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Abstract: In this paper, we deal with bulk viscous magnetized Kantowski–Sachs string cosmological models in the

presence of time variable cosmological term Λ. To obtain a deterministic model, we assume the conditions σ∞θ and

ζθ = constant, where σ is the shear, θ the expansion in the model, and ζ the coefficient of bulk viscosity. The value

of cosmological constant for the models is found to be small and positive, which is supported by the results from recent

observations (SN 1a). The behavior of the model in the presence and absence of magnetic fields together with physical

and geometrical aspects is also discussed.
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1. Introduction

Recent observations of the type 1a supernova (SN 1a) established that our universe is currently accelerating

[1–4] and the observations (SN 1a) of high confidence level [5–7] have further confirmed this. In addition,

measurements of the cosmic microwave background (CMB) anisotropies [8–10] and large-scale structure (LSS)

[11–13] strongly indicate that our universe is dominated by a component with negative pressure, dubbed as dark

energy. Numerous dynamical dark energy models have been proposed in the literature, such as quintessence [14],

phantom [15], k-essence [16], and tachyon [17]. However, the simplest and most theoretically appealing candidate

for dark energy is vacuum energy (or the cosmological constant Λ) with a constant equation of state parameter

equal to −1. Recent observations indicate that Λ ∼ 10−55 cm−2 while the particle physics prediction for Λ

is greater than this value by a factor of order 10120 . This discrepancy is known as the cosmological constant

problem. The simplest way out of this problem is to consider a varying cosmological term, which decays from

a huge value at initial times to the small value observed in these days in an expanding universe [18–22].

In recent years, there has been considerable interest in string cosmology. It is generally assumed that after

the big bang the universe may have undergone a series of phase transitions as its temperature lowered below

some critical temperature as predicted by grand unified theories [23–25]. It can give rise to topologically stable

defects such as strings, domain walls, and monopoles. Among these cosmological structures, cosmic strings is the

most interesting consequences [26], because it is believed that cosmic strings give rise to density perturbations,

which lead to formation galaxies [27]. The general relativistic treatment of strings has been initially given by

Letelier [28] and Stachel [29]. Letelier [30] obtained massive string cosmological models in Bianchi type-I and
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Kantowski–Sachs space-times. Afterwards, Banerjee et al. [31] investigated an axially symmetric Bianchi type-I

string dust cosmological model in the presence and absence of a magnetic field. The exact solutions of string

cosmology for Bianchi type-II, VI, VIII, and IX space-times have been studied by Krori et al. [32] and Wang

[33,34].

On the other hand, the matter distribution is satisfactorily described by perfect fluid due to large-scale

distribution of galaxies in our universe. However, a realistic treatment of the problem requires the consideration

of material distribution other than the perfect fluid. It is well known that when neutrino decoupling occurs

during radiation era and decoupling of radiation with matter takes place during recombination era, the matter

behaves like a viscous fluid in an early stage of the universe. Bulk viscosity is associated with GUT phase

transition and string creation. The effect of viscosity on the evolution of cosmological models and the role of

viscosity in avoiding the initial big bang singularity have been studied by several authors [35–39].

The study of magnetic fields provides an effective way to understand the initial phases of cosmic evolution.

Primordial magnetic fields of cosmological origin have been discussed by Asseo and Sol [40] and Madsen

[41]. Melvin [42] suggested, in the cosmological solution for dust and electromagnetic fields, that during the

evolution of the universe, the matter was in highly ionized state and smoothly coupled with electromagnetic and

consequently formed a neutral matter as a result of expansion of the universe. Hence, in a string dust universe

the presence of magnetic fields is not unrealistic. Recently, the occurrence of magnetic fields on galactic scales

and their importance for a variety of astrophysical phenomena has been pointed out by several authors such as

Chakraborty [43], Tikekar and Patel [44], and Singh and Singh [45].

The advances in particle physics applied to the early universe have resulted in an interest in solutions

to the Einstein equations with somewhat usual properties. Therefore, a set of articles developed to the new

Kantowski–Sachs models has appeared. Weber [46, 47] has performed a qualitative study of the Kantowski–

Sachs [48] cosmological models. Lorenz [49], Gron [50], Matravers [51], and Krori et al. [52] have also studied

cosmological models for the Kantowski–Sachs space-time. Recently, Wang [53] discussed the Kantowski–

Sachs string cosmological model with bulk viscosity in general relativity. Pradhan and Yadav [54] have

investigated Kantowski–Sachs models with variable Newtonian gravitational constant(G) and cosmological

term (Λ), whereas Katore [55] has studied the magnetized Kantowski–Sachs inflationary universe in general

relativity.

Motivated by the above discussions, in this paper, we have focused upon the problem of establishing

a formalism for studying a new integrability of magnetized Kantowski–Sachs bulk viscous string cosmological

models with decaying vacuum energy density Λ(t) in general relativity. The behavior of the models in the

presence and absence of magnetic fields are also discussed.

2. Metric and field equations

We consider the Kantowski–Sachs space-time metric in the form

ds2 = −dt2 +A2dr2 +B2(dθ2 + sin2 θ dφ2), (1)

where A and B are the function of cosmic time t only.

The energy momentum tensor for a cloud string with a magnetic field in a co-moving coordinate system

is

Ti j = ρuiuj − λxixj − ζθ(uiuj − gi j) + Ei j , (2)
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where the vector ui describes the cloud 4-velocity and xi represents a direction of anisotropy, i.e. the string

satisfies the relations

uiui = −xixi = −1, uixi = 0. (3)

Here ρ is the rest energy of the cloud strings with massive particles attached to them. It is given by ρ = ρp+λ , ρp

being the rest energy density of particles attached to the strings and λ the density of tension that characterizes

the strings. The energy momentum for the magnetic field is

Ei j =
1

4π

(
Fi kFj lg

k l − 1

4
gi jF

k lFk l

)
, (4)

where Fi j is the electromagnetic field tensor satisfying Maxwell’s equations

F[i j;k] = 0,
(
F i j√−g

)
; j

= 0. (5)

In commoving coordinates, the incident magnetic field is taken along x-axis, with the help of Maxwell’s equations

(5); the only nonvanishing component of Fi j is

F23 = I = Cons tan t. (6)

In order to determine the system completely, we consider Takabayasi’s equation of state [56],

ρ = kλ, (7)

where k is constant.

The Einstein’s field equations (in gravitational unitc = 1, 8πG = 1)

Ri j −
1

2
gi jR = −8πGTi j − gi jΛ, (8)

For metric (1), the field equation (8) with the help of Eqs. (2)–(7) takes the form

2
B̈

B
+

Ḃ2

B2
+

1

B2
= λ+ ζθ +

I2

8π B4 sin2 θ
+ Λ, (9)

Ä

A
+

B̈

B
+

ȦḂ

AB
= ζθ − I2

8π B4 sin2 θ
+ Λ, (10)

2
ȦḂ

AB
+

Ḃ2

B2
+

1

B2
= ρ+

I2

8π B4 sin2 θ
+ Λ. (11)

Here, and also in what follows, a dot indicates ordinary differentiation with respect to cosmic timet .

3. Solution in presence of bulk viscosity and magnetic field

The research on exact solutions is based on some physically reasonable restrictions used to simplify the Einstein

equations. Eqs. (9)–(11) are 3 independent equations involving 5 unknowns, viz. A, B, λ, ζ , and Λ. To solve

the system completely, we need 2 extra conditions. Firstly, we assume that the coefficient of bulk viscosity ζ is

inversely proportional to the expansion θ . This condition leads to

ζθ = L (cons tan t). (12)
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The motive behind assuming this condition is explained in the literature [57–59]. Secondly, we consider the

expansion scalar θ is proportional to the shear σ , i.e. θ∞σ [60]. This condition leads to

A = Bn, (13)

where n > 0 a constant.

From Eqs. (9)–(11), with the help of (12) and (13), eliminating λ and Λ, we have

B̈ + αB−1Ḃ2 =
β

B
+

γM

B3
+ δ LB, (14)

where

α =
(k − 1)(1− n2)− 2n

2− (1− k)(1− n)
, β =

(1− k)

2− (1− k)(1− n)
,

γ = 2(k−1)
2−(1−k)(1−n) , δ = 1

2−(1−k)(1−n) , and M = I2

8π sin2 θ
.

To solve Eq. (14), we denoteḂ = η , then B̈ = η dη
dB , and Eq. (14) can be reduced to the first order

differential equation in the following form:

2η
dη

dB
+ 2αB−1η2 =

2β

B
+

2γM

B3
+ 2δ LB. (15)

Eq. (15) can be further written as

d

dB

(
η2B2α

)
= 2βB2α−1 + 2γMB2α−3 + 2δ LB2α+1. (16)

Thus we obtain

dt =

[
β

α
+

γMB−2

(α− 1)
+

δ LB2

(α+ 1)
+ CB−2α

]− 1
2

dB, (17)

where C is the constant of integration. Hence the line element (1) becomes

ds2 = −
[
β

α
+

γMB−2

(α− 1)
+

δ LB2

(α+ 1)
+ CB−2α

]−1

dB2 +B2ndr2 +B2(dθ2 + sin2 θ dϕ2). (18)

Under suitable transformation of coordinates, Eq. (18) reduces to

ds2 = −
[
β

α
+

γMT−2

(α− 1)
+

δ LT 2

(α+ 1)
+ CT−2α

]−1

dT 2 + T 2ndr2 + T 2(dθ2 + sin2 θ dϕ2), (19)

where α ̸= ±1 and the cosmic scale B = T can be determined by Eq. (19).

3.1. Some physical and geometric features

For the model (19), the other physical parameters can be easily obtained. The expressions for the energy

density ρ , the string tension density λ , the particle energy density ρp , the coefficient of bulk viscosity ζ , and

the cosmological term Λ are given by

ρ =

{
2n

β

α
+ (2n+ 1)

γM

(α− 1)
T−2 + (2n− 1)

δL

(α+ 1)
T 2 + C(2n+ α)T−2α − 2MT−2

}
T−2 + L, (20)
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λ =
1

k
ρ, (21)

ρp = ρ− λ =

(
1− 1

k

)
ρ, (22)

ζ =
L

(n+ 2)

[
β

αT 2
+

γMT−4

(α− 1)
+

δ L

(α+ 1)
+ CT−2α−2

]− 1
2

, (23)

Λ =

[
1 +

β

α
+

2γMT−2

(α− 1)
+ (α+ 1)CT−2α

]
T−2 +MT−4 − L, (24)

The spatial volume V of universe is given by

V = Tn+2, (25)

The spatial volume V → 0 when T → 0, and V → ∞ when T → ∞ .

The physical quantities expansion scalar θ and shear scalar σ are given by

θ = ui
;i = (n+ 2)

[
β

αT 2
+

γMT−4

(α− 1)
+

δ L

(α+ 1)
+ CT−2α−2

] 1
2

, (26)

σ2 =
1

2
σi jσ

i j =
2(n− 1)

3

[
β

αT 2
+

γMT−4

(α− 1)
+

δ L

(α+ 1)
+ CT−2α−2

]
, (27)

Hence

lim itT→∞

(
σ2

θ2

)
=

4(n− 1)2

3(n+ 2)2
= cons tan t. (28)

Thus the model does not approach isotropy for large values of T .

The Hubble parameter H and the deceleration parameter q are given by

H =
(n+ 2)

3

[
β

αT 2
+

γMT−4

(α− 1)
+

δ L

(α+ 1)
+ CT−2α−2

] 1
2

, (29)

q = −1 +
3

(n+ 2)

{
β

αT 3 + 2γ MT−5

(α−1) + C(α+ 1)T−2α−3
}

{
β

αT 2 + γ MT−4

(α−1) + δ L
(α+1) + CT−2α−2

} 3
2

. (30)

3.2. Discussion

The model (19) represents the string magnetized Kantowski–Sachs universe with bulk viscosity. From Eq. (20),

we observe that the energy condition ρ ≥ 0 given by Hawking and Ellis [61] leads to{
2nβ

α
+

(
2nγ + γ

α− 1
− 2

)
M

T 2
+ C(2n+ α)

1

T 2α

}
1

T 2
≥

{
(1− 2n)δ

(α+ 1)
− 1

}
L. (31)

The expansion scalar (θ) is infinite at T = 0 and θ → δL
(α+1) when T → ∞ , provided α + 1 > 0. The energy

density ρ → ∞ at T = 0 and ρ = L
{
1 + δ(2n−1)

α+1

}
when T → ∞ provided α + 1 > 0. The spatial volume
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V → 0 when T → 0 and V → ∞ when T → ∞ . Since lim itT→∞
(
σ
θ

)
= cons tan t , the model does not

approach isotropy for the whole range of time. Further, when 1 < k < 2, we have
ρp

|λ| < 1, and in this case the

strings dominate over the particles. However, when k > 2 or k < 0, we have
ρp

|λ| > 1; therefore, the massive

string dominates the universe in the process of evolution. Figure 1 shows that the cosmological term Λ is a

decreasing function of time and this approaches a small value as time increases (i.e. in the present epoch).

Recent cosmological observations [1,3,4,6,62–64] suggest the existence of a positive cosmological constant Λ

with the magnitude Λ
(
Gℏ/

c3 = 10−123
)
. These observations on magnitude red-shift of the type 1a supernova

suggest that our universe may be an accelerating one with induced cosmological density through the cosmological

Λ-term. Moreover, the recent observations [1–6,65,66] reveal that the value of deceleration parameter (q) is

confined in the range −1 ≤ q < 0 and the present day universe is undergoing an accelerated expansion. Figure

2 shows that the value of q lies in the range −1 ≤ q < 0, which is consistent with recent observations.
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Λ

0 2 4 6 8 10
-1.00

-0.95

-0.90

-0.85

-0.80

T

q

Figure 1. The variation of Λ vs. T for the model (19)

with parameters α = 21, β = 50, L = 0.09, M = 17 and

γ = 12.

Figure 2. The variation of q vs. T for the model (19)

with parameters α = 0.01, β = 0.02, γ = 2, δ = 4,

n = 0.7, L = 1 and M = 0.06.

3.3. Bulk viscous model in absence of magnetic field

In absence of a magnetic field (M = 0), we obtain a string cosmological model with bulk viscosity and in this

case the model (19) reduces to the form

ds2 = −
[
β

α
+

δ LT 2

(α+ 1)
+ CT−2α

]−1

dT 2 + T 2ndr2 + T 2(dθ2 + sin2 θ dϕ2), (32)

The expressions for the energy density ρ , the string tension density λ , the particle energy density ρp , the

coefficient of bulk viscosity ζ , and the cosmological constant Λ are given by

ρ =

{
2n

β

α
+ (2n− 1)

δL

(α+ 1)
T 2 + C(2n+ α)T−2α

}
T−2 + L, (33)

λ =
1

k
ρ, (34)

ρp = ρ− λ =

(
1− 1

k

)
ρ, (35)
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ζ =
L

(n+ 2)

[
β

αT 2
+

δ L

(α+ 1)
+ CT−2α−2

]− 1
2

, (36)

Λ =

[
1 +

β

α
+ (α+ 1)CT−2α

]
T−2 − L, (37)

The physical quantities expansion scalar θ and shear scalar σare given by

θ = ui
;i = (n+ 2)

[
β

αT 2
+

δ L

(α+ 1)
+ CT−2α−2

] 1
2

, (38)

σ2 =
1

2
σi jσ

i j =
2(n− 1)

3

[
β

αT 2
+

δ L

(α+ 1)
+ CT−2α−2

]
, (39)

Hence,

lim itT→∞

(
σ2

θ2

)
=

4(n− 1)2

3(n+ 2)2
= cons tan t. (40)

Thus the model does not approach isotropy for large values of T .

The Hubble parameter H and the deceleration parameter q are given by

H =
(n+ 2)

3

[
β

αT 2
+

δ L

(α+ 1)
+ CT−2α−2

] 1
2

, (41)

q = −1 +
3

(n+ 2)

{
β

αT 3 + C(α+ 1)T−2α−3
}

{
β

αT 2 + δ L
(α+1) + CT−2α−2

} 3
2

. (42)

From (37), we observe that the cosmological constant is a decreasing function of time and it approaches a small

and positive value for large T (i.e. the present epoch) as shown in Figure 3, which is supported by the results

from recent type 1a supernova observations [1,3,4,6,62–64]. Figure 4 shows the value of q confined anywhere in

the range −1 ≤ q < 0, which is consistent with recent observations [1–6,65,66] and the negative value indicates

that our model (32) is accelerating.
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Figure 3. The variation of Λ vs. T for the model (32)

with parameters α = 21, β = 50, L = 0.09, and γ = 12.

Figure 4. The variation of q vs. T for the model (32)

with parameters α = 0.01, β = 0.02, δ = 4, n = 0.7, and

L = 2.
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3.4. Discussion

For the model (32), the energy condition ρ ≥ 0 given by Hawking and Ellis [61] leads to{
2nβ

α
+ C(2n+ α)

1

T 2α

}
1

T 2
≥

{
(1− 2n)δ

(α+ 1)
− 1

}
L. (43)

Eqs. (34) and (35) show that when k ≥ 1 the particle density ρp ≥ 0 and string tension density λ ≥ 0;

however, ρp > 0 and λ < 0, when k < 0. Since lim itT→∞
(
σ
θ

)
= constant the model does not approach

isotropy for large values of T . The energy density ρ → ∞ at T = 0 and ρ = L
{
1 + δ(2n−1)

α+1

}
when T → ∞ ,

provided α + 1 > 0. Further, when 1 < k < 2, we observe
ρp

|λ| < 1, and in this case the strings dominate over

the particles. However, when k > 2 or k < 0, we have
ρp

|λ| > 1; therefore, the massive string dominates the

universe in the process of evolution.

From Eq. (36), we have seen that the cosmological term Λ, being very large at initial times, relaxes to

a genuine cosmological constant at the late times, which is in accordance with the observations [1,3,4,6,62–64].

The recent observations of SN 1a show that the present universe is accelerating and the value of the deceleration

parameter lies somewhere in the range −1 ≤ q < 0.

4. Conclusion

In this paper we have studied Kantowski–Sachs bulk viscous string cosmological model in the presence and

absence of an electromagnetic field. To be able to obtain a more general model we assume that the coefficient

of bulk viscosity is inversely proportional to the expansion, i.e. ζθ =constant, and expansion is proportional to

shear, i.e. θ∞σ . The presence of a magnetic field affects energy density (ρ), string particle density (ρp), tension

density (λ), coefficient of bulk viscosity (ζ), cosmological term (Λ), and expansion as well as acceleration of

the universe. The bulk viscosity plays a greater role in the evolution of the properties of the models. The

presence of viscosity helps us to get a universe with accelerated expansion. Hence the presence of bulk viscosity

should be taken into account in the description of the time evolution of the properties of the universe. In all

the deterministic models, σ
θ = cons tan t implies that the models do not approach isotropy. In the presence

and absence of a magnetic field, the cosmological term Λ in the models decreases as a function of time and

approaches a small value at late time. The values of cosmological “constant” for the models are found to be

small and positive, which is supported by the results from supernova observations recently obtained by the

High-Z Supernova 1a Team and Supernova Cosmological Project [1–4,6,62–64].

Acknowledgments

We acknowledge the financial support of UGC, New Delhi, and the Department of Mathematics, Gauhati

University, for providing facilities for this research.

References

[1] Perlmutter, S.; Gabi, S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I. M.; Kim, A. G.; Kim, M. Y.; Lee, J.

C.; Pain, R.; et al. Astrophys. J. 1997, 483, 565–581.

[2] Perlmutter, S.; Aldering, G.; Della Valle, M.; Deustua, S.; Ellis, R. S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.;

Groom, D. E.; Hook, I. M.; et al. Nature 1998, 391, 51–54.

200

http://dx.doi.org/10.1086/304265
http://dx.doi.org/10.1086/304265
http://dx.doi.org/10.1038/34124
http://dx.doi.org/10.1038/34124


DAS and ALI/Turk J Phys

[3] Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R. A.; Nugent, P.; Castro, P. G.; Deustua, S.; Fabbro, S.;

Goobar, A.; Groom, D. E.; et al. Astrophys. J. 1999, 517, 565–585.

[4] Riess, A. G.; Filippenko, A. V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P. M.; Gilliland, R. L.; Hogan,

C. J.; Jha, S.; Kirshner, R. P.; et al. Astron. J. 1998, 116, 1009–1038.

[5] Tonry, J. L.; Schmidt, B. P.; Barris, B.; Candia, P.; Challis, P.; Clocchiatti, A.; Coil, A. L.; Filippenko, A. V.;

Garnavich, P.; Hogan, C. J.; et al. Astrophys. J. 2003, 594, 1–24.

[6] Riess, A. G.; Strolger, L. G.; Tonry, J.; Casertano, S.; Ferguson, H. C.; Mobasher, B.; Challis, P.; Filippenko, A.

V.; Jha, S.; Li, W.; et al. Astron. J. 2004, 607, 665–687.

[7] Clocchiatti, A.; Schmidt, B. P.; Filippenko, A. V.; Challis, P.; Coil, A. L.; Covarrubias, R.; Diercks, A.; Garnavich,

P.; Germany, L.; Gilliland, R.; et al. Astrophys. J. 2006, 642, 1–21.

[8] Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Page, L.; Spergel, D.

N.; Tucker, G. S.; et al. Astrophys. J. Suppl. 2003, 148, 1–27.

[9] de Bernardis, P.; Ade, P. A. R.; Bock, J. J.; Bond, J. R.; Borrill, J.; Boscaleri, A.; Coble, K.; Crill, B. P.; De

Gasperis, G.; Farese, P. C.; et al. Nature 2000, 404, 955–959.

[10] Hanany, S.; Ade, P.; Balbi, A.; Bock, J.; Borrill, J.; Boscaleri, A.; de Bernadis, P.; Ferreira, P. G.; Hristov, V. V.;

Jaffe, A. H.; et al. Astrophys. J. 2000, 545, L5–L9.

[11] Tegmark, M.; Blanton, M. R.; Strauss, M. A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; Vogeley, M. S.; Weinberg,

D. H.; Zehavi, I.; Berlind, A.; et al. Astrophys. J. 2004, 606, 702–740.

[12] Tegmark, M.; Strauss, M. A.; Blanton, M. R.; Abazajian, K.; Dodelson, S.; Sandvik, H.; Wang, X.; Weinberg, D.

H.; Zehavi, I.; Bahcall, N. A.; et al. Phys. Rev. D 2004, 69, 103501–103526.

[13] Spergel, D. N.; Verde, L.; Peiris, H. V.; Komatsu, E.; Nolta, M. R.; Bennett, C. L.; Halpern, M.; Hinshaw, G.;

Jarosik, N.; Kogut, A; et al. Astrophys. J. Suppl. 2003, 148, 175–194.

[14] Ratra, B.; Peebles, P. J. E. Phys. Rev. D 1988, 37, 3406–3427.

[15] Caldwell, R. R. Phys. Lett. B 2002, 545, 23–29.

[16] Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, P. J. Phys. Rev. Lett. 2000, 85, 4438–4441.

[17] Padmanabhan, T. Phys. Rev. D 2002, 66, 021301–021304.

[18] Everett, A. E. Phys. Rev. D 1981, 24, 858–868.

[19] Ozer, M.; Taha, O. Phys. Lett. B 1986, 171, 363-365.

[20] Chen, W.; Wu, Y. S. Phys. Rev. D 1990, 41, 695–698.

[21] Carvalho, J. C.; Lima, J. A. S.; Waga, I. Phys. Rev. D 1992, 46, 2404–2407.

[22] Arbab, A. I.; Abdel-Rahman, A. M.-M. Phys. Rev. D 1994, 50, 7725–7728.

[23] Kibble, T. W. B. J. Phys. A. Math. Gen. 1976, 9, 1387–1398.

[24] Kibble, T. W. B. Phys. Rep. 1980, 67, 183–199.

[25] Vilenkin, A. Phys. Rep. 1985, 121, 263–315.

[26] Zel’dovich, Ya. B. Mon. Not. R. Astron. Soc. 1980, 192, 663–667.

[27] Vilenkin, A. Phys. Rev. D 1981, 24, 2082–2089.

[28] Letelier, P. S. Phys. Rev. D 1979, 20, 1294–1302.

[29] Satchel, J. Phys. Rev. D 1980, 21, 2171–2181.

[30] Letelier, P. S. Phys. Rev. D 1983, 28, 2414–2419.

[31] Banerjee, A.; Sanyal, A. K.; Chakraborty, S. Pramana J. Phys. 1990, 34, 1–11.

[32] Krori, K. D.; Chaudhury, T.; Mahanta, C. R.; Mazumdar, A. Gen. Relativ. Gravit. 1990, 22, 123–130.

201

http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/376865
http://dx.doi.org/10.1086/376865
http://dx.doi.org/10.1086/383612
http://dx.doi.org/10.1086/383612
http://dx.doi.org/10.1086/498491
http://dx.doi.org/10.1086/498491
http://dx.doi.org/10.1038/35010035
http://dx.doi.org/10.1038/35010035
http://dx.doi.org/10.1103/PhysRevD.37.3406
http://dx.doi.org/10.1016/S0370-2693(02)02589-3
http://dx.doi.org/10.1103/PhysRevLett.85.4438
http://dx.doi.org/10.1103/PhysRevD.66.081301
http://dx.doi.org/10.1103/PhysRevD.24.858
http://dx.doi.org/10.1016/0370-2693(86)91421-8
http://dx.doi.org/10.1103/PhysRevD.46.2404
http://dx.doi.org/10.1103/PhysRevD.50.7725
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1016/0370-1573(80)90091-5
http://dx.doi.org/10.1016/0370-1573(85)90033-X
http://dx.doi.org/10.1103/PhysRevD.24.2082
http://dx.doi.org/10.1103/PhysRevD.20.1294
http://dx.doi.org/10.1103/PhysRevD.21.2171
http://dx.doi.org/10.1103/PhysRevD.28.2414
http://dx.doi.org/10.1007/BF02846104
http://dx.doi.org/10.1007/BF00756203


DAS and ALI/Turk J Phys

[33] Wang, X. X. Chin. Phys. Lett. 2003, 20, 615–617.

[34] Wang, X. X. Chin. Phys. Lett. 2003, 20, 1202–1205.

[35] Misner, C. W. Nature 1967, 214, 40–41.

[36] Weinberg, S. Astrophys. J. 1971, 168, 175–194.

[37] Murphy, G. L. Phys. Rev. D 1973, 8, 4231–4233.

[38] Beesham, A. Phys. Rev., D 1993, 48, 3539–3543.

[39] Krori, K. D.; Mukherjee, A. Gen. Relativ. Gravit. 2000, 32, 1429–1438.

[40] Asseo, E.; Sol, H. Phys. Rep. 1987, 148, 307–436.

[41] Madsen, M. S. Mon. Not. R. Astron. 1989, 237, 109–117.

[42] Melvin, M. A. Ann. New York Acad. Sci. 1975, 262, 253–274.

[43] Chakraborty, S. Ind. J. Pure Appl. Phys. 1991, 29, 31–33.

[44] Tikekar, R.; Patel, L. K. Gen. Relativ. Gravit. 1992, 24, 397–404.

[45] Singh, G. P.; Singh, T. Gen. Relativ. Gravit. 1999, 31, 371–378.

[46] Weber, E. J. Math. Phys. 1984, 25, 3279–3285.

[47] Weber, E. J. Math. Phys. 1985, 26, 1308–1310.

[48] Kantowski, R.; Sachs, R. K. J. Math. Phys. 1966, 7, 443–446.

[49] Lorenz, D. J. Phys. A. Math. Gen. 1983, 16, 575–584.

[50] Grøn, Ø. J. Math. Phys. 1986, 27, 1490–1493.

[51] Matravers, D. R. Gen. Relativ. Gravit. 1988, 20, 279–288.

[52] Krori, K. D.; Goswami, A. K.; Purkayastha, A. D. J. Math. Phys. 1995, 36, 1347–1352.

[53] Wang, X. X. Astrophys. Space Sci. 2005, 298, 433–440.

[54] Pradhan, A.; Yadav, V. K. Int. J. Mod. Phys. D 2002, 11, 893–912.

[55] Katore, S. D. Bulg. J. Phys. 2010, 37, 144–151.

[56] Takabayasi, T. Quantum Mechanics, Determination, Causality and Particles, Reidal: Dordrecht, the Netherlands,

1976, p. 179.

[57] Bali, R.; Pradhan, A. Chin. Phys. Lett. 2007, 24, 585–588.

[58] Saha, B. Mod. Phys. Lett. A 2005, 20, 2127–2143.

[59] Yadav, V. K.; Yadav, L. Rom. J. Phys. 2013, 58, 64–74.

[60] Tiwari, R. K.; Dwivedi, U. FIZIKA (Zegreb), 2010, 19, 1–8.

[61] Hawking, S. W.; Ellis, G. F. R. The Large Scale Structure of Spacetime, Cambridge University Press, Cambridge,

UK, 1973, p. 91.

[62] Garnavich, P. M.; Kirshner, R. P.; Challis, P.; Tonry, J.; Gilliland, R. L.; Smith, R. C.; Clocchiatti, A.; Diercks,

A.; Filippenko, A. V.; Hamuy, M.; et al. Astrophys. J. 1998, 493, L53–L57.

[63] Garnavich, P. M.; Jha, S.; Challis, P.; Clocchiatti, A.; Diercks, A.; Filippenko, A. V.; Gilliland, R. L.; Hogan, C.

J.; Kirshner, R. P.; Leibundgut, B.; et al. Astrophys. J. 1998, 509, 74–79.

[64] Schmidt, B. P.; Suntzeff, N. B.; Phillips, M. M.; Schommer, R. A.; Clocchiatti, A.; Kirshner, R. P.; Garnavich, P.;

Challis, P.; Leibundgut, B.; Spyromilio, J.; et al. Astrophys. J. 1998, 507, 46–63.

[65] John, M. V. Astrophys. J. 2004, 614, 1–5.

[66] Knop, R. A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M. S.; Conley, A.; Deustua, S. E.; Doi, M.;

Ellis, R.; et al. Astrophys. J. 2003, 598, 102–137.

202

http://dx.doi.org/10.1038/214040a0
http://dx.doi.org/10.1086/151073
http://dx.doi.org/10.1103/PhysRevD.8.4231
http://dx.doi.org/10.1103/PhysRevD.48.3539
http://dx.doi.org/10.1016/0370-1573(87)90127-X
http://dx.doi.org/10.1111/j.1749-6632.1975.tb31440.x
http://dx.doi.org/10.1007/BF00760415
http://dx.doi.org/10.1023/A:1026644828215
http://dx.doi.org/10.1063/1.526076
http://dx.doi.org/10.1063/1.526935
http://dx.doi.org/10.1063/1.1704952
http://dx.doi.org/10.1088/0305-4470/16/3/016
http://dx.doi.org/10.1063/1.527107
http://dx.doi.org/10.1007/BF00759186
http://dx.doi.org/10.1063/1.531124
http://dx.doi.org/10.1007/s10509-005-5833-9
http://dx.doi.org/10.1088/0256-307X/24/2/079
http://dx.doi.org/10.1142/S021773230501830X
http://dx.doi.org/10.1086/311140
http://dx.doi.org/10.1086/311140
http://dx.doi.org/10.1086/306495
http://dx.doi.org/10.1086/306495
http://dx.doi.org/10.1086/306308
http://dx.doi.org/10.1086/306308
http://dx.doi.org/10.1086/423365
http://dx.doi.org/10.1086/378560
http://dx.doi.org/10.1086/378560

	Introduction
	Metric and field equations
	Solution in presence of bulk viscosity and magnetic field
	Some physical and geometric features
	Discussion
	Bulk viscous model in absence of magnetic field
	Discussion

	Conclusion

