X4 (Figure 1a). The

general formula of cluster B is Zn4C6H6X13 , it contains a zinc atom surrounded by 4 chalcogen atoms, it can

be corresponded to a real crystal, and all these atoms are 4-coordinated (Figure 1b). We used 6 HCX2 -ligands,

which had saturated dangling bonds.

a b

Figure 1. Cluster model A (ZnC2H2X4) (a) and B (Zn4C6H6X13) (b) of sphalerite modifications of zinc chalcogenides

crystals.

Wurtzite’s structure was studied by using 3 models: C, D, and E. Cluster C (general formula Zn15X15 ,

Figure 2a) was the base for the calculation of the spatial and electronic structure and the thermochemical

quantities. This model consists of 30 atoms and contains 2 pairs of 4-coordinated, 8 pairs of 3-coordinated, and

5 pairs of 2-coordinated atoms. Cluster D (the general formula Zn11X11 , Figure 2b) consists of 22 atoms. It

contains 1 pair of 4-coordinated, 6 pairs of 3-coordinated, and 4 pairs of 2-coordinated atoms. Cluster E of

wurtzite modification (with the general formula Zn10X10 , Figure 2c) consists of 20 atoms. It contains 1 pair of

4-coordinated, 4 pairs of 3-coordinated, and 5 pairs of 2-coordinated atoms. During the calculation of the Gibbs

energy ∆G1 of sphalerite phase formation we used 2 clusters. For the first we calculated the Gibbs energy of

cluster A, according to [10]:

∆G = G−
∑

Eel +
∑

∆Hat, (1)

where G is the total Gibbs energy of the system, Eel is the electronic energy of the atoms that created the

system, and ∆Hat is the atomization energy of the atoms. Total and electronic energies of the system derived

from the results of the calculation, and all other values were taken from the literature [3]. Similarly, the

formation enthalpy of cluster B was calculated. In the case of sphalerite, from the value of Gibbs energy of

cluster B was taken away the triple value of Gibbs energy of cluster A. That means, from cluster ∆G, which

consisted of a fragment of the crystal sphalerite and of 3 ligands, was deducted ∆G of 3 ligands. If you count
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the number of atoms and their variety in the triple of cluster A and cluster B, cluster A has 1 more atom of

zinc and 1 more chalcogen atom. That is why after using of this technique we obtain the value of the Gibbs

energy, which can be attributed to the sphalerite crystal [11].

c

ba

Figure 2. Cluster models C (Zn15X15) (a), D (Zn11X11) (b), and E (Zn10X10) (c) of wurtzite modifications of zinc

chalcogenides crystals.

For the calculation of the Gibbs energy of the wurtzite crystal, first we calculated the Gibbs energy of

clusters C, D, and E according to the method described above, and then created a system of equations:

 2∆G∗
4 + 8∆G∗

3 + 5∆G∗
2 = ∆GC

∆G∗
4 + 6∆G∗

3 + 4∆G∗
2 = ∆GD

∆G∗
4 + 4∆G∗

3 + 5∆G∗
2 = ∆GE ,

(2)

where the coefficients before ∆G∗
i correspond to the number of pairs of bonds with the coordination number

equal to the index i = 2, 3, 4 at ∆G∗
i ; ∆GC , ∆GD , and ∆GE are the Gibbs energy of clusters C, D, and E,

respectively, which have been obtained from the computer calculations. Then ∆G∗
4 is the required value for

the Gibbs energy of the crystal at the given temperature.

System (2) has been solved analytically by using the inverse matrix of Cramer’s rule. As a result, the

equation for determination of the Gibbs energy of the wurtzite crystal modification of zinc chalcogenides has

been obtained:

∆G∗
4 =

7∆GC − 10∆GD +∆GE

5
. (3)

127



AHISKA et al./Turk J Phys

3. Results and discussion

The temperature dependences of the Gibbs energy for sphalerite and for wurtzite are shown at Figure 3. Their

analytical expressions are:
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Figure 3. The temperature dependences of the Gibbs energy of sphalerite (solid lines) ∆G1 (T) and wurtzite (primed

line) ∆G2 (T) structural modifications of ZnS (⃝) , ZnSe (?), ZnTe (♢) .

- For zinc sulfide (4):

∆G1 = 0, 3736 · T + 108, 68,
∆G2 = −1, 1384 · T + 2307, 1;

(4)

- For zinc selenide (5):

∆G1(T ) = 0, 3786 · T + 434, 41,
∆G2(T ) = −0, 344 · T + 1466;

(5)

- For zinc telluride (6):

∆G1(T ) = 0, 3613 · T + 360, 75,
∆G2(T ) = −1, 21 · T + 2531, 5;

(6)

In the solid–solid transition of the matter the Gibbs energy must be the same. In our case, the point of

intersection of the dependencies ∆G1 (T) and ∆G2 (T) (∆G1 (T) = ∆G2 (T)) will be the temperature of the

phase transition from sphalerite to wurtzite. According to our data, for ZnS Tc = 1454 K; for ZnSe Tc =

1427 K; for ZnTe Tc = 1382 K.

We can see that the phase transition temperature increases as we move from a zinc telluride to selenide

and to sulfide. This phenomenon was explained by the increase in the binding energy in a series of ZnS–ZnSe–

ZnTe. Note that according to [4,5] the transition temperature of ZnSe is greater than the phase transition

temperature for ZnS, which in our opinion is less regular.

It should be noted that energy of interactions between atoms is the largest energy characteristics of the

crystalline state; that is why explaining the patterns in the phase transition temperature obtained from the

analysis of these variables is logical. Besides other energy characteristics of the crystalline state, in particular

vibrational energy is less than the relation energy and their effect on the result is less as well.
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4. Conclusions

In this paper we propose the cluster models of sphalerite and wurtzite crystals of zinc chalcogenides and the

technique of boundary conditions.

The temperature dependence of the Gibbs energies for zinc chalcogenides for polymorphic crystals and

the phase transition temperature ”sphalerite–wurtzite” have been found. These results are consistent with the

experimental values of the other works, which have a significant variation interval [2–6].
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