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Abstract: In this work, we point out the phenomenon whereby the noncommutative corrections to the geometric phases

induced by an electric field and a magnetic field have different orders in terms of the noncommutative parameters. The

first order correction is zero for the electric field induced geometric phase and it is nonzero for the magnetic field induced

geometric phase. In our calculation, the system is in coherent states when the electric field is applied, so the corresponding

geometric phase calculated is that of the coherent states. Considering that the noncommutative parameters are very

small, it is better to use the magnetic field rather than the electric field for detecting the noncommutativity of spaces.
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1. Introduction

Theories on noncommutative spaces have been extensively studied [1–21]. The original motivation for introduc-

ing space-time noncommutativity was to overcome the difficulties of infinite energies in quantum field theory

[1]. Renewed interest in such an idea is mainly due to the fact that space-time noncommutativity is natu-

rally found in string/M theory [2,3]. In a 2D noncommutative phase space, while the coordinate–momentum

commutation relations remain the same as in ordinary quantum mechanics, the coordinate–coordinate and

momentum–momentum commutators are supposed to be nonzero.

[x̂1, x̂2] = iµ, [p̂1, p̂2] = iν, [x̂j , p̂k] = iℏδj k, (1)

where µand ν are the noncommutative parameters and δj k is the Kronecker δ function. In [6], it was pointed

out that the bounds for the noncommutative parameters are µ ≤ 4× 10−40 m2 and ν ≤ 1.76× 10−61 kg2m2s−2 ,

which are very small, as expected. To date, detecting the noncommutative effects directly is still difficult. In

[13], using the electric field induced geometric phase [22–26] to detect the noncommutative effects was suggested.

However, in the next section we will show that the first order correction to such a geometric phase is zero in

terms of the noncommutative parameters. Considering that the noncommutative parameters are very small,

such a suggestion is difficult to be realized. The geometric phase that we derived is actually that of the coherent

states in noncommutative spaces. There are many discussions on the related problem in commutative spaces

[27–31]. In the third section, we study the geometric phase by applying a magnetic field to a 2D harmonic

oscillator in noncommutative phase space. The first order correction to the magnetic field induced geometric
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phase is nonzero. Thus, for detecting noncommutativity, it is easier to use a magnetic field than an electric

field. The fourth section is the final section, where a summary is given.

2. Geometric phase induced by electric field

For a particle moving in 2D noncommutative phase space, we write the annihilation operators as

Â1 = [ρ(x̂1 − ix̂2) + i(p̂1 − ip̂2)]/N1, (2a)

Â2 = [σ(x̂2 − ix̂1) + i(p̂2 − ip̂1)]/N2, (2b)

where N1, N2, σ, ρ are all constants to be determined. Demanding that Â1 commutates with Â2 , we get

ℏ(ρ− σ) + µσρ = ν. (3)

In deriving Eq. (3), the commutation relations have been used. The commutation relations [Â1, Â†
1] =

[Â2, Â
†
2] = 1 result in

N1 =
√
2(σ + ρ)(ℏ− µρ), N2 =

√
2(σ + ρ)(ℏ+ µσ). (4)

Using the annihilation operators Eqs. (2a) and (2b) and the corresponding creation operators, the coordinate

and momentum operators in 2D noncommutative phase space are expressed as follows.

x̂1 = 1√
2
[a(Â1 + Â†

1) + ib(Â2 − Â†
2)]

x̂2 = 1√
2
[b(Â2 + Â†

2) + ia(Â1 − Â†
1)]

p̂1 = 1√
2
[ρb(Â2 + Â†

2)− iσa(Â1 − Â†
1)]

p̂2 = 1√
2
[σa(Â1 + Â†

1)− iρb(Â2 − Â†
2)]

(5)

Here, a =
√
(ℏ− µρ)/(σ + ρ) and b =

√
(ℏ+ µσ)/(σ + ρ), which are introduced to make the mathematical

expressions simpler.

By choosing σρ = m2ω2 , the Hamiltonian of the isotropic harmonic oscillator is diagonalized by the

annihilation operators of Eqs. (2a) and (2b) and the corresponding creation operators.

Ĥ0 =
p̂21 + p̂22
2m

+
1

2
mω2(x̂21 + x̂22) = ℏω10(Â

†
1Â1 + 1/2) + ℏω20(Â

†
2Â2 + 1/2) (6)

Here, ℏω10 = a2(σ2 +m2ω2)/m, ℏω20 = b2(ρ2 +m2ω2)/m . Using the relation from Eq. (3) and the condition

σρ = m2ω2 , we obtain the following.

σ =

√(
ν−µm2ω2

2ℏ

)2

+m2ω2 − ν−µm2ω2

2ℏ > 0

ρ =

√(
ν−µm2ω2

2ℏ

)2

+m2ω2 + ν−µm2ω2

2ℏ > 0

(7)

In these expressions, the noncommutative parameters can take any values.
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We suppose that initially there is no electric field and the initial state |ψ(t)⟩ is one of the eigenstates of

the Hamiltonian (6). At some time the electric field is suddenly switched on. The electric field can be written

as E(t) = Eθ(t), where θ(t) is the Heaviside step function. After the electric field is applied along the x1 -axis,

the Hamiltonian becomes the following.

Ĥ1 =
p̂2
1+p̂2

2

2m + 1
2mω

2(x̂21 + x̂22)− qEx̂1 = ℏω10(Â
†
1Â1 + 1/2)− (aqE/

√
2)(Â1 + Â†

1)

+ℏω20(Â
†
2Â2 + 1/2)− i(bqE/

√
2)(Â2 − Â†

2) = ℏω10D
†
1(α1)(Â

†
1Â1 + 1/2− α2

1)D1(α1)

+ℏω20D
†
2(α2)(Â

†
2Â2 + 1/2− α2

2)D2(α2)

(8)

Here, α1 = −[aqE/(
√
2ℏω10)] and α2 = [bqE/(

√
2ℏω20)] are constants. The displacement operators are

D1(α1) = exp[α1(Â
†
1 − Â1)], D2(α2) = exp[iα2(Â

†
2 + Â2)], (9)

for which there exist the relations

D†
1(α1)Â1D1(α1) = Â1 + α1, D

†
2(α2)Â2D2(α2) = Â2 + iα2. (10)

In the presence of the electric field, time evolution of wave functions is governed by the Schrödinger equation.

H1 |ψ(t)⟩ = iℏ
∂ |ψ(t)⟩
∂t

(11)

As the Hamiltonian of Eq. (8) is time-independent, the wave function at any time is as follows.

|ψ(t)⟩ = exp
(
−iH1t

ℏ
)
|ψ(t)⟩ = D†

1(α1) exp(−iω10 tÂ
†
1Â1)D1(α1) exp[iω10 t(α

2
1 − 1/2)]

D†
2(α2) exp(−iω20 tÂ

†
2Â2)D2(α2) exp[iω20 t(α

2
2 − 1/2)] |ψ(t)⟩

(12)

In the case of |ψ(t)⟩ = |ψ(t)⟩ , the wave function of Eq. (12) finally becomes the following.

|ψ(t)⟩ = exp
(
−iH1t

ℏ
)
|ψ(t)⟩ = exp[β1(t)Â

†
1 − β∗

1(t)Â1] exp[iβ2(t)Â
†
2 + iβ∗

2(t)Â2] |ψ(t)⟩

exp[iω10 t(α
2
1 − 1/2)− iα2

1 sin(ω10 t)] exp[iω20 t(α
2
2 − 1/2)− iα2

2 sin(ω20 t)]
(13)

Here, β1(t) = α1[exp(−iω10 t) − 1], β2(t) = α2[exp(−iω20 t) − 1]. Under the action of the electric field, the

state of the system is transformed from the ground state into the wave function of Eq. (13). Acting as the

annihilation operators on the wave function of Eq. (13), we have

Â1 |ψ(t)⟩ = β1(t) |ψ(t)⟩ , Â2 |ψ(t)⟩ = iβ2(t) |ψ(t)⟩ , (14)

which means the wave function of Eq. (13) is the standard coherent state [32]. Now we calculate the geometric

phase related to this standard coherent state.

While studying the interference of light, Pancharatnam came up with a brilliant idea regarding the general

evolution of polarized light, which was then generalized to an arbitrary evolution in quantum mechanics [24–26].

Generally, the total phase for the evolution from an initial state to a final state is:

ϕP (t) = arg ⟨00 | ψ(t)⟩ = ω10 t(α
2
1 − 1/2)− α2

1 sin(ω10 t) + ω20 t(α
2
2 − 1/2)− α2

2 sin(ω10 t). (15)
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The dynamical phase is:

φd(t) = −1

ℏ

∫ t

0

⟨ψ(τ)|H1 |ψ(t)⟩ dτ = −ω10 t

2
− ω20 t

2
. (16)

The difference is named the geometric phase [25,26]:

ϕg(t) = ϕP (t)− ϕd(t) = α2
1[ω10 t− sin(ω10 t)] + α2

2[ω20 t− sin(ω20 t)], (17)

which is the result corresponding to the nonadiabatic noncyclical evolution. Recalling that α1 = −[aqE/(
√
2ℏω10)]

and α2 = [bqE/(
√
2ℏω20)] , one clearly sees that the geometric phase is induced by the external electric field.

In the commutative limit, the geometric phase of Eq. (17) reduces to

φ0g(t) =
q2E2

2ℏmω3
[ω t− sin(ωt)]. (18)

The phase difference ∆φg(t) = φg(t)−φ0g(t) is a signature of noncommutativity. Based on this geometric phase,

one may test the noncommutativity of spaces. However, in the first order approximation of the noncommutative

parameters, it is found that ∆φg(t) = φg(t) − φ0g(t) = 0. That is to say, noncommutative correction

to the geometric phase is at least second order in terms of the noncommutative parameters. Detecting the

noncommutativity through such kinds of geometric phases is difficult.

3. Geometric phase induced by magnetic field

Similar to the electric field, the magnetic field can be written as B(t) = Bθ(t). We suppose that the magnetic

field is perpendicular to the plane of the 2D harmonic oscillator. In symmetry gauge, the vector potential of

the magnetic field is (−Bx̂2/2, Bx̂1/2). After the magnetic field is switched on, the Hamiltonian of Eq. (6)

becomes the following.

Ĥ2 = (p̂1+qBx̂2/2)
2+(p̂2−qBx̂1/2)

2

2m + 1
2mω

2(x̂21 + x̂22)

= Ĥ0 +
1
2mω

2
L(x̂

2
1 + x̂22)− ωL(x̂1p̂2 − x̂2p̂1)

= ℏω1(Â
†
1Â1 +

1
2 ) + ℏω2(Â

†
2Â2 +

1
2 ) + ab[mω2

L − ωL(σ − ρ)]i(Â1Â2 −A†
1A

†
2)

(19)

Here, ωL = qB/(2m) and

ω1 = ω10 + (mω2
La

2 − 2ωLσa
2)/ℏ

ω2 = ω20 + (mω2
Lb

2 + 2ωLρb
2)/ℏ

. (20)

As is well known, the operators K̂− = Â1Â2 , K̂+ = Â†
1Â

†
2 , and K̂0 = 1

2 (Â
†
1Â1+ Â

†
2Â2+1) form the Lie algebra

of the SU(1,1) group, [K̂−, K̂+] = 2K̂0 and [K̂0, K̂±] = ±K̂± , or the Hamiltonian of Eq. (19) is composed of

SU(1,1) generators. Using the 2-mode squeeze operator [33,34]

S(r) = exp[ir(Â1Â2 + Â†
1Â

†
2)], (21)

the Hamiltonian of Eq. (19) can be written in the following form:

H2 = S†(r)[ℏΩ(Â†
1Â1 + Â†

2Â2)− ℏ∆B(Â
†
1Â1 − Â†

2Â2) + E0r]S(r), (22)
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where

Ω = ω1+ω2

2 cosh(2r) , tanh(2r) =
2abωL(σ−ρ−mωL)

ℏ(ω1+ω2)

∆B = ω2−ω1

2 , E0r = 1
2ℏ(ω1 + ω2)− 2ℏΩsinh2 r

. (23)

After the magnetic field is turned on, the wave function at any time is determined by

|ψ(t)⟩ = exp
(
−iH2t

ℏ
)
|ψ(t)⟩

= S†(r) exp[−iΩt(Â†
1Â1 + Â†

2Â2) + i∆Bt(Â
†
1Â1 − Â†

2Â2)]S(r) |ψ(t)⟩ exp(−iE0rt/ℏ)

= U1(r, t) exp[−i(Ω−∆B)tÂ
†
1Â1 − i(Ω +∆B)tÂ

†
2Â2] |ψ(t)⟩ exp(−iE0rt/ℏ)

(24)

where

U1(r, t) = S†(r) exp[−i(Ω−∆B)tÂ
†
1Â1 − i(Ω +∆B)tÂ

†
2Â2]S(r)

exp[i(Ω−∆B)tÂ
†
1Â1 + i(Ω +∆B)tÂ

†
2Â2]

. (25)

Our next task is to find the wave function for a given initial state. However, to get a simple form for the wave

function is much more complicated than that in the above section. Now we must simplify the operator of Eq.

(25). After some calculations, we obtain

U−1
1 (r, t)Â1U1(r, t) = µÂ1 − νÂ†

2, (26)

U−1
1 (r, t)Â2U1(r, t) = µÂ2 − νÂ†

1, (27)

where

µ = cosh2 r − exp(2iΩt) sinh2 r
ν = i[1− exp(−2iΩt)] sinh r cosh r

. (28)

Calculations show that |µ|2 − |ν|2 = 1, which means Eqs. (26) and (27) are Bogoliubov transformations. The

parameters of Eq. (28) can be rewritten as

µ = cosh s exp(iϕµ), ν = sinh s exp(iϕν), (29)

where

cosh s = |µ| =
√

1 + 1
2 sinh

2(2r)[1− cos(2Ωt)]

φµ = arctan − sin(2Ωt) sinh2 r
cosh2 r−cos(2Ωt) sinh2 r

sinh s = |ν| =
√

1
2 sinh

2(2r)[1− cos(2Ωt)]

φν = arctan 1−cos(2Ωt)
− sin(2Ωt)

. (30)

After some investigations, it is found that the Bogoliubov transformations of Eqs. (26) and (27) can be realized

by the following operator.

U2(r, t) = exp

(
− v

µ∗ Â
†
1Â

†
2

)
exp

[
−(Â†

1Â1 + Â†
2Â2 + 1) lnµ∗

]
exp

(
v∗

µ∗ Â1Â2

)
(31)
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That is to say, by replacing U1(r, t) in Eqs. (26) and (27) with U2(r, t), the transformations of Eqs. (26) and

(27) remain valid. In other words, there exist the following relations.

U−1
1 (r, t)Â1U1(r, t) = U−1

2 (r, t)Â1U2(r, t) (32a)

U−1
1 (r, t)Â2U1(r, t) = U−1

2 (r, t)Â2U2(r, t) (32b)

From Eqs. (32a) and (32b), one can get [U2(r, t)U
−1
1 (r, t), Â1] = 0 = [U2(r, t)U

−1
1 (r, t), Â2] . That is to say, the

operator U2(r, t)U
−1
1 (r, t) commutes with the annihilation operators Â1 and Â2 . By similar arguments, we

can get that U2(r, t)U
−1
1 (r, t) commutes with the creation operators Â†

1 and Â†
2 too. Thus, U2(r, t)U

−1
1 (r, t)

commutes with any combinations of the operators Â1 , Â2 , Â
†
1 , and Â†

2 , which means U2(r, t)U
−1
1 (r, t) must

be a constant. Choosing a special case r = 0, we see that this constant is unit,

U2(r, t)U
−1
1 (r, t) = 1, or U1(r, t) = U2(r, t). (33)

The operator of Eq. (25) has another form, as seen in Eq. (31). Using Eq. (31), the final state can be obtained

more easily. For example, when |ψ(t)⟩ = |ψ(t)⟩ , the final state is

|ψ(t)⟩ = exp
(
− v

µ∗ Â
†
1Â

†
2

)
exp(− lnµ∗) |ψ(t)⟩ exp(−iE0rt/ℏ)

=
exp[i(ϕµ−E0rt/ℏ)]

cosh s

∞∑
n=0

tanh2 s |ψ(t)⟩ exp[ni(π + ϕµ + ϕν)]
. (34)

In the process of time evolution, the structure of the state in Eq. (34) is preserved. At the moment ϕµ+ϕν = π ,

the wave function of Eq. (34) is the 2-mode squeezed vacuum state with s the squeezing coefficient [33,34],

which belongs to the SU(1,1) coherent states. Through the expressions of Eq. (30), we see that the parameters

s , ϕµ , and ϕν are all functions of time with the period T = π/Ω. The total and dynamical phases of the state

in Eq. (34) are as follows.

φt(t) = arg ⟨00 | ψ(t)⟩ = ϕµ − E0rt/ℏ

φd(t) = − 1
ℏ
∫ t

0
⟨ψ(τ)|H2 |ψ(t)⟩ dτ = − 1

2 (ω1 + ω2)t
(35)

Thus, the geometric phase is φg(t) = φt(t) − φd(t) = ϕµ + 2Ωt sinh2 r , which is the result of nonadiabatic

evolution. At the time T = π/Ω, ϕµ = 0, so the geometric phase for one period becomes

φg(T ) = 2π sinh2 r, (36)

which is the geometric phase that corresponds to the nonadiabatic cyclic evolution [24]. From Eq. (28), we

have µ = 1 and ν = 0 at T = π/Ω. Now the wave function of Eq. (34) returns to the initial one:

|ψ(t)⟩ = |ψ(t)⟩ exp(−iE0rT/ℏ). (37)

The phase gained is the total phase in Eq. (35). In the first order approximation, Eq. (36) becomes the

following.

φg(T ) = 2π sinh2 r → 2π

(
2ω2+ω2

L

2ω
√

ω2+ω2
L

− 1

)
+2π

2ω2+ω2
L

2ω
√

ω2+ω2
L

[
ωL(ν+µm2ω2)
mℏ(2ω2+ω2

L)
− µmωL

ℏ − νωL

2mℏ(ω2+ω2
L)

] (38)
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The first order correction is nonzero. Hence, as far as the geometric phase is concerned, the noncommutative

effect is more easily detected with the magnetic field than the electric field.

4. Conclusions

The geometric phases by abrupt turn-on of an electric or magnetic field for a 2D harmonic oscillator in non-

commutative phase space are calculated. For the geometric phase induced by electric field, the noncommutative

correction is at least second order in terms of the noncommutative parameters. If the electric field is replaced

by a magnetic field, the SU(1,1) coherent states are generated, which are seldom addressed in noncommutative

phase space. In this situation, the first order correction to the geometric phase is nonzero. Therefore, to detect

noncommutativity through the geometric phase, it is better to use the magnetic field rather than the electric

field.
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