

Research Article

Perturbative approach to the spin-flavor precession of Majorana-type solar neutrinos

Deniz YILMAZ^{*}

Department of Physics Engineering, Faculty of Engineering, Ankara University, Tandoğan, Ankara, Turkey

Received: 23.01.2014 • Accepted: 07.03.2014 •)	Published Online: 11.06.2014	٠	Printed: 10.07.2014
--	---	------------------------------	---	----------------------------

Abstract: Spin-flavor precession (SFP) of Majorana-type solar neutrinos is investigated in the case of 2 generations. The evolution equation in the SFP framework is solved by using the perturbative method, in which μB is accepted to be small. The approximate analytical formula including SFP effect is provided.

Key words: Perturbative method, spin-flavor precession, solar neutrinos, Majorana

1. Introduction

After neutrino oscillation was confirmed by serious solar, atmospheric, and reactor neutrino experiments [1–10] in the last decades, neutrino oscillation became one of the implications of the physics beyond the Standard Model (SM). Since neutrinos have a mass in a minimal extension of the SM, they also have magnetic moment:

$$\mu_{\upsilon} = \frac{3eG_f m_{\upsilon}}{8\pi^2 \sqrt{2}} = \frac{3eG_f m_e m_{\upsilon}}{4\pi^2 \sqrt{2}} \mu_B,\tag{1}$$

where G_f is the Fermi constant; m_e and m_{ν} are the masses of electrons and neutrinos, respectively; e is the proton charge; and μ_B is the Bohr magneton. The limits on the neutrino magnetic moment have been obtained by astrophysical arguments [11], solar neutrino experiments combined with KamLAND data [12], and reactor neutrino experiments [13,14]. The new limit recently obtained by the GEMMA experiment on the neutrino magnetic moment is $\mu_{\nu} < 2.9 \times 10^{-11} \mu_B$ at 90% CL [15]. Detailed discussion on neutrino magnetic moment was given by Balantekin [16].

Neutrinos can be affected by the large magnetic fields throughout the sun due to their magnetic moments. Their spin can flip and a left-handed neutrino becomes a right-handed neutrino when they are passing through the magnetic region of the sun [17–20]. Even though information about the solar magnetic field is not well known, some bounds are given in the literature: $\sim 10^7 G$ at the core and a maximum magnitude of $\sim 10^5 G$ at the bottom of the convective zone [21,22]. The combined effect of the matter and the magnetic field, called spin-flavor precession (SFP), can change a left-handed electron neutrino into the right-handed type of neutrino. In the Majorana case, a right-handed neutrino is called an antineutrino. This can also be responsible for the solar electron neutrino deficit. The SFP effect has been investigated by several studies in different aspects [23–30].

^{*}Correspondence: dyilmaz@eng.ankara.edu.tr

YILMAZ/Turk J Phys

In this paper, neutrinos are assumed to be of the Majorana type. The SFP effect in the case of 2 neutrino generations is studied. The approximate analytical formula is provided by using the perturbative method, in which μB is taken to be small.

2. Formalism and analysis

The evolution equation for Majorana neutrinos passing through the matter and the magnetic field in the case of 2 generations is given by:

$$i\frac{d}{dt} \begin{pmatrix} \psi_e \\ \frac{\psi_\mu}{\psi_e} \\ \frac{\psi_e}{\psi_\mu} \end{pmatrix} = \mathscr{H} \begin{pmatrix} \psi_e \\ \frac{\psi_\mu}{\psi_e} \\ \frac{\psi_e}{\psi_\mu} \end{pmatrix}, \qquad (2)$$

where \mathscr{H} is described as follows [23]:

$$\mathscr{H} = \begin{pmatrix} H & B_{mag} \\ -B_{mag} & \overline{H} \end{pmatrix}.$$
 (3)

The 2×2 submatrices, H and \overline{H} , are

$$H = \begin{pmatrix} \frac{1}{2} \left(V_c - c 2_{12} \Delta_{21} \right) & \frac{s 2_{12} \Delta_{21}}{2} \\ \frac{s 2_{12} \Delta_{21}}{2} & \frac{1}{2} \left(-V_c + c 2_{12} \Delta_{21} \right) \end{pmatrix}, \tag{4}$$

$$\overline{H} = \begin{pmatrix} \frac{1}{2} \left(-3V_c - 4V_n - c2_{12}\Delta_{21} \right) & \frac{s2_{12}\Delta_{21}}{2} \\ \frac{s2_{12}\Delta_{21}}{2} & \frac{1}{2} \left(-V_c - 4V_n + c2_{12}\Delta_{21} \right) \end{pmatrix},$$
(5)

where $s2_{12}$, $c2_{12}$, and Δ_{12} are defined as

$$s_{12} = sin(2\theta_{12}), c_{12} = cos(2\theta_{12}), \Delta_{12} = \frac{\delta m_{12}^2}{2E}.$$
(6)

The matter potentials used in these equations are

$$V_c = \sqrt{2}G_F N_e \tag{7}$$

and

$$V_n = -\frac{G_F}{\sqrt{2}}N_n,\tag{8}$$

where N_e and N_n are electron and neutron density, respectively, and G_F is the Fermi constant. The magnetic part of Eq. (3) is

$$B_{mag} = \begin{pmatrix} 0 & \mu B \\ -\mu B & 0 \end{pmatrix},\tag{9}$$

where μ and B are the transition magnetic moment and the magnetic field, respectively. Unlike the Dirac neutrinos that have diagonal and off-diagonal magnetic moments, Majorana neutrinos have only off-diagonal magnetic moments.

188

YILMAZ/Turk J Phys

By taking into account the definitions given above, we can split the $\mathscr H$ into 2 parts:

$$\mathscr{H} = \mathscr{H}_M + \mathscr{H}_B. \tag{10}$$

The matter part, \mathscr{H}_M , and the magnetic part, \mathscr{H}_B , are given by

$$\mathscr{H}_M = \left(\begin{array}{cc} H & 0\\ 0 & \overline{H} \end{array}\right),\tag{11}$$

$$\mathscr{H}_B = \begin{pmatrix} 0 & B_{mag} \\ -B_{mag} & 0 \end{pmatrix}.$$
 (12)

The evolution equation for the neutrinos, which is associated with the upper diagonal part of \mathscr{H}_M , is

$$i\frac{d}{dt}\left(\begin{array}{c}\psi_e\\\psi_\mu\end{array}\right) = H\left(\begin{array}{c}\psi_e\\\psi_\mu\end{array}\right),\tag{13}$$

which is the standard MSW equation for 2 neutrino cases. Thus, the solution for H can be chosen as

$$U_H = \begin{pmatrix} \psi_1(t) & -\psi_2^*(t) \\ \psi_2(t) & \psi_1^*(t) \end{pmatrix}, \tag{14}$$

where $\psi_1(t)$ and $\psi_2(t)$ are solutions of Eq. (13) with the initial conditions $\psi_1(t=0) = 1$ and $\psi_2(t=0) = 0$ [31].

Now we can similarly solve the antineutrino part. The evolution equation for the antineutrinos, which is associated with the lower diagonal part of \mathscr{H}_M , is

$$i\frac{d}{dt}\left(\begin{array}{c}\overline{\psi}_{e}\\\overline{\psi}_{\mu}\end{array}\right) = \overline{H}\left(\begin{array}{c}\overline{\psi}_{e}\\\overline{\psi}_{\mu}\end{array}\right).$$
(15)

This equation can be separated into 2 parts:

$$i\frac{d}{dt}\left(\begin{array}{c}\overline{\psi}_{e}\\\overline{\psi}_{\mu}\end{array}\right) = \left[\overline{H}^{\alpha} + \overline{H}^{\beta}\right]\left(\begin{array}{c}\overline{\psi}_{e}\\\overline{\psi}_{\mu}\end{array}\right),\tag{16}$$

where

$$\overline{H}^{\beta} = \begin{pmatrix} -V_c - \frac{\Delta_{21}}{2}c2_{12} & \frac{s2_{12}\Delta_{21}}{2} \\ \frac{s2_{12}\Delta_{21}}{2} & -V_c - \frac{\Delta_{21}}{2}c2_{12} \end{pmatrix}.$$

 \overline{H}^{α} is the phase part, which can be found by subtracting \overline{H}^{β} from \overline{H} . The solution including the phases can then be written for \overline{H} :

$$\overline{U}_{\overline{H}} = \begin{pmatrix} \overline{\psi_1^{\alpha}}(t) & -\overline{\psi_2^{\alpha}}^*(t) \\ \overline{\psi_2^{\alpha}}(t) & \overline{\psi_1^{\alpha}}^*(t) \end{pmatrix},$$
(17)

where

$$\alpha = -\frac{V_c}{2} - 2V_n,$$

$$\overline{\psi^{\alpha}} = e^{i\int \alpha \, dt} \overline{\psi}.$$
 (18)

189

Thus, the solution matrix for the \mathscr{H}_M is given by

$$U_M = \begin{pmatrix} U_H & 0\\ 0 & \overline{U}_{\overline{H}} \end{pmatrix}.$$
 (19)

The evolution operator of ${\mathscr H}$ satisfies

$$i\frac{\partial U}{\partial t} = \mathscr{H}U,\tag{20}$$

where $U = U_M U_B$ and $\mathcal{H} = \mathcal{H}_M + \mathcal{H}_B$. Now the complete solution of all of \mathcal{H} can be found by looking at \mathcal{H}_B :

$$i\frac{\partial U_B}{\partial t} = (U_M^{\dagger} \mathscr{H}_B U_M) U_B = h_b(t) U_B.$$
⁽²¹⁾

Because μB is small, we will approximate the solution to this equation to the second order in μB :

$$U_B = \left[1 - i \int_0^t h_b(t') dt' - \int_0^t dt' \int_0^{t'} (h_b(t') h_b(t'')) dt'' - \mathcal{O}\left(\int_0^t dt' \int_0^{t'} dt'' \int_0^{t''} dt''' \dots\right)\right].$$
 (22)

Thus, the total evolution is characterized by

$$U = U_M U_B = \begin{pmatrix} A & C \\ D & B \end{pmatrix},$$
(23)

where A, B, C, and D are 2×2 matrices given by

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
(24)

and

$$C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix},$$
 (25)

and so on. The state of the system evolves with the unitary operator of U from the initial state

$$\Psi(t=T) = U\Psi(t=0), \tag{26}$$

where

$$\Psi(t=T) = \begin{pmatrix} \psi_e \\ \frac{\psi_\mu}{\overline{\psi}_e} \\ \frac{\overline{\psi}_e}{\overline{\psi}_\mu} \end{pmatrix}, \quad \Psi(t=0) = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$
(27)

Therefore, the electron neutrino amplitude, $\psi_e\,,$ is found as

$$\psi_e = A_{11}.\tag{28}$$

The highly oscillating integrations that came out in A_{11} are ignored. The other integrals, such as

$$I = \int_0^\tau dt' e^{iQ} g(t) \qquad Q = \int_0^{t'} dt'' A(t''), \tag{29}$$

190

YILMAZ/Turk J Phys

can be calculated by using the stationary phase approximation method given by Balantekin et al. [32]. The stationary point, t_R , is where

$$A(t_R) = 0. ag{30}$$

Since t_R appears as the SFP resonance point, which takes place before the MSW resonance point, ψ_2 and $\overline{\psi}_2$ are rather small at t_R . Therefore, we can ignore them at t_R [28]. Thus, A_{11} is found as

$$A_{11} = \psi_1(T) \left(1 - \frac{1}{2} \frac{2\pi(\mu B)^2}{|d(\chi - 2\kappa)/dt|_{(\chi - 2\kappa) = 0}} |\psi_1(t_R)|^2 \right),$$
(31)

where

$$\kappa = \frac{\Delta_{21}}{2} c 2_{12}, \quad \chi = \frac{G_f}{\sqrt{2}} \left(2N_e - 2N_n \right), \tag{32}$$

and ψ_e can be obtained as

$$\psi_e = \psi_1(T) \left(1 - \frac{1}{2} \frac{2\pi(\mu B)^2}{|d(\chi - 2\kappa)/dt|_{(\chi - 2\kappa) = 0}} |\psi_1(t_R)|^2 \right).$$
(33)

One can finally get the survival probability in the SFP framework by ignoring the terms that have higher order than $(\mu B)^2$.

$$P_{2\times2}(\nu_e \to \nu_e, \mu B \neq 0) = P_{2\times2}(\nu_e \to \nu_e, \mu B = 0) \left(1 - \frac{2\pi(\mu B)^2}{|d(\chi - 2\kappa)/dt|_{(\chi - 2\kappa) = 0}} |\psi_1(t_R)|^2\right)$$
(34)

3. Conclusion

In summary, neutrinos are exposed to SFP resonances due to their magnetic moments and MSW resonance when they are passing through the sun. In this paper, the spin-flavor precession of Majorana-type solar neutrinos was investigated by using the perturbative method, in which μB was accepted to be small (in order for SFP to be responsible for the solar neutrino deficit, μB must be at least $\sim 10^{-7}\mu_B G$). Two neutrino cases were considered. An analytical formula involving the SFP effect was obtained. Since μB was accepted to be small, the terms that have higher order than $(\mu B)^2$ were ignored. The final result, Eq. (34), is consistent with the results of Balantekin and Volpe [28]. When $|\psi_1(t_R)|^2$ is taken to be 1, it corresponds to the first 2 terms in the expansion of the exponential factor in Eq. (A31) in the work of Balantekin and Volpe [28]. In the 3 neutrino cases, the situation gets more complex and hard to solve analytically. To solve such complex situations, we may need the perturbative method. One can generalize this study to the 3 neutrino cases.

Acknowledgment

Postdoctoral research support from the Council of Higher Education of Turkey is gratefully acknowledged.

References

- Eguchi, K.; Enomoto, S.; Furuno, K.; Goldman, J.; Hanada, H.; Ikeda, H.; Ikeda, K.; Inoue, K.; Ishihara, K.; Itoh, W. et al. *Phys. Rev. Lett.* **2003**, *90*, 021802.
- [2] Araki, T.; Eguchi, K.; Enomoto, S.; Furuno, K.; Ichimura, K.; Ikeda, H.; Inoue, K.; Ishihara, K.; Iwamoto, T.; Kawashima, T. et al. *Phys. Rev. Lett.* **2005**, *94*, 081801.

- [3] Ahmad, Q. R.; Allen, R. C.; Andersen, T. C.; Anglin, J. D.; Buhler, G.; Barton, J. C.; Beier, E. W.; Bercovitch, M.; Bigu, J.; Biller, S. et al. *Phys. Rev. Lett.* **2001**, *87*, 071301.
- [4] Ahmad, Q. R.; Allen, R. C.; Andersen, T. C.; Anglin, J. D.; Buhler, G.; Barton, J. C.; Beier, E. W.; Bercovitch, M.; Bigu, J.; Biller, S. et al. *Phys. Rev. Lett.* **2002**, *89*, 011301.
- [5] Fukuda, S.; Fukuda, Y.; Ishitsuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Kaneyuki, K.; Kobayashi, K.; Koshio, Y.; Miura, M. et al. *Phys. Rev. Lett.* **2001**, *86*, 5651–5655.
- [6] Cleveland, B. T.; Daily, T.; Davis, R. Jr.; Distel, J. R.; Lande, K.; Lee, C. K.; Wildenhain, P. S.; Ullman, J. Astrophys. J. 1998, 496, 505–526.
- [7] Abdurashitov, J. N.; Gavrin, V. N.; Girin, S. V.; Gorbachev, V. V.; Gurkina, P. P.; Ibragimova, T. V.; Kalikhov, A. V.; Khairnasov, N. G.; Knodel, T. V.; Mirnov, I. N. J. Exp. Theor. Phys. 2002, 95, 181–193.
- [8] Hampel, W.; Handt, J.; Heusser, G.; Kiko, J.; Kirsten, T.; Laubenstein, M.; Pernicka, E.; Rau, W.; Wojcik, M.; Zakharov, Y. et al. *Phys. Lett. B* **1999**, 447, 127–133.
- [9] Altmann, M.; Balata, M.; Belli, P.; Bellotti, E.; Bernabei, R.; Burkert, E.; Cattadori, C.; Cerichelli, G.; Chiarini, M.; Cribier, M. et al. *Phys. Lett. B* 2000, 490, 16–26.
- [10] Altmann, M.; Balata, M.; Belli, P.; Bellotti, E.; Bernabei, R.; Burkert, E.; Cattadori, C.; Cerulli, R.; Chiarini, M.; Cribier, M. et al. *Phys. Lett. B* 2005, 616, 174–190.
- [11] G. G. Raffelt, Phys. Rept. 1999, 320, 319–327.
- [12] Liu, D. W.; Ashie, Y.; Fukuda, S.; Fukuda, Y.; Ishihara, K.; Itow, Y.; Koshio, Y.; Minamino, A.; Miura, M.; Moriyama, S. et al. *Phys. Rev. Lett.* **2004**, *93*, 021802.
- [13] Wong, H. T.; Li, H. B.; Lin, S. T.; Lee, F. S.; Singh, V.; Wu, S. C.; Chang, C. Y.; Chang, H. M.; Chen, C. P.; Chou, M. H. et al. *Phys. Rev. D* 2007, 75, 012001.
- [14] Daraktchieva, Z.; Amsler, C.; Avenier, M.; Broggini, C.; Busto, J.; Cerna, C.; Juget, F.; Koang, D.H.; Lamblin, J.; Lebrun, D. et al. *Phys. Lett. B* 2005, *615*, 153–159.
- [15] Beda, A. G.; Brudanin, V. B.; Egorov, V. G.; Medvedev, D. V.; Pogosov, V. S.; Shevchik, E. A.; Shirchenko, M. V.; Starostin, A. S.; Zhitnikov, I. V. Phys. Part. Nucl. Lett. **2013**, 10, 139–143.
- [16] Balantekin, A. B. AIP Conf. Proc. 2006, 847, 128–133.
- [17] Okun, L. B.; Voloshin, M. B.; Vysotsky, M. I. Yad. Fiz. 1986, 44, 677–680.
- [18] Akhmedov, E. K. Phys. Lett. B 1988, 213, 64-68.
- [19] Barbieri, R.; Fiorentini, G. Nucl. Phys. B 1988, 304, 909–920.
- [20] Lim, C. S.; Marciano, W. J. Phys. Rev. D 1988, 37, 1368–1373.
- [21] Antia, H. M.; Chitre, S. M.; Thompson, M. J. Astron. Astrophys. 2000, 360, 335–344.
- [22] Couvidat, S.; Turck-Chieze, S.; Kosovichev, A. G. Astrophys. J. 2003, 599, 1434–1448.
- [23] Balantekin, A. B.; Hatchell, P. J.; Loreti, F. Phys. Rev. D 1990, 41, 3583–3593.
- [24] Bykov, A. A.; Popov, V. Y.; Rashba, T. I.; Semikoz, V. B. arXiv:hep-ph/0002174.
- [25] Akhmedov, E. K., Pulido, J. Phys. Lett. B 2003, 553, 7–17.
- [26] Chauhan, B. C.; Pulido, J.; Torrente-Lujan, E. Phys. Rev. D 2003, 68, 033015.
- [27] Chauhan, B. C.; Pulido, J. JHEP **2004**, 0406, 008 (1-16).
- [28] Balantekin, A. B.; Volpe, C. Phys. Rev. D 2005, 72, 033008.
- [29] Yilmaz, D.; Yilmazer, A. U. J. Phys. G 2005, 31, 1123–1131.
- [30] Yilmaz, D.; Yilmazer, A. U. J. Phys. G 2005, 31, 57-69.
- [31] Balantekin, A. B.; Yuksel, H. J. Phys. G 2003, 29, 665–682.
- [32] Balantekin, A. B.; Fetter, J. M.; Loreti, F. N. Phys. Rev. D 1996, 54, 3941–3951.