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Abstract:A modified factorization method for a charged particle in a time-dependent magnetic field has been developed

by virtue of motion quantum integrals. Application of this method to the considered system helps to find exact solutions

for a range of nonstationary potentials.

Key words: Factorization method, quantum integrals of motion

PACS numbers: 03.65.-w

1. Introduction

The classical factorization method (CFM) developed by Schrödinger [1–3] allows one to determine eigenfunctions

(EF) and the eigenvalues (EV) for stationary problems. A detailed review of the factorization method can be

found in Shi-Hai Dong’s book [4].

Mielnik [5] developed a modified method of factorization (MMF) that allows the construction of a class of

one-dimensional stationary potentials with a harmonic oscillator spectrum. Those potentials mentioned above

are different from those of the harmonic oscillator. Thus, using the MMF one can extend the class of potentials

for which exact solutions exist.

To solve the problem for nonstationary systems we need to determine the wave function ψ satisfying

the wave equation iℏ∂ψ∂t = Ĥψ , where Ĥ is the Hamiltonian of the considered problem. However, the wave

function in the nonstationary problem is not EF of the Ĥ Hamiltonian. Therefore, it is impossible to generalize

directly MMF to the nonstationary case.

In [6], CFM was developed for the nonstationary harmonic oscillator. The purpose of this article is to

show an example of the charged particle in a time-dependent magnetic field, that not only the CFM but also

MMF can be developed for nonstationary systems, using a method of quantum integrals of motion [7].

Application of MMF to the considered system allows one to find exact solutions for a wide range of

nonstationary potentials.

One can determine the stationary potentials and wave functions passing to the limit as t → 0 in the

corresponding expressions. Such stationary potentials have the same spectrum, and it seems impossible to

distinguish experimentally such systems from each other. However, due to differences in the wave functions

of these isospectral systems, any external perturbation allows one to distinguish one system from another.

Therefore, even in the case of a stationary magnetic field MMF is of practical interest.
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2. Nonstationary MMF

2.1. Nonstationary potentials

Consider a charged particle in a homogeneous magnetic field H⃗ (t) directed along the z -axis. In this case, the

motion along the z−axis is trivial and can be neglected. We will consider the motion in the xy plane. Let us

choose the vector potential in the form

A⃗ (r⃗, t) = [−H (t) y/2,H (t)x/2, 0] . (1)

In view of the foregoing the Hamiltonian of the system is

Ĥ =
1

2m

[
(p̂x +mω (t) y)

2
+ (p̂y −mω (t)x)

2
]
. (2)

Here x, y are usual canonical coordinates, p̂x, p̂y the corresponding momenta,

ω (t) = eH (t)/2mc the time-dependent frequency, c the velocity of light, m the particle mass, and e its

charge.

Let us introduce the operators:

ˆ̃A− (t) = f (t) [ε (t) (p̂x + ip̂y)− imε̇ (t) (δ (y)− iβ (x))]
/√

2ℏm, (3)

ˆ̃B− (t) = f (t) [ε (t) (p̂y + ip̂x)− imε̇ (t) (β (x)− iδ (y))]
/√

2ℏm, (4)

where β (x) , δ (y) are arbitrary functions of the coordinates, and let us require that

Â−Â+ = ˆ̃A− ˆ̃A+, (5)

B̂−B̂+ = ˆ̃B− ˆ̃B+. (6)

In [8] it is shown that Â− , B̂− are annihilation operators, and Â+ , B̂+ are creation operators for the system

with Hamiltonian (2),

Â− (t) = f (t) [ ε (t) (p̂x + ip̂y)− imε̇ (t) (y − ix)]

/
(2ℏm)

1/2 , (7)

B̂− (t) = f (t) [ ε (t) (p̂y + ip̂x)− imε̇ (t) (x− iy)]

/
(2ℏm)

1/2 , (8)

[Â−, Â+] = [B̂−, B̂+] = 1, [Â−, B̂−] = [Â−, B̂+] = 0. (9)

Here ε (t) is a definite solution of the equation for a classical oscillator

ε̈+ ω2 (t) ε = 0, (10)

f (t) =
1√
2
exp

i t∫
0

ω (τ) dτ

 , (11)
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ε̇ε∗ − ε̇∗ε = 2i. (12)

Hereinafter the point over any function denotes the time derivative, and the prime is the derivative on coordinate.

It is known [8] that Â±, B̂± are integrals of motion, i.e.[
iℏ
∂

∂t
− Ĥ, Â±

]
= 0,

[
iℏ
∂

∂t
− Ĥ, B̂±

]
= 0. (13)

Let us use equations (3), (4), (7), and (8) in the formulas (5) and (6), and then sum up the results term by

term. As a result, we obtain an equation in which some of the terms depend only on x , and the other terms

only on y . Hence, instead of a single equation we get two, namely

m | ε̇ |2 |β |2 − ε̇ε∗βp̂x − εε̇∗p̂xβ
∗ = m | ε̇ |2 x2 − ε̇ε∗xp̂x − εε̇∗p̂xx (14)

The second equation has the same form, but x→ y , p̂x → p̂y .

Taking into account f. (0.411.1) [9], it is easy to verify that the solution of the equation (13) is

β = x+ i
Φ (x)

ε̇ε∗
, ImΦ (x) = 0, (15)

where

Φ (x) = C−1/2

γ +

√
Cx∫

0

dz exp
(
−z2

)
−1

exp
(
−Cx2

)
, C =

m

ℏ | ε |2
, γ ∈ R. (16)

Then

δ = y + i
F (y)

ε̇ε∗
, ImF (y) = 0,Φ (x) → F (y) if x→ y, γ → γF , γF ∈ R. (17)

Using f. (15) and f. (17) it is easy to prove that[
ˆ̃A−, ˆ̃A+

]
=
[
ˆ̃B−, ˆ̃B+

]
=

1 + Φ′

2
+

1 + F ′

2
. (18)

Let us calculate ˆ̃A+ ˆ̃A− , knowing f. (18) and f. (5):

ˆ̃A+ ˆ̃A− = ˆ̃K − 1

2
, (19)

where we introduced the notation

ˆ̃K = K̂ − Φ′ + F ′

2
, K̂ = Â+Â− +

1

2
. (20)

Similarly,

ˆ̃B+ ˆ̃B− = ˆ̃L− 1

2
, ˆ̃L = L̂− Φ′ + F ′

2
, L̂ = B̂+B̂− +

1

2
. (21)

With f. (13) it is easy to see that the operators K̂ and L̂ are integrals of motion for the system (2):[
iℏ
∂

∂t
− Ĥ, K̂

]
= 0,

[
iℏ
∂

∂t
− Ĥ, L̂

]
= 0, (22)

and [K̂, L̂] = 0.

77



AGHAYEVA/Turk J Phys

Let us find out what is the Hamiltonian for a nonstationary system with respect to which ˆ̃K and ˆ̃L are

the integrals of motion, i.e. where ˆ̃H satisfies the following conditions:[
iℏ
∂

∂t
− ˆ̃H, ˆ̃K

]
= 0,

[
iℏ
∂

∂t
− ˆ̃H, ˆ̃L

]
= 0. (23)

We assume that
ˆ̃H = Ĥ + V (x) +W (y) (24)

and V (x), W (y) are arbitrary functions of x and y . Substitute f. (24), ˆ̃K from f. (20) and ˆ̃L from f. (21)

in f. (23). Let us take into account f. (22). We will obtain

iℏ
∂Φ′

∂t
+ iℏ

∂F ′

∂t
+
[
V, K̂

]
+
[
W, K̂

]
− 1

2

[
Ĥ , Φ′

]
− 1

2

[
Ĥ, F ′

]
= 0 (25)

Then instead of Ĥ we will use the expression (2), and instead of K̂ - f. (20), in which we will replace Â±

according to f. (7). After all these substitutions, from the terms in f. (25) we select those that are operators.

For equation (25) to take place, it is necessary that the sum of these terms shall be zero. From this, one can

determine the type of V and W :

V = − ℏ
| ε |2

Φ′,W = − ℏ
| ε |2

F ′ (26)

Direct verification shows that V, W given by f. (26) are solutions of equation (25), if we use f. (1.3.3.8) and

(1.3.3.1) [10], and consider time-depending constants γ and γF entering into Φ (x) and F (y) as follows:

γ̇ = αγ, γ̇F = αγF . (27)

Here

α = − d

dt
ln (ω0 |ε|)2 , ω0 = ω (t = 0) (28)

Finally, for the time-dependent system with Hamiltonian

ˆ̃H = Ĥ − ℏ
|ε|2

(Φ′ + F ′) (29)

we have the expressions

Φ (x, t) = C−1/2 exp
(
−Cx2

) (ω0 |ε|2
)−1

γ̃ +

√
Cx∫

0

dz exp
(
−z2

)
−1

, γ̃ ∈ R (30)

F (y, t) = C−1/2 exp
(
−Cy2

) (ω0 |ε|2
)−1

γ̃F +

√
Cy∫

0

dz exp
(
−z2

)
−1

, γ̃F ∈ R. (31)

A family of nonstationary Hamiltonians ˆ̃H for which exact solutions of ψ̃ exist can be constructed knowing the

expressions for Φ (x, t), F (y, t), starting from the Hamiltonian Ĥ of the charged particle in a time-dependent

magnetic field, and using the formula (29).
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2.2. Exact solutions

Let us obtain these exact solutions. As noted above, operators ˆ̃K and ˆ̃L are integrals of motion. Consequently,

the operators
(
iℏ ∂
∂t −

ˆ̃H
)
, ˆ̃K and ˆ̃L have a common EF system. This implies that the wave function of the

time-dependent system can be found by solving the problem for EV of ˆ̃K and ˆ̃L operators:

ˆ̃Kψ̃ = k̃ψ̃, ˆ̃Lψ̃ = l̃ψ̃ (32)

Taking into consideration (19), (5), (9), (20), we have

ˆ̃K ˆ̃A+ = ˆ̃A+
(
K̂ + 1

)
(33)

In [11] EF ψnd (t) of K̂ operator has been defined, which satisfies the known relations Â−ψnd =
√
nψn−1,d ,

Â+ψnd =
√
n+ 1ψn+1,d , n, d = 1, 2, 3...

Let us take it into account in the expression (20) for K̂ , premultiplying both sides of (33) on ψn−1,d (t).

We obtain

ˆ̃Kψ̃nd(t) = knψ̃nd (t) , kn = n+
1

2
(n = 1, 2, 3...., d = 0, 1.2, 3, ...), (34)

where

ψ̃nd (t) ∼ ˆ̃A+ψn−1, d (t) (35)

will be EF of ˆ̃K operator. Thus, the EV k̃ and EF ψ̃ of the operator ˆ̃K are obtained automatically from the

EV k and EF ψ of the operator K̂ .

Similarly, but in view of (21), (6), B̂−ψnd =
√
dψn,d−1 , B̂

+ψnd =
√
d+ 1ψn,,d+1 we obtain

ˆ̃L ˆ̃B+ = ˆ̃B+
(
L̂+ 1

)
, ψ̃nd (t) ∼ ˆ̃B+ψn, d−1 (t) (n = 0, 1, 2, ..., d = 1, 2, 3, ...) (36)

- of EF operator ˆ̃L with EV l̃ = l :

L̃ψ̃nd(t) = ldψ̃nd (t) . (37)

From the expressions (35) and (36) and the commutation relation [ ˆ̃A+, ˆ̃B+] = 0 it is obvious that the EF of

the problem with Hamiltonian ˆ̃H will be

ψ̃nd (t) = Cnd
ˆ̃A+ ˆ̃B+ψn−1, d−1 (t) , n, m = 1, 2, 3, ...

ψ̃n0 (t) = Cno
ˆ̃A+ψn−1, 0 (t) ,

ˆ̃
ψ0d (t) = C0d

ˆ̃B+ψ 0, d−1 (t) . (38)

It is easy to verify that all ψ̃nd (t) are orthogonal to each other:(
ψ̃n′d′ (t) , ψ̃nd(t)

)
= 0 at n ̸= n′, d ̸= d′, (39)

ψ̃0d (t) is orthogonal to all ψ̃nd (t), if
ˆ̃A−ψ̃0d = 0. Similarly, ψ̃n0 (t) is orthogonal to all ψ̃nd (t), if

ˆ̃B−ψ̃n0 = 0.
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However, formula (38) does not cover all EF of the Hamiltonian ˆ̃H . Indeed, one can construct another

EF ψ̃00 based on its orthogonality to all other EF. For this purpose let us set n = d = 0 in formula (39), which

leads to the condition
ˆ̃A−ψ̃00 = 0, ˆ̃B−ψ̃00 = 0, (40)

from which in view of the expressions (3), (4), (14) and the expression for C from (16), we have

ψ̃00 = const · exp

(
iε̇m

(
x2 + y2

)
2ℏε

)
· exp

−C
x∫

0

Φ(x̃, t)dx̃− C

y∫
0

F (ỹ, t) dỹ

 . (41)

ψ̃00 is another, as seen from (34) and (37), the EF of ˆ̃H corresponding to the EV l0 = k0 = 1/2.

If in expressions (38), (41), (26), (30), (31) for the wave functions and the potential considered nonsta-

tionary problem put ε = ω
−1/2
0 exp (iω0t) and tend t to zero (in this case ω (t) → ω0), then we obtain the

corresponding expressions of the stationary problem.

3. Conclusion

MMF is developed for a nonstationary system, namely for a charged particle in a time-dependent magnetic

field. Based on the results in this paper and assigning specific dependence of the magnetic field on time, one

can find the exact solutions for a variety of anharmonic potentials.

The use of motion quantum integrals makes the procedure of the solution for the considered nonstationary

task similar to that for a stationary task.

In the case of a stationary task, MMF generates a family of isospectral stationary potentials (see also

(5)). If we impose an external perturbation, then it is possible to distinguish experimentally isospectral systems

mentioned above from each other. For example, this finding can be used in the study of band structure.
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