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Abstract: This paper presents Soret and Dufour effects on a 2-dimensional free convective magnetohydrodynamic (MHD)

flow of a viscous incompressible and electrically conducting fluid through a channel bounded by a long vertical wavy wall

and a parallel flat wall. A uniform magnetic field is assumed to be applied perpendicular to the flat wall. Governing

equations of the fluid flow and heat and mass transfer are solved analytically subject to the relevant boundary conditions.

It is assumed that the solution consists of 2 parts, a mean part and a perturbed part. The long wave approximation has

been used to obtain the solution of the perturbed part. The perturbed part of the solution is the contribution from the

waviness of the wall. The expressions for zeroth- and first-order velocity, temperature, concentration, skin friction, and

the rate of heat and mass transfer at the walls are obtained. Some of the results indicating the influence of Soret and

Dufour effects on the above fields are presented graphically.
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1. Introduction

The incompressible boundary layer flow over a wavy wall has importance because of its application in different

areas such as cross-hatching on ablative surfaces, transpiration cooling of reentry vehicles and rocket boosters,

and film vaporization in combustion chambers. Lukodius et a. [1] made a linear analysis of compressible

boundary layer flows over a wavy wall. The Rayleigh problem for wavy wall was studied by Shankar and Sinha

[2]. They arrived at the interesting conclusion that at low Reynolds numbers the waviness of the wall quickly

ceases to be of importance as the liquid is dragged along by the wall, while at large Reynolds numbers the

effects of viscosity are confined to a thin layer close to the wall and a known potential solution emerges in time.

The analysis of the effect of small-amplitude wall waviness upon the stability of the laminar boundary layer was

made by Lessen and Gangwani [3]. Vajravelu and Sastri [4] made an analysis of the free convective heat transfer

in a viscous incompressible fluid between a long vertical wavy wall and a parallel flat wall. Furthermore, they

extended their work for vertical wavy channels. Rao and Sastri [5] studied the work of Vajravelu and Sastri [6]

for viscous heating effects when the fluid properties are constants and variables. Again Rao [7] reinvestigated the

problem of Rao and Sastri [5] for channels that are of different wave numbers. Das and Ahmed [8] studied the

free convective magnetohydrodynamic (MHD) flow and heat transfer in a viscous incompressible fluid confined
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between a long vertical wavy wall and a parallel flat wall. In the above mentioned works, the diffusion–thermo

(Dufour) and the thermal–diffusion (Soret) terms were not taken into account in the energy and concentration

equations, respectively. However, when the heat and mass transfers occur simultaneously in a moving fluid,

the relations between the fluxes and driving potentials are of a more intricate nature. It is found that a heat

flux can be generated not only by temperature gradients but by composition gradients as well. The heat flux

that occurs due to composition gradient is called the Dufour effect or diffusion–thermo effect. On the other

hand, the flux of mass caused due to temperature gradient is known as the Soret effect or the thermal–diffusion

effect. In general, the Soret and Dufour effects are of a smaller order of magnitude than the effects described

in Fourier’s or Fick’s law and are often neglected in heat and mass transfer processes. Though these effects

are quite small, the devices can be arranged to produce very steep temperature and concentration gradients so

that the separation of components in mixtures are affected. Eckert and Drake [9] emphasized that the Soret

effect assumes significance in cases concerning isotope separation, and in mixtures between gases with very

light molecular weight (H2 , He) and for medium molecular weight (N2 , air), the Dufour effect is found to be

of considerable magnitude such that it cannot be ignored. Following Eckert and Drake’s work, several other

investigators carried out model studies on the Soret and Dufour effects in different heat and mass transfer

problems. Some of them are Dursunkaya and Worek [10], Kafoussias and Williams [11], Sattar and Alam [12],

Alam et al. [13], Raju et al. [14] and Srinivasacharya and RamReddy [15–18]. Due to the importance of the

thermal–diffusion and diffusion–thermo effects on the heat and mass transfer-related problems, we propose in

this paper to study the Soret and Dufour effects in free convective MHD flow of a viscous incompressible fluid

through a channel bounded by a long vertical wavy wall and a parallel flat wall.
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2. Basic equations

The 2-dimensional steady laminar free convective MHD flow along the vertical channel is considered here. The

x̄-axis is taken vertically upwards and parallel to the flat wall and the ȳ -axis is perpendicular to it. The wavy

wall is represented by ȳ = ε̄ cos kx̄ and the flat wall is by ȳ = d . T̄ω and ¯̄T1 are the constant temperatures of

the wavy wall and the flat wall, respectively.

Our investigation is restricted to the following assumptions:

(i) All the fluid properties except the density in the buoyancy force term are constants. We intend to

apply the Boussinesq approximation, and this requires the aforesaid assumption. It may be noted that

free convection flows are actually buoyancy-driven flows arising out of small density differences in the

fluid owing to the presence of temperature and species concentration gradients in the fluid. Thus, for free

convective flows, the density in the buoyancy force term cannot remain constant; rather, it varies according

to the temperature and the species concentration differences (gradients) in the fluid. This necessitates the

use of Boussinesq approximation to the equation of state. Boussinesq approximations in free convection

flows are common in nature (such as oceanic circulation), industry (such as dispersion of dense gas and

fume ventilation), and building environments (such as natural ventilation and central heating). This

approximation is reasonably precise for many convection flows and renders the mathematical calculations

relatively simpler.

1. The viscous and magnetic dissipation of energy are negligible. The inclusion of the viscous energy

dissipation term is necessary for high-speed flows. However, for free convection flows, the flow velocities

are considerably small. Therefore, the viscous dissipative effects may be safely neglected. On the other

hand, the magnetic dissipation (Joule heating effect) has relevance only when the fluid medium has a

significantly high electrical conductivity. In the present problem, we assume the fluid medium to possess

low/moderate electrical conductivity. Thus, the magnetic dissipative effects may be omitted.

(ii) The volumetric heat source/sink term in the energy equation is constant. Hence, the heat source or

sink is time-independent, i.e. constant. The presence of a heat source/sink is helpful in controlling

the temperature field and the rate of heat transfer. This application is undeniably vital to engineering

applications and technology concerning transport phenomena.

(iii) The magnetic Reynolds number is small enough to neglect the induced magnetic field. Thus, the applied

magnetic field has relatively low strength, i.e. the applied magnetic field is not too strong. Consequently,

the effect of the induced magnetic field may be neglected.

(iv) The wave length of the wavy wall, which is proportional to 1/k, is large.

Under the foregoing assumptions, the equations that govern the 2-dimensional steady laminar free

convective MHD flow and heat transfer in a viscous incompressible fluid occupying the channel are given below.

The momentum equations:

ρ

[
ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ

]
= −∂p̄

∂x̄
+ µ

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
− ρg − σB̄2ū (1)

ρ

[
ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

]
= −∂p̄

∂ȳ
+ µ

(
∂2ū

∂x̄2
+
∂2v̄

∂ȳ2

)
(2)
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The continuity equation:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (3)

The energy equation:

ρCp

[
ū
∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ

]
= k

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2

)
+
ρDMKT

Cs

(
∂2C̄

∂x̄2
+
∂2C̄

∂ȳ2

)
+Q (4)

The species continuity equation:

ū
∂C̄

∂x̄
+ v̄

∂C̄

∂ȳ
= DM

(
∂2C̄

∂x̄2
+
∂2C̄

∂ȳ2

)
+
DMKT

Tm

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2

)
(5)

In static conditions, Eq. (1) takes the following form.

0 = −∂p̄s
∂x̄

− ρsg (6)

Now Eqs. (1) through (6) yield the following.

ρ

[
ū
∂ū

∂x̄
+ v̄

∂v̄

∂ȳ

]
= − ∂

∂x̄
(p̄− p̄s) + g (ρs − ρ) + µ

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
− σB2ū (7a)

The equation of state is given by Boussinesq approximation:

ρ = ρs
[
1− β

(
T̄ − T̄s

)
− β̄

(
C̄ − C̄s

)]
(7b)

Eqs. (7a) and (7b) together give:

ρ

[
ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ

]
= − ∂

∂x̄
(p̄− p̄s) + ρg

[
β
(
T̄ − T̄s

)
+ β̄

(
C̄ − C̄s

)]
+ µ

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
− σB2ū (8)

The boundary conditions are:

ȳ = ε̄ cos kx̄ : ū = 0, v̄ = 0, T̄ = T̄ω, C̄ = C̄ω (9)

ȳ = d : ū = 0, v̄ = 0, T̄ = T̄1, C̄ = C̄1 (10)

We define the following nondimensional quantities:

x =
x̄

d
, y =

ȳ

d
, u =

ūd

υ
, v =

vd

υ
, p =

p̄d2

ρυ2
, ps =

p̄sd
2

ρυ2
, λ = kd, ε =

ε̄

d
, Pr =

µCp

k
,

Gr =
d3gβ

(
T̄ω − T̄s

)
υ2

, Gm =
d3gβ̄

(
C̄ω − C̄s

)
υ2

, n =
C̄1 − C̄s

C̄ω − C̄s
,

Sr =
DMKT

(
T̄ω − T̄s

)
υTm

(
C̄ω − C̄s

) , Du =
DMKT

(
C̄ω − C̄s

)
υCsCp

(
T̄ω − T̄s

) , Sc = υ

DM
,
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M =
σB2d2

ρυ
, T =

T̄ − T̄s
T̄ω − T̄s

, C =
C̄ − C̄s

C̄ω − C̄s
, α =

Qd2

k
(
T̄ω − T̄s

) ,m =
T̄1 − T̄s
T̄ω − T̄s

All physical variables and parameters are defined in the nomenclature section.

The governing equations in nondimensional form are follows.

u
∂u

∂x
+ v

∂u

∂y
= −∂ (p− ps)

∂x
+
∂2u

∂y2
+
∂2u

∂x2
+GrT +GmC −Mu (11)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+
∂2v

∂x2
+
∂2v

∂y2
(12)

∂2T

∂x2
+
∂2T

∂y2
+ PrDu

(
∂2C

∂x2
+
∂2C

∂y2

)
= Pr

(
u
∂T

∂x
+ v

∂T

∂y

)
− α (13)

1

Sc

(
∂2C

∂x2
+
∂2C

∂y2

)
+ Sr

(
∂2T

∂x2
+
∂2T

∂y2

)
= u

∂C

∂x
+ v

∂C

∂y
(14)

∂u

∂x
+
∂v

∂y
= 0 (15)

Their boundary conditions are:

u = 0, v = 0, T = 1, C = 1 at y = ε cosλx (16)

u = 0, v = 0, T = m,C = n at y = 1 (17)

3. Method of solutions

In order to solve Eqs. (11) through (15), we assume u, v, p, T, and C as follows:

u (x, y) = u0 (y) + εu1 (x, y) + .............. (18.1)

v (x, y) = εv1 (x, y) + ............. (18.2)

p (x, y) = p0 (x) + εp1 (x, y) + ................. (18.3)

T (x, y) = T0 (y) + εT1 (x, y) + ................ (18.4)

C (x, y) = C0 (y) + εC1 (x, y) + .............. (18.5)

Here the subscripts 0 and 1 denote respectively the corresponding zeroth- and first-order quantities.

By substituting the transformations from Eqs. (18.1) through (18.5) into Eqs. (11) through (15), and

by equating the coefficients of ε0 , ε and neglecting the higher powers of ε and assuming ∂
∂x (p0 − ps) = 0 (see

[18]), we derive the following set of ordinary differential equations:

d2u0
dy2

−Mu0 = −GrT0 −GmC0 (19)

d2T0
dy2

+ PrDu
d2C0

dy2
= −α (20)

d2C0

dy2
+ SrSc

d2T0
dy2

= 0 (21)

u0
∂u1
∂x

+ v1u
′
0 = −∂p1

∂x
+
∂2u1
∂y2

+
∂2u1
∂x2

+GrT1 +GmC1 −Mu1 (22)
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u0
∂v1
∂x

= −∂p1
∂y

+
∂2v1
∂x2

+
∂2v1
∂y2

(23)

∂u1
∂x

+
∂v1
∂y

= 0 (24)

∂2T1
∂x2

+
∂2T1
∂y2

+ PrDu

[
∂2C1

∂x2
+
∂2C1

∂y2

]
= Pr

[
u0
∂T1
∂x

+ v1T
′
0

]
(25)

1

Sc

[
∂2C1

∂x2
+
∂2C1

∂y2

]
+ Sr

[
∂2T1
∂x2

+
∂2T1
∂y2

]
= u0

∂C1

∂x
+ v1C

′
0 (26)

These are subject to the following boundary conditions:

u0 = 0, T0 = 1, C0 = 1 at y = 0

u0 = 0, T0 = m,C0 = n at y = 1 (27)

u1 = −Re
[
u′0 (o) e

iλx
]
, v1 = 0, T1 = −Re

[
T ′
0 (0) e

iλx
]
, C1 = −Re

[
C ′

0 (0) e
iλx

]
at y = 0

u1 = 0, v1 = 0, T1 = 0, C1 = 0aty = 1 (28)

The solutions of the Eqs. (20), (21), and (19) subject to the boundary conditions of Eq. (27) are:

T0 = 1 +

(
m− 1− λ1

2

)
y +

λ1
2
y2 (29)

C0 = −SrScT0 + 1 + SrSc+ y {(n− 1) + (m− 1)SrSc} (30)

u0 = A6e
√
My +A7e

−
√
My − A2

M
y − A3

M
y2 −A4 (31)

Here, λ1 = α
PrDuSrSc−1 , A1 = −Gr−Gm , A2 = −Gr

(
m− 1− λ1

2

)
+Gm (n− 1)+ GmSrScλ1

2 , A3 = −Grλ1

2 +

GmSrScλ1

2 , A4 = 1
M

(
A1 +

2A3

M

)
, A5 = 1

M

(
A1 +A2 +A3 +

2A3

M

)
,A6 = A5−A4e

−
√

M

e
√

M−e−
√

M
and A7 = A4e

√
M−A5

e
√

M−e−
√

M
.

Now to get the solutions of the first-order equations, we introduce the stream function ψ̄1 , defined by:

u1 = −∂ψ̄1

∂y
, v1 =

∂ψ̄1

∂x
(32)

Upon elimination of p, Eqs. (22), (23), (25), and (26) yield:

u0
[
ψ̄1,xxy + ψ̄1,xxx

]
− u′′0 ψ̄1,x = ψ̄1,yyyy + 2ψ̄1,xxyy + ψ̄1,xxxx −GrT1,y −GmC1,y −Mψ̄1,yy (33)

T1,xx + T1,yy + PrDu [C1,xx + C1,yy] = Pr
[
u0T1,x + ψ̄1,xT

′
0

]
(34)

1

Sc
[C1,xx + C1,yy] + Sr [T1,xx + T1,yy] = u0C1,x + ψ̄1,xC

′
0 (35)

Consider the transformations ψ̄1 = eiλxψ (y), T1 = eiλxθ (y) and C1 = eiλxϕ(y).

Eqs. (33), (34), and (35) reduce to:

ψiv −
[
u0

(
ψ′′ − λ2ψ

)]
+ iλψu′′0 − 2λ2ψ′′ −Mψ′′ + λ4ψ = Grθ′ +Gmϕ′ (36)
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θ′′ − θ
(
λ2 + Pru0iλ

)
+ PrDu

(
ϕ′′ − λ2ϕ

)
= PriλψT ′

0 (37)

1

Sc

[
−λ2ϕ+ ϕ′′

]
+ Sr

[
−λ2θ + θ′′

]
= u0iλϕ+ iλψϕ′o (38)

These are subject to the relevant boundary conditions:

ψ′(y) = u′0(0), ψ(y) = 0, θ(y) = T ′
0(0), ϕ(y) = −C ′

0(0) at y = 0 (39)

ψ′(y) = 0, ψ(y) = 0, θ(y) = 0, ϕ(y) = 0 at y = 1 (40)

We assume the series expansion for ψ, θ , and φ as follows:

ψ = ψ0(y) + λψ1(y) + λ2ψ2(y) + ................ (41)

θ = θ0(y) + λθ1(y) + λ2θ2(y) + ......................... (42)

ϕ = ϕ0(y) + λϕ1(y) + λ2ϕ2(y) + ................... (43)

Substituting Eqs. (41), (42), and (43) into Eqs. (36), (37), (38), (39), and (40), and by equating the coefficients

of λ0, λ , and λ2 and neglecting the terms of order greater than or equal to O (λ3), the following ordinary

differential equations are obtained.

ψiv
0 −Mψ′′

0 = Grθ′0 +Gmϕ′0 (44)

ψiv
1 − iu0ψ

′′
0 −Mψ′′

1 + iu′′0ψ0 = Grθ′1 +Gmϕ′1 (45)

ψiv
2 −Mψ′′

2 − iu0ψ
′′
1 + iu′′0ψ1 − 2ψ′′

0 = Grθ′2 +Gmϕ′2 (46)

θ′′0 + PrDuϕ′′0 = 0 (47)

θ′′1 − iu0Prθ0 + PrDuϕ′′1 = iPrψ0T
′
0 (48)

θ′′2 − θ0 − Priu0θ1 + PrDu (ϕ′′2 − ϕ0) = iPrψ1T
′
0 (49)

1

Sc
ϕ′′0 + Srθ′′0 = 0 (50)

1

Sc
ϕ′′1 + Srθ′′1 = iu0ϕ0 + iψ0C

′
0 (51)

1

Sc
[ϕ′′2 − ϕ0] + Sr [θ′′2 − θ0] = iu0ϕ1 + iψ1C

′
0 (52)

These are subject to the following boundary conditions:

ψ′
0 = u′0 (0) , ψ0 = 0, θ0 = −T ′

0 (0) , ϕ0 = −C ′
0 (0) at y = 0

ψ′
0 = 0, ψ0 = 0, θ0 = 0, ϕ0 = 0 at y = 1

ψ′
1 = 0, ψ1 = 0, θ1 = 0, ϕ1 = 0, at y = 0

ψ′
2 = 0, ψ2 = 0, θ2 = 0, ϕ2 = 0 at y = 1 (53)

Eqs. (44) through (52) are solved in sequence subject to the boundary conditions of Eq. (53), but they are not

presented here for the sake of brevity.
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4. Skin friction

The skin friction τ̄xy at any point in the fluid is given by τ̄xy = µ
(

∂ū
∂ȳ + ∂v̄

∂x̄

)
.

The nondimensional skin friction τxy at any point is given by:

τxy =
d2τ̄xy
ρυ2

= u′0 (y) + εeiλxu′1 (y) + iελeiλxv′1 (y)

At the wavy wally = ε cosλx , the coefficient of skin friction is given by:

τω = τxy]y=ε cosλx = τ00 + εRe
[
eiλxu′′0 (0) + eiλxu′1 (0)

]
where τ00 = u′0 (0)

At the flat wall y = 1, the coefficient of skin friction is given by:

τ1 = τxy]y=1 = τ01 + εRe
[
eiλxu′1 (1)

]
where τ01 = u′0 (1)

5. Heat transfer coefficient

The nondimensional heat transfer coefficient in terms of Nusselt number Nu is given by:

Nu =
∂T

∂y
= T ′

0 (y) + ε
∂T1
∂y

= T ′
0 (y) + εeiλxθ′ (y)

At the wavy wally = ε cosλx , it is as follows:

Nuw =
∂θ

∂y

]
y=ε cosλx

= T ′
0 (ε cosλx) + εeiλxθ′ (ε cosλx)

= T ′
0 (0) + ε cosλxT ′′

0 (0) + εeiλx [θ′ (0) + ε cosλxθ′′ (0)]

= T ′
0 (0) + ε cosλxT ′′

0 (0) + εeiλxθ′ (0) (neglectingε2)

= Nu00 + εRe
[
eiλx (T ′′

0 (0) + θ′ (0))
]
, whereNu00 = T ′

0 (0)

At the flat wall y = 1, the Nusselt number is represented by:

Nu1 =
∂θ

∂y

]
y=1

= T ′
0 (1) + εeiλxθ′ (1)

= Nu01 + εRe
[
eiλxθ′ (1)

]
, whereNu01 = T ′

0 (1)

6. Mass transfer coefficient

The nondimensional mass transfer coefficient in terms of Sherwood number Sh is given by:

Sh =
∂C

∂y
= C0 (y) + ε

∂C1

∂y
= C ′

0 (y) + εeiλxϕ (y)
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At the wavy wally = ε cosλx , the Sherwood number is as follows:

Shw =
∂C

∂y

]
y=ε cosλx

= C ′
0 (ε cosλx) + εeiλxϕ′ (ε cosλx)

= C ′
0 (0) + ε cosλxC ′′

0 (0) + εeiλx [ϕ′ (0)]
= Sh00 + εRe

[
eiλx (C ′′

0 (0)) + ϕ′ (0)
]

where:Sh00 = C ′
0 (0)

At the flat wall y = 1, the Sherwood number is defined by:

Sh1 =
∂C

∂y

]
y=1

= C ′
0 (1) + εeiλxϕ′ (1) = Sh01 + εRe

[
eiλxϕ′ (1)

]

where Sh01 = C ′
0 (1)

7. Results and discussion

In order to get physical insight into the problem, we have carried out numerical calculations for nondimensional

velocity field, temperature field, species concentration field, and skin frictions at the walls by assigning some

specific values to the parameters entering into the problem and the effects of these values on the above fields

are demonstrated graphically. In our investigation the values of the parameter λ (frequency parameter) and

ε (amplitude parameter) are kept fixed at 0.001 and 0.01, respectively, and the values of the other parameters

are chosen arbitrarily.
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Figure 1. Velocity versus y under M for Pr = 0.71, Du

= 0.2, Sc = 0.6, Sr = 1, α = 1, Gr = 2, Gm = 2, m =

5, n = 1, λ = 0.001, ε = 0.01.

Figure 2. Velocity versus y under Sc for Pr = 0.71, Du

= 0.2, Sr = 1, α = 1, M = 0.5, Gr = 2, Gm = 2, m =

5, n = 1, λ = 0.001, ε = 0.01.
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Figure 3. Velocity versus y under Sr for Pr = 0.71, Du

= 0.2, Sc = 0.6, α = 1, M = 0.5, Gr = 2, Gm = 2, m

= 5, n = 1, λ = 0.001, ε = 0.01.

Figure 4. Velocity versus y under Du for Pr = 0.71, Sc

= 0.6, Sr = 1, α = 1, M = 0.5, Gr = 2, Gm = 2, m =

5, n = 1, λ = 0.001, ε = 0.01.
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Figure 5. Velocity versus y under Gr for Pr = 0.71, Du

= 0.2, Sc = 0.6, Sr = 1, α = 1, M = 0.5, Gm = 2, m =

5, n = 1, λ = 0.001, ε = 0.01.

Figure 6. Velocity versus y under Gm for Pr = 0.71, Du

= 0.2, Sc = 0.6, Sr = 1, α = 1, M = 0.5, Gr = 2, m =

5, n =1, λ = 0.001, ε = 0.01.
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Figure 7. Velocity versus y under α for Pr = 0.71, Du

= 0.2, Sc = 0.6, Sr = 1, M = 0.5, Gr = 2, Gm = 2, m

= 5, n = 1, λ = 0.001, ε = 0.01.

Figure 8. Velocity versus y under Pr for Du = 0.2, Sc =

0.6, Sr = 1, α =1, M = 0.5, Gr = 2, Gm = 2, m = 5,

n = 1, λ = 0.001, ε = 0.01.

Figures 1–8 represent the variation of the velocity field u versus y under the effects of Hartmann number

M, Schmidt number Sc, Soret number Sr, Dufour number Du, thermal Grashof number Gr, solutal Grashof

number Gm, heat-generating source α , and Prandtl number Pr. From these figures we observe that the velocity

field increases as Sc, Sr, Du, Gr, Gm, α , and Pr increase and decreases as M increases. This indicates the fact

that the fluid motion is retarded due to application of the transverse magnetic field and mass diffusion, whereas

it is accelerated under the effects of thermal–diffusion, diffusion–thermo, buoyancy forces (thermal and solutal),

heat-generating source, and increasing Prandtl number. These figures further show that the velocity profiles

exhibit a parabolic nature within the channel and the maximum velocity is attained at the middle of the channel.
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Figure 9. Temperature versus y under Sr for Pr = 0 .71,

Du = 0.2, Sc = 0.6, α =1, M = 0.5, Gr = 2, Gm = 2,

m = 5, n = 1, λ = 0.001, ε = 0.01.

Figure 10. Temperature versus y under Du for Pr =

0.71, Sc = 0.6, Sr = 1, α = 1, M = 0.5, Gr = 2, Gm =

2, m = 5, n = 1, λ = 0.001, ε = 0.01.
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Figure 11. Temperature versus y under α for Pr = 0.71,

Du = 0.2, Sc = 0.6, Sr = 1, M = 0.5, Gr = 2, Gm = 2,

m = 5, n = 1, λ = 0.001, ε = 0.01.

Figure 12. Temperature versus y under Pr for Du = 0.2,

Sc = 0.6, Sr = 1, α = 1, M = 0.5, Gr = 2, Gm = 2, m

= 5, n = 1, λ = 0.001, ε = 0.01.

Figures 9–12 exhibit the behavior of the temperature field against y under the influence of parameters Sr,

Du, α , and Pr. It is inferred from these figures that an increase in the values of each of the above parameters

causes the fluid temperature to rise up slowly and steadily. This phenomenon is clearly supported from physical

reality as thermal–diffusion, diffusion–thermo, heat-generating source, and increasing Prandtl number always

have a tendency to raise the fluid temperature significantly.
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Figure 13. Concentration versus y under Sc for Pr =

0.71, Du = 0.2, Sr = 1, α = 1, M = 0.5, Gr = 2, Gm =

2, m = 5, n = 5, λ = 0.001, ε = 0.01.

Figure 14. Concentration versus y under Sr for Pr =

0.71, Du = 0.2, Sc = 0.6, α = 1, M = 0.5, Gr = 2, Gm

= 2, m = 5, n = 5, λ = 0.001, ε = 0.01.
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Figure 15. Concentration versus y under Du for Pr =

0.71, Sc = 0.6, Sr = 1, α = 1, M = 0.5, Gr = 2, Gm

=2, m = 5, n = 5, λ = 0.001, ε = 0.01.

Figure 16. Concentration versus y under α for Pr =

0.71, Du = 0.2, Sc = 0.6, Sr = 1, M = 0.5, Gr = 2, Gm

= 2, m = 5, n = 5, λ = 0.001, ε = 0.01.

The variation of species concentration C versus y under the influence of Schmidt number Sc, Soret

number Sr, Dufour number Du, and heat-generating source α is presented in Figures 13–16. These figures

indicate that the concentration level of the fluid falls due to increasing values of Schmidt number, Soret number,

Dufour number, and heat source parameter. In other words, the thickness of the concentration boundary layer

falls under the effects of thermal–diffusion (Soret effect), diffusion–thermo (Dufour effect), and heat-generating

source, whereas the mass diffusion results in an increase of the thickness of the concentration boundary layer.

These observations are consistent with the physics of the problem.
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Figure 17. Skin friction τ versus M under Du for Pr =

0.71, Sc = 0.6, Sr = 1, α = 1, Gr = 2, Gm = 2, m = 5,

n = 1, λ = 0.001, ε = 0.01,λx = π/2.

Figure 18. Skin friction τ versus M under m for Pr =

0.71, Du = 0.2, Sc = 0.6, Sr = 1, α = 1, Gr = 2, Gm =

2, n = 1, λ = 0.001, ε = 0.01,λx = π/2.
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Figure 19. Skin friction τ versus M under Sc for Pr =

0.71, Du = 0.2, Sr = 1, α = 1, Gr = 2, Gm = 2, m =

5, n = 1, λ = 0.001, ε = 0.01, λx = π/2.

Figure 20. Skin friction τ versus M under Sr for Pr =

0.71, Du = 0.2, Sc = 0.6, α = 1, Gr = 2, Gm = 2, m =

5, n = 1, λ = 0.001, ε = 0.01, λx = π/2.

The nature of skin friction τ at both the wavy wall and the flat wall is demonstrated in Figures 17–20.

It is clear from Figures 17, 18, and 20 that the magnitudes of the viscous drag at both the walls rise up under
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the influence of Dufour effect, increasing wall temperature ratio and Soret effect. A reverse trend of behavior

of τ in the case of mass diffusion is marked in figure 19.

8. Conclusions

1. The fluid motion is retarded under the application of the transverse magnetic field and accelerated due to

thermal–diffusion and diffusion–thermo effects.

2. An increase in Soret number and Dufour number leads the fluid temperature to increase.

3. The thickness of the concentration boundary layer decreases under Soret and Dufour effects.

4. The thermal–diffusion and diffusion–thermo effects lead the magnitude of the viscous drag at the wavy

wall and at the flat wall to increase.

5. Finally, it is concluded that the thermal–diffusion and diffusion–thermo effects have a significant role

in controlling the flow and transport characteristics.

Nomenclature

g Acceleration due to gravity
ε Amplitude parameter
x, y Cartesian coordinates
µ Coefficient of viscosity
β Coefficient of volume expansion for heat transfer
Cs Concentration susceptibility
DM Coefficient of mass diffusion
Q Constant heat addition/absorption
d Distance between 2 walls
ρs Density of the fluid in static condition
Du Dufour number
σ Electrical conductivity
p Fluid pressure
ρ Fluid density
λ Frequency parameter
T Fluid temperature
Ts Fluid temperature in static condition
Gr Grashof number for heat transfer
Gm Grashof number for mass transfer
α Heat source parameter

υ Kinematic viscosity
Tm Mean fluid temperature
M Magnetic parameter
ps Pressure of the fluid in static condition
Pr Prandtl number
B Strength of the applied magnetic field
C Species concentration
Cp Specific heat at constant pressure
Cω Species concentration at the wavy wall
C1 Species concentration at the flat wall
Sr Soret number
Sc Schmidt number
k Thermal conductivity
Tω Temperature of the wavy wall
T 1 Temperature of the flat wall
KT Thermal diffusion ratio
u, v Velocity components

β Volumetric coefficient of expansion with species
concentration

m Wall temperature ratio
n Wall concentration ratio
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