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Abstract:We present a model of the multijunction ac Josephson effect in a superconductor. Josephson predicted that

at a finite applied voltage (Vo) an alternating supercurrent of frequency ωJ = 2eVo/ℏ flows between 2 superconductors

separated by an insulating layer, called the ac Josephson effect. Adding 2 or more Josephson junctions (so-called

multijunction) with an applied voltage, we have shown that the resultant current (which is equivalent to the vector

sum of the currents in each junction) has the same frequency as the single Josephson junction. The amplitude of the

resultant current for the multijunction is increased with the increasing number of junctions. For maximum current, the

phase and frequency follow the relation ωJ t+ δ0N = (4n+ 1)π/2. Furthermore, we have shown that in the absence of

applied voltage this multijunction theory is similar to the dc SQUID theory for 2 junctions and satisfied all conditions

for identical and nonidentical Josephson junctions.

Key words: Josephson effect (ac and dc) in superconductor, superconducting quantum interference device (SQUID),

identical and nonidentical Josephson junctions

1. Introduction

The Josephson effect is an example of a macroscopic quantum phenomenon in superconductivity. In 1962, Brian

Josephson [1] predicted that the Cooper pair could tunnel between superconductors separated by an insulating

layer, with the same probability as that of ordinary electrons. There is a possibility of both of them (super

electrons and normal electrons) tunneling across an insulating barrier. When a thin layer of insulating material

separates 2 superconductors (1 and 2, shown in Figure 1), electron pairs are able to tunnel through the insulator

from one superconductor to the other. This phenomenon is called the Josephson (tunnel) effect and is analogous

to quantum mechanical tunneling.

Cooper pair  
Cooper pair  

SC - 1  SC - 2  

Figure 1. A schematic view of a dc Josephson junction.
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There are 4 possible modes of Cooper pair tunneling [1,2] through a Josephson junction that will produce:

(i) the dc Josephson effect , in which a dc current can flow across the junction in the absence of electric field,

i.e. without the need for an applied voltage, (ii) the ac Josephson effect, where an ac current can flow through

the junction with an applied voltage across the junction, (iii) the inverse ac Josephson effect [3], whereby dc

voltages are induced across an unbiased junction by an impressed rf current, and (iv) macroscopic quantum

interference effects [4].

For a parallel connection, it is very easy to add or fabricate a number of junctions in the presence of

applied voltage and the resultant current will be the vector sum of the current in each junction. We use simple

mathematics for the junctions connected in parallel and constitute a model of the multijunction ac Josephson

effect. The result shows that the amplitude of the resultant current is increased with the increasing number of

junctions. For maximum current, the phase and frequency follow the universal relation ωJ t+δ0N = (4n+ 1)π/2.

In section 2, we develop the theory of the multijunction ac Josephson effect. The resultant current

equation is discussed for both identical and nonidentical junctions. In section 3, we discuss the maximum

current first for 2 junctions and then generalize the result for N number of identical Josephson junctions. A

numerical result is given showing that the amplitude of the resultant current increases with the increasing

number of junctions. In section 4, we discuss the overall result compared with the dc SQUID equation. The

result is discussed in the absence of applied voltage and for 2 nonidentical Josephson junctions. Finally, the

important conclusion is given in section 5.

2. Theoretical model for the multijunction ac Josephson effect

Let us consider 2 Josephson junctions (I and II) connected in parallel at point ‘a’ and ‘b’. There is a constant

dc voltage (Vo) across both junctions. The circuit connection is shown in Figure 2.
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Figure 2. Schematic diagram of 2 Josephson junctions connected in parallel with a constant dc voltage source (Vo) .

Since the connection is parallel the voltage is the same across both junctions, but different currents pass

through junctions I and II. Now the current equations [1,2] for 2 junctions in the presence of dc voltage (Vo)

are written as

I1 = Io1 sin(ωJ t+ δ1). (1)

I2 = Io2 sin(ωJ t+ δ2). (2)

Here Io1 and Io2 are the maximum current flowing through junctions I and II; δ1 = θI1 ∼ θI2 and δ2 = θII1 ∼
θII2 are the phase differences across junctions I and II, respectively. For each junction, ωJ = 2eVo/ℏ represents

the frequency of oscillation of the ac current.
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Now the resultant (total) current flowing through the circuit is the vector sum of the current in each

junction:

Itotal = I1 + I2
= I01 sin (ωJ t+ δ1) + I02 sin (ωJ t+ δ2)
= I00 sin (ωJ t+ ϕ) ,

(3)

where

ϕ = tan−1 Io1 sin δ1 + Io2 sin δ2
Io1 cos δ1 + Io2 cos δ2

, (4)

I00 =
√
I2o1 + I2o2 + 2Io1Io2 cos (δ1 − δ2) . (5)

Eq. (3) is similar to the ac Josephson current, i.e. current in Eqs. (1) and (2), but maximum current and

phase differences are different. For identical Josephson junctions, we may assume that Io1 = Io2and, using

some algebra, we have

ϕ =
δ1 + δ2

2
. (6)

This equation represents the total phase difference across both junctions in the presence of dc voltage (Vo).

Using a similar argument, we also have

I00 = 2I0 cos

(
δ1 − δ2

2

)
. (7)

Using Eqs. (6) and (7) in Eq. (3), the total result current for 2 Josephson junctions in the presence of dc voltage

is, therefore, written as

Itotal = 2Io cos

(
δ1 − δ2

2

)
sin

[
ωJ t+

(
δ1 + δ2

2

)]
. (8)

This is the ac Josephson effect for 2 identical Josephson junctions.

If we assume that the phase differences across the junctions are the same (i.e.δ1 = δ2) and denoting

Itotal = I2t (i.e. the total current for 2 Josephson junctions), Eq. (8) implies

I2t = 2Io sin[ωjt+ δ2]. (9)

This is the ac Josephson effect for 2 identical Josephson junctions when the phase differences across the junctions

are the same.

For 2 nonidentical Josephson junctions [i.e. forIo1 ̸= Io2 ], the total resultant current equation can be

written as

Itotal =
√

(I2o1 + I2o2 + 2Io1Io2 cos(δ1 − δ2))× sin

[
2eVo
ℏ

t+ tan−1

(
Io1 sin δ1 + Io2 sin δ2
Io1 cos δ1 + Io2 cos δ2

)]
. (10)

This is the ac Josephson effect for 2 nonidentical Josephson junctions.

Now we can proceed for 3 junctions, as shown in Figure 3. For this case the current equation for the

third junction is written as
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Figure 3. Schematic diagram of 3 Josephson junctions connected in parallel with a constant dc voltage source (Vo) .

I3 = Io3 sin(ωJ t+ δ3). (11)

The total resultant current flowing through the circuit is the vector sum of the current in each junction, written
as

Itotal = I1 + I2 + I3 = I000 sin (ωJ t+ ψ) , (12)

where

I000 =
√
I2o1 + I2o2 + I2o3 + 2Io1Io2 cos (δ1 − δ2) + 2I02I03 cos (δ2 − δ3) + 2I03I01 cos (δ3 − δ1) (13)

and

ψ = tan−1

(
I01 sin δ1 + I02 sin δ2 + I03 sin δ3
I01 cos δ1 + I02 cos δ2 + I03 cos δ3

)
. (14)

Let us assume that for 3 identical Josephson junctions I01 = I02 = I03 = I0 ; then Eqs. (13) and (14) imply

Iooo =
√
[3I2o + 2I2o {cos(δ1 − δ2) + cos(δ2 − δ3) + cos(δ3 − δ1)}] (15)

ψ = tan−1

(
sin δ1 + sin δ2 + sin δ3
cos δ1 + cos δ2 + cos δ3

)
. (16)

Using Eqs. (15) and (16) in Eq. (12), the total resultant current for 3 Josephson junctions in the presence of

dc voltage (Vo) is

Itotal =
√
[3I20 + 2I20 {cos (δ1 − δ2) + cos (δ2 − δ3) + cos (δ3 − δ1)}]

× sin
[
ωJ t+ tan−1

(
sin δ1+sin δ2+sin δ3
cos δ1+cos δ2+cos δ3

)]
.

(17)

This is the ac Josephson effect for 3 identical Josephson junctions, when the phase differences across the junctions

are not the same.

When phase differences across the junctions are the same (i.e. δ1 = δ2 = δ3), then Eq. (17) becomes

I3t = 3Io sin[ωjt+ δ3]. (18)

This is the ac Josephson effect for 3 identical Josephson junctions, when the phase differences across the junctions

are the same.

Extending the result to 4 Josephson junctions, then the total current is

I4t = 4Io sin[ωjt+ δ4], (19)
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when junctions are identical (i.e. I1 = I2 = I3 = I4 = Io) and phase differences across the junctions are the

same (δ1 = δ2 = δ3 = δ4).

In a similar way, for N− junctions, we have

INt = NIo sin[ωjt+ δN ], (20)

when the phase differences across the junctions are the same (i.e. δ1 = δ2 = δ3 = δ4..... = δN ). This completes

the current equation for the multijunction ac Josephson effect in a superconductor.

3. Numerical analysis

For numerical analysis, we considered first 2 Josephson junctions connected in parallel. In the presence of

applied voltage and for the identical Josephson junction, we may assume that the initial phase differences of

both junctions are the same, i.e. for δ1 = δ2 ≡ δ02 and for maximum current we can set sin(ωJ t + δ02) = 1.

The resultant current is maximum and Eq. (8) implies

Imax
2t = 2Io; (21)

ωJ t+ δ02 = (4n+ 1)
π

2
, (n = 0, 1, 2, 3....) . (22)

Eq. (22) represents the phase and frequency relation. A similar relation holds for N number of junctions.

Analogously, the total maximum current [using Eq. (17)] for 3 identical junctions is found to be

Imax
3t = 3Io. (23)

Therefore, the total maximum current for N identical junctions is written as

Imax
Nt = NIo, for δ1 = δ2 = δ3 = δ4...δN . (24)

We see from the above equations [i.e. Eqs. (21), (23), and (24)] that the amplitude of the resultant current

increases with the increase in the number of junctions.

For numerical analysis, the resultant current equation for N− junctions is written as

INt = NIo sin[
2eVo

ℏ t+ δN ],

= NIo sin[
4πeVo

h t+ δN ].
. (25)

Here, h = 2πℏ and 4πeV0/h is a constant. Using e = 1.6 × 10−19C , and let [5,6] Vo = 10−15V , h =

6.63 × 10−34js , then 4eV0/h = 0.96 ≈ 1 and we have fixed δN = π/2, for junction N=1, 2, 3, 4 etc. The

numerical analysis is shown in Figure 4.
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Figure 4. Graphical representation of the current in multijunction ac Josephson effect, showing the increase in the

amplitude of the resultant current with the increasing number of junctions.

4. Discussion

The result we have found here is discussed in detail. First we have shown that in the absence of applied voltage

the junction equation [i.e. Eq. (3)] is equivalent to the dc SQUID equation. Then the result is discussed in the

absence of applied voltage and for nonidentical junctions.

From Eq. (8), we may conclude that in the presence or absence of voltage magnetic flux must flow though

the loop containing 2 Josephson junctions or passes through the loop due to the current Itotal . Let us consider

the relation between phase differences and total magnetic flux [4,7] through the loop, which is written as

δ1 − δ2 =

(
2e

ℏc

)
φ. (26)

Now in the absence of voltage (i.e. for Vo= 0), Eq. (8) implies

Itotal = 2Io cos

(
δ1 − δ2

2

)
sin

[(
δ1 + δ2

2

)]
. (27)

Eq. (27) is nothing but the dc SQUID equation [4–7] provided that(
δ1 − δ2

2

)
=

( e

ℏc

)
φ and

(
δ1 + δ2

2

)
= δo. (28)

The parameter δo introduced earlier in the SQUID equation,

Itotal = 2Io cos

(
πφ

φo

)
sin (δo) , (29)

is an adjustable parameter and it represents the phase difference δ1 = δ2 across both junctions when the

magnetic flux φ = 0.

Compared to the dc SQUID equation, we have

δ1 − δ2
2

=

(
πφ

φo

)
, (30)

where φ is the total flux through the device loop containing 2 Josephson junctions.
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Again, Eq. (27) is satisfied for φ, if we substitute

δ1 = δ0 +

(
πφ

φo

)
, (31)

and

δ2 = δ0 −
(
πφ

φo

)
. (32)

What happens in the absence of applied voltage and for nonidentical junctions? For 2 nonidentical Josephson

junctions [i.e. for Io1 ̸= Io2 ] and in absence of applied voltage V0 , Eq. (10) can be written as

Itotal =
√
I201 + I202 + 2I01I02 cos (δ1 − δ2)× sin

[
tan−1 I01 sin δ1 + I02 sin δ2

I01 cos δ1 + I02 cos δ2

]
. (33)

Consider the relation between the phase differences and total magnetic flux passing through the entire device

containing 2 Josephson junctions; we have

δ1 − δ2 =
2e

ℏc
φ =

2πφ

φo
. (34)

Using Eq. (34) in Eq. (33), we have

Itotal =

√
I201 + I202 + 2I01I02 cos

(
2πφ
φ0

)
× sin

[
tan−1

(
I01 sin δ1+I02 sin

(
δ1− 2πφ

φ0

)
I01 cos δ1+I02 cos

(
δ1− 2πφ

φ0

))] ,
or

Itotal =

√
I201 + I202 + 2I01I02 cos

(
2πφ
φ0

)
× sin

[
tan−1

(
I01 sin δ1+I02 sin δ1 cos(2πφ/φ0)−I02 cos δ1 sin(2πφ/φ0)
I01 cos δ1+I02 cos δ1 cos(2πφ/φ0)+I02 sin δ1 sin(2πφ/φ0)

)]
.

(35)

Eq. (35) is a special case of Eq. (27) showing that the maximum current has 2 parts:

Case I: φ = nφo ; n = 0, 1, 2, 3 . . . . . . . . . , then Eq. (35) becomes

Imax
t =

√
(I2o1 + I2o2 + 2Io1Io2)× sin

[
tan−1

(
I01 sin δ1+I02 sin δ1
I01 cos δ1+I02 cos δ1

)]
,

= (I01 + I02)× sin
[
tan−1

(
(I01+I02) sin δ1
(I01+I02) cos δ1

)]
,

= (I01 + I02) sin (δ1) .

(36)

For maximum value of the quantity sin(δ1)=1, the resultant maximum current through the loop is

Imax
t = (Io1 + Io2) . (37)

Case II: φ =
(
n+ 1

2

)
φo;n =0, 1, 2, 3. . . . . . . . . , then Eq. (35) becomes

Imin
t =

√
(I2o1 + I2o2 − 2Io1Io2)× sin

[
tan−1

(
I01 sin δ1−I02 sin δ1
I01 cos δ1−I02 cos δ1

)]
,

= (I02 − I01) sin
[
tan−1

(
(I01−I02) sin δ1
(I01−I02) cos δ1

)]
,

= (I02 − I01) sin (δ1) .

(38)
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For minimum value of the quantity sin(δ1)= –1, the resultant minimum current through the loop is

Imin
t = (Io1 − Io2) . (39)

The above maximum and minimum values of the current found in Eqs. (37) and (39) in the absence of applied

voltage are similar to those of the dc SQUID current equations [7] for nonidentical Josephson junctions.

5. Conclusion

We have developed a model of the multijunction ac Josephson effect. From this we have concluded the following:

(i) When 2 Josephson junctions are connected in parallel, the magnetic flux must flow through the entire device

or loop in the absence or in the presence of dc voltage (Vo), i.e. magnetic flux that passes through the loop

containing 2 Josephson junctions does not depend on the applied voltage. (ii) The magnetic flux that passes

through the loop containing 2 Josephson junctions depends only on the phase difference (δ1 ∼ δ2) across both

junctions. (iii) Amplitude of the resultant current increases with the increasing number of junction, which is

the main and attractive information resulting from this work.

Since our derived relations, i.e. the current Eqs. (27) and (35) [corresponding to Eqs. (8) and (10)],

verify all conditions of a dc SQUID for identical and nonidentical Josephson junctions, our multijunction theory

is correct.

The proposed work may be applicable in power amplifiers [8], as well as power converters in supercon-

ducting magnetic energy storage (SMES) for electric utilities. For example, operation of electromagnetic rail

launchers (EMRLs) [9] requires very high current (∼ 103A− 106A) and needs current multiplication. The idea

of directly powering an EMRL with a SMES is under current investigation and appears to be promising. From

the above analysis and discussion we can predict that the present theory may play an important role in the

development of device technology in which a multijunction dc SQUID is needed.
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