## Turkish Journal of Physics

http://journals.tubitak.gov.tr/physics/
tüвітак
Research Article
Turk J Phys
(2014) 38: $187-192$
© TÜBİTAK
doi:10.3906/fiz-1401-13

# Perturbative approach to the spin-flavor precession of Majorana-type solar neutrinos 

Deniz YILMAZ*
Department of Physics Engineering, Faculty of Engineering, Ankara University, Tandoğan, Ankara, Turkey
Received: 23.01.2014 • Accepted: 07.03.2014 • $\quad$ Published Online: $11.06 .2014 \quad \bullet \quad$ Printed: 10.07 .2014

Abstract: Spin-flavor precession (SFP) of Majorana-type solar neutrinos is investigated in the case of 2 generations. The evolution equation in the SFP framework is solved by using the perturbative method, in which $\mu B$ is accepted to be small. The approximate analytical formula including SFP effect is provided.

Key words: Perturbative method, spin-flavor precession, solar neutrinos, Majorana

## 1. Introduction

After neutrino oscillation was confirmed by serious solar, atmospheric, and reactor neutrino experiments [1-10] in the last decades, neutrino oscillation became one of the implications of the physics beyond the Standard Model (SM). Since neutrinos have a mass in a minimal extension of the SM, they also have magnetic moment:

$$
\begin{equation*}
\mu_{v}=\frac{3 e G_{f} m_{v}}{8 \pi^{2} \sqrt{2}}=\frac{3 e G_{f} m_{e} m_{v}}{4 \pi^{2} \sqrt{2}} \mu_{B} \tag{1}
\end{equation*}
$$

where $G_{f}$ is the Fermi constant; $m_{e}$ and $m_{\nu}$ are the masses of electrons and neutrinos, respectively; e is the proton charge; and $\mu_{B}$ is the Bohr magneton. The limits on the neutrino magnetic moment have been obtained by astrophysical arguments [11], solar neutrino experiments combined with KamLAND data [12], and reactor neutrino experiments $[13,14]$. The new limit recently obtained by the GEMMA experiment on the neutrino magnetic moment is $\mu_{\nu}<2.9 \times 10^{-11} \mu_{B}$ at $90 \%$ CL [15]. Detailed discussion on neutrino magnetic moment was given by Balantekin [16].

Neutrinos can be affected by the large magnetic fields throughout the sun due to their magnetic moments. Their spin can flip and a left-handed neutrino becomes a right-handed neutrino when they are passing through the magnetic region of the sun [17-20]. Even though information about the solar magnetic field is not well known, some bounds are given in the literature: $\sim 10^{7} G$ at the core and a maximum magnitude of $\sim 10^{5} G$ at the bottom of the convective zone [21,22]. The combined effect of the matter and the magnetic field, called spin-flavor precession (SFP), can change a left-handed electron neutrino into the right-handed type of neutrino. In the Majorana case, a right-handed neutrino is called an antineutrino. This can also be responsible for the solar electron neutrino deficit. The SFP effect has been investigated by several studies in different aspects [23-30].

[^0]In this paper, neutrinos are assumed to be of the Majorana type. The SFP effect in the case of 2 neutrino generations is studied. The approximate analytical formula is provided by using the perturbative method, in which $\mu B$ is taken to be small.

## 2. Formalism and analysis

The evolution equation for Majorana neutrinos passing through the matter and the magnetic field in the case of 2 generations is given by:

$$
i \frac{d}{d t}\left(\begin{array}{c}
\psi_{e}  \tag{2}\\
\psi_{\mu} \\
\bar{\psi}_{e} \\
\bar{\psi}_{\mu}
\end{array}\right)=\mathscr{H}\left(\begin{array}{c}
\psi_{e} \\
\bar{\psi}_{\mu} \\
\bar{\psi}_{e} \\
\psi_{\mu}
\end{array}\right)
$$

where $\mathscr{H}$ is described as follows [23]:

$$
\mathscr{H}=\left(\begin{array}{cc}
H & B_{\text {mag }}  \tag{3}\\
-B_{\text {mag }} & \bar{H}
\end{array}\right)
$$

The $2 \times 2$ submatrices, $H$ and $\bar{H}$, are

$$
\begin{gather*}
H=\left(\begin{array}{cc}
\frac{1}{2}\left(V_{c}-c 2_{12} \Delta_{21}\right) & \frac{s 2_{12} \Delta_{21}}{2} \\
\frac{s 2_{12} \Delta_{21}}{2} & \frac{1}{2}\left(-V_{c}+c 2_{12} \Delta_{21}\right)
\end{array}\right)  \tag{4}\\
\bar{H}=\left(\begin{array}{cc}
\frac{1}{2}\left(-3 V_{c}-4 V_{n}-c 2_{12} \Delta_{21}\right) & \frac{1}{2}\left(-V_{c}-4 V_{n 2} \Delta_{21}\right. \\
\frac{s 2_{12} \Delta_{21}}{2} & \left.\frac{1}{2} 2_{12} \Delta_{21}\right)
\end{array}\right), \tag{5}
\end{gather*}
$$

where $s 2_{12}, c 2_{12}$, and $\Delta_{12}$ are defined as

$$
\begin{align*}
s 2_{12} & =\sin \left(2 \theta_{12}\right) \\
c 2_{12} & =\cos \left(2 \theta_{12}\right)  \tag{6}\\
\Delta_{12} & =\frac{\delta m_{12}^{2}}{2 E}
\end{align*}
$$

The matter potentials used in these equations are

$$
\begin{equation*}
V_{c}=\sqrt{2} G_{F} N_{e} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{n}=-\frac{G_{F}}{\sqrt{2}} N_{n} \tag{8}
\end{equation*}
$$

where $N_{e}$ and $N_{n}$ are electron and neutron density, respectively, and $G_{F}$ is the Fermi constant. The magnetic part of Eq. (3) is

$$
B_{m a g}=\left(\begin{array}{cc}
0 & \mu B  \tag{9}\\
-\mu B & 0
\end{array}\right)
$$

where $\mu$ and $B$ are the transition magnetic moment and the magnetic field, respectively. Unlike the Dirac neutrinos that have diagonal and off-diagonal magnetic moments, Majorana neutrinos have only off-diagonal magnetic moments.

By taking into account the definitions given above, we can split the $\mathscr{H}$ into 2 parts:

$$
\begin{equation*}
\mathscr{H}=\mathscr{H}_{M}+\mathscr{H}_{B} \tag{10}
\end{equation*}
$$

The matter part, $\mathscr{H}_{M}$, and the magnetic part, $\mathscr{H}_{B}$, are given by

$$
\begin{gather*}
\mathscr{H}_{M}=\left(\begin{array}{cc}
H & 0 \\
0 & \bar{H}
\end{array}\right),  \tag{11}\\
\mathscr{H}_{B}=\left(\begin{array}{cc}
0 & B_{\text {mag }} \\
-B_{\text {mag }} & 0
\end{array}\right) . \tag{12}
\end{gather*}
$$

The evolution equation for the neutrinos, which is associated with the upper diagonal part of $\mathscr{H}_{M}$, is

$$
\begin{equation*}
i \frac{d}{d t}\binom{\psi_{e}}{\psi_{\mu}}=H\binom{\psi_{e}}{\psi_{\mu}} \tag{13}
\end{equation*}
$$

which is the standard MSW equation for 2 neutrino cases. Thus, the solution for $H$ can be chosen as

$$
U_{H}=\left(\begin{array}{cc}
\psi_{1}(t) & -\psi_{2}^{*}(t)  \tag{14}\\
\psi_{2}(t) & \psi_{1}^{*}(t)
\end{array}\right)
$$

where $\psi_{1}(t)$ and $\psi_{2}(t)$ are solutions of Eq. (13) with the initial conditions $\psi_{1}(t=0)=1$ and $\psi_{2}(t=0)=0$ [31].

Now we can similarly solve the antineutrino part. The evolution equation for the antineutrinos, which is associated with the lower diagonal part of $\mathscr{H}_{M}$, is

$$
\begin{equation*}
i \frac{d}{d t}\left(\bar{\psi}_{e}\right)=\bar{H}\binom{\bar{\psi}_{\mu}}{\bar{\psi}_{\mu}} \tag{15}
\end{equation*}
$$

This equation can be seperated into 2 parts:

$$
\begin{equation*}
i \frac{d}{d t}\left(\overline{\bar{\psi}}_{e}\right)=\left[\bar{H}_{\mu}^{\alpha}+\bar{H}^{\beta}\right]\binom{\bar{\psi}_{e}}{\bar{\psi}_{\mu}} \tag{16}
\end{equation*}
$$

where

$$
\bar{H}^{\beta}=\left(\begin{array}{cc}
-V_{c}-\frac{\Delta_{21}}{2} c 2_{12} & \frac{s 2_{12} \Delta_{21}}{2} \\
\frac{s 2_{12} \Delta_{21}}{2} & -V_{c}-\frac{\Delta_{21}}{2} c 2_{12}
\end{array}\right)
$$

$\bar{H}^{\alpha}$ is the phase part, which can be found by subtracting $\bar{H}^{\beta}$ from $\bar{H}$. The solution including the phases can then be written for $\bar{H}$ :

$$
\bar{U}_{\bar{H}}=\left(\begin{array}{cc}
\overline{\psi_{1}^{\alpha}}(t) & -{\overline{\psi_{2}^{\alpha}}}^{*}(t)  \tag{17}\\
\frac{\psi_{2}^{\alpha}}{}(t) & {\overline{\psi_{1}^{\alpha}}}^{*}(t)
\end{array}\right)
$$

where

$$
\begin{array}{r}
\alpha=-\frac{V_{c}}{2}-2 V_{n} \\
\overline{\psi^{\alpha}}=e^{i \int \alpha d t} \bar{\psi} \tag{18}
\end{array}
$$

Thus, the solution matrix for the $\mathscr{H}_{M}$ is given by

$$
U_{M}=\left(\begin{array}{cc}
U_{H} & 0  \tag{19}\\
0 & \bar{U}_{\bar{H}}
\end{array}\right)
$$

The evolution operator of $\mathscr{H}$ satisfies

$$
\begin{equation*}
i \frac{\partial U}{\partial t}=\mathscr{H} U \tag{20}
\end{equation*}
$$

where $U=U_{M} U_{B}$ and $\mathscr{H}=\mathscr{H}_{M}+\mathscr{H}_{B}$. Now the complete solution of all of $\mathscr{H}$ can be found by looking at $\mathscr{H}_{B}$ :

$$
\begin{equation*}
i \frac{\partial U_{B}}{\partial t}=\left(U_{M}^{\dagger} \mathscr{H}_{B} U_{M}\right) U_{B}=h_{b}(t) U_{B} \tag{21}
\end{equation*}
$$

Because $\mu B$ is small, we will approximate the solution to this equation to the second order in $\mu B$ :

$$
\begin{equation*}
U_{B}=\left[1-i \int_{0}^{t} h_{b}\left(t^{\prime}\right) d t^{\prime}-\int_{0}^{t} d t^{\prime} \int_{0}^{t^{\prime}}\left(h_{b}\left(t^{\prime}\right) h_{b}\left(t^{\prime \prime}\right)\right) d t^{\prime \prime}-\mathscr{O}\left(\int_{0}^{t} d t^{\prime} \int_{0}^{t^{\prime}} d t^{\prime \prime} \int_{0}^{t^{\prime \prime}} d t^{\prime \prime \prime} \ldots\right)\right] \tag{22}
\end{equation*}
$$

Thus, the total evolution is characterized by

$$
U=U_{M} U_{B}=\left(\begin{array}{ll}
\mathrm{A} & \mathrm{C}  \tag{23}\\
\mathrm{D} & \mathrm{~B}
\end{array}\right)
$$

where $A, B, C$, and $D$ are $2 \times 2$ matrices given by

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12}  \tag{24}\\
A_{21} & A_{22}
\end{array}\right)
$$

and

$$
C=\left(\begin{array}{ll}
C_{11} & C_{12}  \tag{25}\\
C_{21} & C_{22}
\end{array}\right)
$$

and so on. The state of the system evolves with the unitary operator of $U$ from the initial state

$$
\begin{equation*}
\Psi(t=T)=U \Psi(t=0) \tag{26}
\end{equation*}
$$

where

$$
\Psi(t=T)=\left(\begin{array}{c}
\psi_{e}  \tag{27}\\
\psi_{\mu} \\
\bar{\psi}_{e} \\
\bar{\psi}_{\mu}
\end{array}\right), \quad \Psi(t=0)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

Therefore, the electron neutrino amplitude, $\psi_{e}$, is found as

$$
\begin{equation*}
\psi_{e}=A_{11} \tag{28}
\end{equation*}
$$

The highly oscillating integrations that came out in $A_{11}$ are ignored. The other integrals, such as

$$
\begin{equation*}
I=\int_{0}^{\tau} d t^{\prime} e^{i Q} g(t) \quad Q=\int_{0}^{t^{\prime}} d t^{\prime \prime} A\left(t^{\prime \prime}\right) \tag{29}
\end{equation*}
$$

can be calculated by using the stationary phase approximation method given by Balantekin et al. [32]. The stationary point, $t_{R}$, is where

$$
\begin{equation*}
A\left(t_{R}\right)=0 \tag{30}
\end{equation*}
$$

Since $t_{R}$ appears as the SFP resonance point, which takes place before the MSW resonance point, $\psi_{2}$ and $\bar{\psi}_{2}$ are rather small at $t_{R}$. Therefore, we can ignore them at $t_{R}$ [28]. Thus, $A_{11}$ is found as

$$
\begin{equation*}
A_{11}=\psi_{1}(T)\left(1-\frac{1}{2} \frac{2 \pi(\mu B)^{2}}{|d(\chi-2 \kappa) / d t|_{(\chi-2 \kappa)=0}}\left|\psi_{1}\left(t_{R}\right)\right|^{2}\right) \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa=\frac{\Delta_{21}}{2} c 2_{12}, \quad \chi=\frac{G_{f}}{\sqrt{2}}\left(2 N_{e}-2 N_{n}\right) \tag{32}
\end{equation*}
$$

and $\psi_{e}$ can be obtained as

$$
\begin{equation*}
\psi_{e}=\psi_{1}(T)\left(1-\frac{1}{2} \frac{2 \pi(\mu B)^{2}}{|d(\chi-2 \kappa) / d t|_{(\chi-2 \kappa)=0}}\left|\psi_{1}\left(t_{R}\right)\right|^{2}\right) \tag{33}
\end{equation*}
$$

One can finally get the survival probability in the SFP framework by ignoring the terms that have higher order than $(\mu B)^{2}$.

$$
\begin{equation*}
P_{2 \times 2}\left(\nu_{e} \rightarrow \nu_{e}, \mu B \neq 0\right)=P_{2 \times 2}\left(\nu_{e} \rightarrow \nu_{e}, \mu B=0\right)\left(1-\frac{2 \pi(\mu B)^{2}}{|d(\chi-2 \kappa) / d t|_{(\chi-2 \kappa)=0}}\left|\psi_{1}\left(t_{R}\right)\right|^{2}\right) \tag{34}
\end{equation*}
$$

## 3. Conclusion

In summary, neutrinos are exposed to SFP resonances due to their magnetic moments and MSW resonance when they are passing through the sun. In this paper, the spin-flavor precession of Majorana-type solar neutrinos was investigated by using the perturbative method, in which $\mu B$ was accepted to be small (in order for SFP to be responsible for the solar neutrino deficit, $\mu B$ must be at least $\sim 10^{-7} \mu_{B} G$ ). Two neutrino cases were considered. An analytical formula involving the SFP effect was obtained. Since $\mu B$ was accepted to be small, the terms that have higher order than $(\mu B)^{2}$ were ignored. The final result, Eq. (34), is consistent with the results of Balantekin and Volpe [28]. When $\left|\psi_{1}\left(t_{R}\right)\right|^{2}$ is taken to be 1, it corresponds to the first 2 terms in the expansion of the exponential factor in Eq. (A31) in the work of Balantekin and Volpe [28]. In the 3 neutrino cases, the situation gets more complex and hard to solve analytically. To solve such complex situations, we may need the perturbative method. One can generalize this study to the 3 neutrino cases.

## Acknowledgment

Postdoctoral research support from the Council of Higher Education of Turkey is gratefully acknowledged.

## References

[1] Eguchi, K.; Enomoto, S.; Furuno, K.; Goldman, J.; Hanada, H.; Ikeda, H.; Ikeda, K.; Inoue, K.; Ishihara, K.; Itoh, W. et al. Phys. Rev. Lett. 2003, 90, 021802.
[2] Araki, T.; Eguchi, K.; Enomoto, S.; Furuno, K.; Ichimura, K.; Ikeda, H.; Inoue, K.; Ishihara, K.; Iwamoto, T.; Kawashima, T. et al. Phys. Rev. Lett. 2005, 94, 081801.

## YILMAZ/Turk J Phys

[3] Ahmad, Q. R.; Allen, R. C.; Andersen, T. C.; Anglin, J. D.; Buhler, G.; Barton, J. C.; Beier, E. W.; Bercovitch, M.; Bigu, J.; Biller, S. et al. Phys. Rev. Lett. 2001, 87, 071301.
[4] Ahmad, Q. R.; Allen, R. C.; Andersen, T. C.; Anglin, J. D.; Buhler, G.; Barton, J. C.; Beier, E. W.; Bercovitch, M.; Bigu, J.; Biller, S. et al. Phys. Rev. Lett. 2002, 89, 011301.
[5] Fukuda, S.; Fukuda, Y.; Ishitsuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Kaneyuki, K.; Kobayashi, K.; Koshio, Y.; Miura, M. et al. Phys. Rev. Lett. 2001, 86, 5651-5655.
[6] Cleveland, B. T.; Daily, T.; Davis, R. Jr.; Distel, J. R.; Lande, K.; Lee, C. K.; Wildenhain, P. S.; Ullman, J. Astrophys. J. 1998, 496, 505-526.
[7] Abdurashitov, J. N.; Gavrin, V. N.; Girin, S. V.; Gorbachev, V. V.; Gurkina, P. P.; Ibragimova, T. V.; Kalikhov, A. V.; Khairnasov, N. G.; Knodel, T. V.; Mirnov, I. N. J. Exp. Theor. Phys. 2002, 95, 181-193.
[8] Hampel, W.; Handt, J.; Heusser, G.; Kiko, J.; Kirsten, T.; Laubenstein, M.; Pernicka, E.; Rau, W.; Wojcik, M.; Zakharov, Y. et al. Phys. Lett. B 1999, 447, 127-133.
[9] Altmann, M.; Balata, M.; Belli, P.; Bellotti, E.; Bernabei, R.; Burkert, E.; Cattadori, C.; Cerichelli, G.; Chiarini, M.; Cribier, M. et al. Phys. Lett. B 2000, 490, 16-26.
[10] Altmann, M.; Balata, M.; Belli, P.; Bellotti, E.; Bernabei, R.; Burkert, E.; Cattadori, C.; Cerulli, R.; Chiarini, M.; Cribier, M. et al. Phys. Lett. B 2005, 616, 174-190.
[11] G. G. Raffelt, Phys. Rept. 1999, 320, 319-327.
[12] Liu, D. W.; Ashie, Y.; Fukuda, S.; Fukuda, Y.; Ishihara, K.; Itow, Y.; Koshio, Y.; Minamino, A.; Miura, M.; Moriyama, S. et al. Phys. Rev. Lett. 2004, 93, 021802.
[13] Wong, H. T.; Li, H. B.; Lin, S. T.; Lee, F. S.; Singh, V.; Wu, S. C.; Chang, C. Y.; Chang, H. M.; Chen, C. P.; Chou, M. H. et al. Phys. Rev. D 2007, 75, 012001.
[14] Daraktchieva, Z.; Amsler, C.; Avenier, M.; Broggini, C.; Busto, J.; Cerna, C.; Juget, F.; Koang, D.H.; Lamblin, J.; Lebrun, D. et al. Phys. Lett. B 2005, 615, 153-159.
[15] Beda, A. G.; Brudanin, V. B.; Egorov, V. G.; Medvedev, D. V.; Pogosov, V. S.; Shevchik, E. A.; Shirchenko, M. V.; Starostin, A. S.; Zhitnikov, I. V. Phys. Part. Nucl. Lett. 2013, 10, 139-143.
[16] Balantekin, A. B. AIP Conf. Proc. 2006, 847, 128-133.
[17] Okun, L. B.; Voloshin, M. B.; Vysotsky, M. I. Yad. Fiz. 1986, 44, 677-680.
[18] Akhmedov, E. K. Phys. Lett. B 1988, 213, 64-68.
[19] Barbieri, R.; Fiorentini, G. Nucl. Phys. B 1988, 304, 909-920.
[20] Lim, C. S.; Marciano, W. J. Phys. Rev. D 1988, 37, 1368-1373.
[21] Antia, H. M.; Chitre, S. M.; Thompson, M. J. Astron. Astrophys. 2000, 360, 335-344.
[22] Couvidat, S.; Turck-Chieze, S.; Kosovichev, A. G. Astrophys. J. 2003, 599, 1434-1448.
[23] Balantekin, A. B.; Hatchell, P. J.; Loreti, F. Phys. Rev. D 1990, 41, 3583-3593.
[24] Bykov, A. A.; Popov, V. Y.; Rashba, T. I.; Semikoz, V. B. arXiv:hep-ph/0002174.
[25] Akhmedov, E. K., Pulido, J. Phys. Lett. B 2003, 553, 7-17.
[26] Chauhan, B. C.; Pulido, J.; Torrente-Lujan, E. Phys. Rev. D 2003, 68, 033015.
[27] Chauhan, B. C.; Pulido, J. JHEP 2004, 0406, 008 (1-16).
[28] Balantekin, A. B.; Volpe, C. Phys. Rev. D 2005, 72, 033008.
[29] Yilmaz, D.; Yilmazer, A. U. J. Phys. G 2005, 31, 1123-1131.
[30] Yilmaz, D.; Yilmazer, A. U. J. Phys. G 2005, 31, 57-69.
[31] Balantekin, A. B.; Yuksel, H. J. Phys. G 2003, 29, 665-682.
[32] Balantekin, A. B.; Fetter, J. M.; Loreti, F. N. Phys. Rev. D 1996, 54, 3941-3951.


[^0]:    *Correspondence: dyilmaz@eng.ankara.edu.tr

