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Abstract: In this paper, our intention is to construct 5-dimensional Bianchi type-III cosmological models for quark

matter attached to a string cloud in general relativity. Different cases for the metric potentials are considered and

studied. The physical and kinematical behaviors of all the models are discussed. It is observed that most of the models

admit initial singularity.
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1. Introduction

The exact cosmological solutions of Einstein field equations with different equations of state and different

symmetries have been found by many authors in 5 dimensions [1–3] and other dimensions [4–7]. The physics of

the universe in higher-dimensional space-time have been studied by many authors [8–10].

The possibility that the world may have more than 4 dimensions is due to Kaluza [11] and Klein [12], who

used 1 extra dimension to unify gravity and electromagnetism in a theory that was essentially 5-dimensional

in general relativity. Sabbatta [13], Lee [14], Appelquist and Chodos [15], and Collins et al. [16] accepted this

idea and constructed cosmological models in higher dimensions by using various phenomena of particle physics

and cosmology. Overduin and Wesson [17] presented an excellent review of Kaluza–Klein theory and higher-

dimensional unified theories, in which the cosmological and astrophysical implications of extra dimensions were

studied. Many authors also studied Kaluza–Klein cosmological models with different matters [18–22]. Aliev et al.

[23] derived a plane symmetric solution that describes a 3-brane world embedded in a 5-dimensional bulk space-

time. Mohanty and Mahanta [24] constructed a 5-dimensional homogeneous anisotropic cosmological model

in Barber’s second self-creation theory in the presence of perfect fluid. Mohanty and Samanta [25] studied

5-dimensional string cosmological model in the presence and absence of bulk viscosity. Moreover, Mohanty and

Mahanta [26] constructed a stiff fluid model in 5-dimensional space-time based on Lyra geometry. There is now

extensive literature dealing with different aspects of higher-dimensional cosmology.

In this study, we will examine quark matter attached with cosmic string in the higher-dimensional Bianchi

type-III space-time. The possibility of the existence of quark matter dates back to the early 1970s. Itoh [27],

Bodmer [28], and Witten [29] proposed 2 ways of formation of quark matter: the quark-hadron phase transition
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in the early universe and conversion of neutron stars into strange ones at ultrahigh densities. In the theories of

strong interaction, quark bag models suppose that the breaking of physical vacuum takes place inside hadrons.

As a result, vacuum energy densities inside and outside a hadron become essentially different, and the vacuum

pressure on the bag wall equilibrates the pressure of quarks, thus stabilizing the system.

Typically, strange quark matter is modeled with an equation of state based on the phenomenological bag

model of quark matter, in which quark confinement is described by an energy term proportional to the volume.

In this model, quarks are thought of as degenerate Fermi gases, which exist only in a region of space endowed

with vacuum energy density BC (called the bag model). Additionally, in the framework of this model, the

quark matter is composed of massless u, dquarks; massive squarks; and electrons. In the simplified version of

this model, on which our study is based, quarks are massless and noninteracting. We then have quark pressure

pq =
ρq

3 (ρq is the quark energy density); the total energy density is

ρ = ρq +BC , (1.1)

while total pressure is

p = pq −BC . (1.2)

Yilmaz et al. [30] studied strange quark matter for the Robertson–Walker model in the context of the general

theory of relativity. Yilmaz and Yavuz [31] obtained higher-dimensional Robertson–Walker cosmological models

in the presence of quark-gluon plasma in the general theory of relativity. Khadekar et al. [32] confined their work

to the quark matter attached to topological defects in general relativity. Adhav et al. [33] obtained a Bianchi

type-III cosmological model with strange quark matter attached to string cloud in general relativity. Mahanta

et al. [34] investigated Bianchi type-III cosmological models with strange quark matter attached to string cloud

in self-creation theory. Khadekar and Wanjari [35] studied the geometry of quark and strange quark matter

in higher-dimensional general relativity. Katore and Shaikh [36] investigated cosmological models with strange

quark matter attached to the string cloud in the general theory of relativity for axially symmetric space-time.

Mahanta and Biswal [37] studied string cloud and domain walls with quark matter in Lyra geometry. Rao and

Neelima [38] discussed axially symmetric space-time with strange quark matter attached to the string cloud in

self-creation theory and general relativity. Rao and Sireesha [39] discussed axially symmetric space-time with

strange quark matter attached to the string cloud in the Brans–Dicke theory of gravitation. Recently, Sahoo and

Mishra [40,41] studied axially symmetric and plane symmetric cosmological solutions for quark matter coupled

with string cloud and domain walls in bimetric theory.

In this paper, we have studied 5-dimensional Bianchi type-III space-time with strange quark matter

coupled with string cloud. In Section 2, the metric and energy momentum tensor are described. In Section 3,

the field equations and their solutions are derived. The concluding remarks are given in Section 4.

2. Metric and energy momentum tensor

We consider the 5-dimensional Bianchi type-III metric in the form of

ds2 = dt2 −A2dx2 −B2e−2axdy2 − C2dz2 −D2du2, (2.1)

where A , B , C , and D are the functions of time t only.

The energy momentum tensor for string cloud [42] is given by

Tij = ρuiuj − ρsxixj . (2.2)
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Here, ρ is the rest energy density for the cloud of strings with particles attached to them and ρs is the string

tension density. They are related by

ρ = ρp + ρs, (2.3)

where ρp is the particle energy density.

We know that string is free to vibrate. The vibration models of the string represent different types of

particles because these models are seen as different masses or spins. Therefore, here we consider quarks instead

of particles in the string cloud. Moreover, we consider here quark matter energy density instead of particle

energy density in the string cloud.

In this case, from Eq. (2.3), we get

ρ = ρq + ρs +BC . (2.4)

From Eqs. (2.3) and (2.4), we have the energy momentum tensor for strange quark matter attached to the

string cloud [43] as follows:

Tij = (ρq + ρs +BC)uiuj − ρsxixj , (2.5)

where ui is the 5 velocity of the particles and xi is the unit space-like vector representing the direction of string.

We also ui and xiwith

uiui = −xixi = −1 and uixi = 0. (2.6)

We have taken the direction of the string along the z -axis. The components of the energy momentum tensor

are then

T 1
1 = T 2

2 = T 4
4 = 0 , T 3

3 = ρs , T 5
5 = ρ, (2.7)

where ρ and ρs are functions of t only.

3. Field equations and their solutions

Einstein’s field equations read as

Rij −
1

2
Rgij = −8πTij . (3.1)

The field equations of Eq. (3.1) for the metric of Eq. (2.1) can be written as follows:

B55

B
+

C55

C
+

D55

D
+

B5C5

BC
+

B5D5

BD
+

C5D5

CD
= 0, (3.2)

A55

A
+

C55

C
+

D55

D
+

A5C5

AC
+

A5D5

AD
+

C5D5

CD
= 0, (3.3)

A55

A
+

B55

B
+

D55

D
+

A5B5

AB
+

A5D5

AD
+

B5D5

BD
− a2

A2
= 8πρs, (3.4)

A55

A
+

B55

B
+

C55

C
+

A5B5

AB
+

A5C5

AC
+

B5C5

BC
− a2

A2
= 0, (3.5)

A5B5

AB
+

A5C5

AC
+

B5C5

BC
+

A5D5

AD
+

B5D5

BD
+

C5D5

CD
− a2

A2
= 8πρ, (3.6)

A5

A
− B5

B
= 0, (3.7)
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where the subscript 5 after A , B , C , and D denotes ordinary differentiation with respect to t .

From Eq. (3.7), we get

A = αB.

Without loss of generality we take the arbitrary constant α = 1, such that we have

A = B. (3.8)

Using Eq. (3.8), the field equations of Eqs. (3.2) through (3.6) reduce to the following:

B55

B
+

C55

C
+

D55

D
+

B5C5

BC
+

B5D5

BD
+

C5D5

CD
= 0, (3.9)

2

(
B55

B

)
+

D55

D
+

(
B5

B

)2

+ 2

(
B5D5

BD

)
− a2

B2
= 8πρs, (3.10)

2

(
B55

B

)
+

C55

C
+

(
B5

B

)2

+ 2

(
B5C5

BC

)
− a2

B2
= 0, (3.11)

(
B5

B

)2

+ 2

(
B5C5

BC

)
+ 2

(
B5D5

BD

)
+

C5D5

CD
− a2

B2
= 8πρ. (3.12)

Thus, we have 4 equations with 5 unknowns, B, C, D, ρ , and ρs . Since these equations are highly nonlinear in

nature, in order to get a deterministic solution we need one assumption. We shall explore physically meaningful

solutions of the field equations of Eqs. (3.9) through (3.12) by considering a simplifying assumption of the field

variables B , C , and D .

In order to obtain a simple but physically realistic solution, let us choose a simple power-law form of the

scale factor [44]:

B = tn, (3.13)

where n is an arbitrary constant.

Using Eq. (3.13) in Eq. (3.11), we get

C55

C
+ 2

2nC5

tC
+

2n (n− 1) + n2

t2
− a2

t2n
= 0. (3.14)

Eq. (3.14) is solvable for n = 1 . Hence, Eqs. (3.13) and (3.14) reduce to

B = t (3.15)

and

t2C55 + 2tC5 +
(
1− a2

)
C = 0. (3.16)

Integrating Eq. (3.16) yields

C = t
−1+

√
4a2−3
2 (3.17)

or

C = t
−1−

√
4a2−3
2 . (3.18)
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Using Eq. (3.17) in Eq. (3.9), we get

t2D55 + t
(
1 +

√
4a2 − 3

)
D5 +

(
−1 +

√
4a2 − 3

)2
4

D = 0, (3.19)

which on integration yields

D = tm1 (3.20)

or
D = tm2 , (3.21)

where

m1 =
−
√
4a2 − 3 +

√
4a2 − 3−

(
−1 +

√
4a2 − 3

)2
2

and

m2 =
−
√
4a2 − 3−

√
4a2 − 3−

(
−1 +

√
4a2 − 3

)2
2

.

Again using Eq. (3.18) in Eq. (3.9), we get

t2D55 + t
(
1−

√
4a2 − 3

)
D5 +

(
−1−

√
4a2 − 3

)2
4

D = 0, (3.22)

which on integration yields

D = tk1 (3.23)

or

D = tk2 , (3.24)

where

k1 =

√
4a2 − 3 +

√
4a2 − 3−

(
−1 +

√
4a2 − 3

)2
2

and

k2 =

√
4a2 − 3−

√
4a2 − 3−

(
−1 +

√
4a2 − 3

)2
2

.

Now the above solutions give 4 different models.

Case I: When C = t
−1+

√
4a2−3
2 and D = tm1

The 5-dimensional string cosmological model corresponding to Eqs. (3.15), (3.17), and (3.20) is written
as

ds2 = dt2 − t2dx2 − t2e−2axdy2 − t−1+
√
4a2−3dz2 − t2m1du2. (3.25)

From Eq.(3.10), we get the following rest energy density.

ρ =
1

32πt2

[
3

√
4a2 − 3−

(
−1 +

√
4a2 − 3

)2

+
√

4a2 − 3 +
√
4a2 − 3

√
4a2 − 3−

(
−1+

√
4a2 − 3

)2

−8a2 + 3

]
(3.26)
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From Eq. (3.10), we get the following:

string tension density = ρs =
m2

1 +m1 + 1− a2

8πt2
, (3.27)

string particle density = ρp = ρ− ρs =
2n1 +m1 + n1m1 −m2

1

8πt2
, (3.28)

where

n1 =
−1 +

√
4a2 − 3

2
;

quark energy density = ρq = ρ−BC =
1

32πt2

[
3

√
4a2 − 3−

(
−1 +

√
4a2 − 3

)2

+
√
4a2 − 3

+
√
4a2 − 3

√
4a2 − 3−

(
−1 +

√
4a2 − 3

)2

− 8a2 + 3

]
−BC , (3.29)

quark pressure = pq =
ρq
3

=
1

96πt2

[
3

√
4a2 − 3−

(
−1 +

√
4a2 − 3

)2

+
√
4a2 − 3

+
√
4a2 − 3

√
4a2 − 3−

(
−1 +

√
4a2 − 3

)2

− 8a2 + 3

]
− BC

3
. (3.30)

The volume element of the model in Eq. (3.25) is given by

V =
√
(−g) = tn1+m1+2e−ax. (3.31)

The expression for the scalar expansion θ is given by

θ = ui
;i =

n1 +m1 + 2

t
(3.32)

and the shear σ is given by

σ2 =
1

2
σijσij =

1

2

[
2

(
1

3
− 1

t

)2

+

(
1

3
− n1

t

)2

+

(
1

3
− m1

t

)2
]
. (3.33)

The deceleration parameter q is given by

q =

−
(
1 +

√
4a2 − 3−

(
−1 +

√
4a2 − 3

)2)
3 +

√
4a2 − 3−

(
−1 +

√
4a2 − 3

)2 . (3.34)

The rest energy density, string tension density, string particle density, quark energy density, quark pressure,

expansion scalar, and shear become infinite for t = 0, which indicates that the universe starts at t = 0. Hence,
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the model of Eq. (3.25) admits initial singularity. The scalar expansion θ → 0as t → ∞ . Since lim
t→∞

σ2

θ2 ̸= 0,

the model does not approach isotropy for large values of t . The spatial volume V is zero when t = 0 and

it becomes infinite when t → ∞ . The deceleration parameter is negative. Hence, the model of Eq. (3.35) is

inflationary.

Case II: When C = t
−1+

√
4a2−3
2 and D = tm2

The 5-dimensional string cosmological model corresponding to Eqs. (3.15), (3.17), and (3.21) is written
as

ds2 = dt2 − t2dx2 − t2e−2axdy2 − t−1+
√
4a2−3dz2 − t2m2du2. (3.35)

From Eq. (3.12), we get the following rest energy density.

ρ=
1

32πt2

[
−3

√
4a2−3−

(
−1+

√
4a2−3

)2

+
√
4a2−3−

√
4a2 − 3

√
4a2 − 3−

(
−1 +

√
4a2 − 3

)2

− 8a2 − 3

]
(3.36)

From the above equation, it is seen that the rest energy density does not satisfy the reality conditions, i.e.

(ρ > 0). Hence. the model of Eq. (3.35) is physically unrealistic and not physically acceptable.

Case III: When C = t
−1−

√
4a2−3
2 and D = tk1

The metric of Eq. (2.1) corresponding to Eqs. (3.15), (3.18), and (3.23) is written as

ds2 = dt2 − t2dx2 − t2e−2axdy2 − t−1−
√
4a2−3dz2 − t2k1du2. (3.37)

The physical and kinematical quantities for the model of Eq. (3.37) have the following expressions:

rest energy density = ρ =
1

32πt2

[
3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

−
√
4a2 − 3−

√
4a2 − 3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

− 8a2 + 3

]
, (3.38)

string tension density = ρs =
k21 + k1 + 1− a2

8πt2
, (3.39)

string particle density = ρp =
2n2 + k1 + n2k1 − k21

8πt2
, (3.40)

where

n2 =
1 +

√
4a2 − 3

2
;

quark energy density = ρq =
1

32πt2

[
3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

−
√
4a2 − 3

−
√
4a2 − 3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

− 8a2 + 3

]
−BC , (3.41)
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quark pressure = pq =
1

96πt2

[
3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

−
√
4a2 − 3

−
√
4a2 − 3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

− 8a2 + 3

]
− BC

3
, (3.42)

volume = V = tn2+k1+2e−ax, (3.43)

scalar expansion = θ =
n2 + k1 + 2

t
, (3.44)

shear = σ2 =
1

2

[
2

(
1

3
− 1

t

)2

+

(
1

3
− n2

t

)2

+

(
1

3
− k1

t

)2
]
, (3.45)

deceleration parameter = q =

−
(
1 +

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2)
3 +

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2 . (3.46)

The rest energy density, string tension density, string particle density, quark energy density, quark pressure,

expansion scalar, and shear become infinite for t = 0, which indicates that the universe starts at t = 0. Hence,

the model of Eq. (3.37) admits initial singularity. The scalar expansion θ → 0 as t → ∞ . Since lim
t→∞

σ2

θ2 ̸= 0,

the model does not approach isotropy for large values of t . The spatial volume V is zero when t = 0 and

it becomes infinite when t → ∞ . The deceleration parameter is negative. Hence, the model of Eq. (3.37) is

inflationary.

Case IV: When C = t
−1−

√
4a2−3
2 and D = tk2

The metric of Eq. (2.1) corresponding to Eqs. (3.15), (3.18), and (3.24) is written as

ds2 = dt2 − t2dx2 − t2e−2axdy2 − t−1−
√
4a2−3dz2 − t2k2du2. (3.47)

The physical and kinematical parameters for the model of Eq. (3.47) are obtained as follows:

rest energy density = ρ =
1

32πt2

[
−3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

−
√
4a2 − 3

+
√
4a2 − 3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

− 8a2 + 3

]
, (3.48)

string tension density = ρs =
k22 + k2 + 1− a2

8πt2
, (3.49)

string particle density = ρp =
2n2 + k2 + n2k2 − k22

8πt2
, (3.50)

quark density = ρq =
1

32πt2

[
−3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

−
√
4a2 − 3

+
√

4a2 − 3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

− 8a2 + 3

]
−BC , (3.51)
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quark pressure = pq =
1

96πt2

[
−3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

−
√

4a2 − 3

+
√
4a2 − 3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

− 8a2 + 3

]
− BC

3
, (3.52)

volume = V = tn2+k2+2e−ax, (3.53)

scalar expansion = θ =
n2 + k2 + 2

t
, (3.54)

shear = σ2 =
1

2

[
2

(
1

3
− 1

t

)2

+

(
1

3
− n2

t

)2

+

(
1

3
− k2

t

)2
]
, (3.55)

deceleration parameter = q =

−
(
1 +

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2)
3 +

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2 . (3.56)

The reality condition (ρ > 0)is satisfied for

3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

+
√

4a2 − 3 + 8a2 <
√
4a2 − 3

√
4a2 − 3−

(
1 +

√
4a2 − 3

)2

+ 3.

The rest energy density, string tension density, string particle density, quark energy density, quark pressure,

expansion scalar, and shear become infinite for t = 0. It is observed that the model of Eq. (3.47) admits initial

singularity.

4. Conclusion

We have constructed 5-dimensional Bianchi type-III cosmological models with strange quark matter attached

to the string cloud in general relativity. The following results were obtained for different cases:

(i) When C = t
−1+

√
4a2−3
2 and D = tm1 , the model of Eq. (3.25) admits initial singularity and does

not approach isotropy for large values of t . The deceleration parameter is negative and hence the model is

inflationary.

(ii) When C = t
−1+

√
4a2−3
2 and D = tm2 , the rest energy density does not satisfy the reality conditions

and hence the model of Eq. (3.35) leads to unphysical situations.

(iii) When C = t
−1−

√
4a2−3
2 and D = tk1 , the universe starts at t = 0 and the model does not approach

isotropy for large values of t .

(iv) When C = t
−1−

√
4a2−3
2 and D = tk2 , all the physical parameters become infinite for t = 0. Hence,

it is concluded that the model of Eq. (3.47) admits initial singularity.

In summary, it is observed that of the 4 models discussed here, 3 are inflationary and possess initial

singularity while 1 is physically unrealistic.
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