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Abstract:We investigated the physical behavior of an LRS Bianchi type I cosmological model in the framework of the

f (R, T ) theory of gravity in the presence of a perfect fluid, where R is the Ricci scalar and T is the trace of the stress

energy tensor of the matter. In order to obtain a deterministic solution of the field equations we assumed the special

law of variation of the Hubble parameter proposed by Berman that yields the constant deceleration parameter. Some

physical properties of the models are discussed.

Key words: f (R, T ) Theory of gravity, perfect fluid, cosmological parameters

1. Introduction

The recent developments in terms of astrophysical observations in modern cosmology have indicated that the

current universe is not only expanding but also accelerating. The mission of cosmologists is to determine the

large-scale structure of the universe. Thus, there has been a lot of interest among researchers in modified

theories of gravity in view of the direct evidence of late time accelerated expansion of the universe from high

red shift supernovae experiments [1–4]. In general, it is predicted that the cosmic accelerated expansion of the

universe is due to some kind of energy-matter with negative pressure called dark energy. The experimental

observations such as cosmic microwave background radiation and large-scale structure provide an indirect proof

for the late time accelerated expansion of the universe [5,6]. The unintelligible component of energy called dark

energy is a prime candidate often introduced to explain the recent cosmic observations [7]. Two approaches

have been used to investigate the issue of the current cosmic accelerating universe. In order to deal with such

an issue in the framework of Einstein’s theory of gravity, the first way is to use the concept of “exotic cosmic

fluid”, but this approach could not explain the empirical data completely [8,9]. Another way is to discuss the

modified theories of gravity such as f (R) and f (R, T ), where Rand T are the Ricci scalar and the trace of

the stress energy tensors, respectively [10–12]. The f (R) and f (R, T ) theories of gravity are extensions of

the general theory of relativity. There were no alternatives to the mysterious component called dark energy

for the cosmic accelerated expansion of the universe up to a certain period but these theories are supposed

to provide natural gravitational alternatives to dark energy. These theories provided the theoretical models in

which Einstein–Hilbert action of general relativity with a general function f (R) is considered, where R is the

Ricci scalar replaced by an arbitrary function of the Ricci scalar. Eardley et al., Multamaki et al., Chiba et
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al., and Nojiri et al. [13–17] are some of the authors who have investigated different aspects of f (R) gravity

models showing the consistency of early time inflation and late time acceleration. Very recently, Harko et al.

[12] proposed another extension of Einstein’s theory of general relativity named the f (R, T ) theory of gravity

in which the gravitational Lagrangian is given by an arbitrary function of Ricci scalar R and the trace of the

stress energy tensor T . The f (R, T ) gravity model depends on a source term, which represents the variation

in the matter energy tensors with respect to the metric. In order to describe the early universe, the f (R, T )

theory of gravity is considered a fundamental theory of gravitation. However, it is to be noted that the f (R, T )

theory of gravity is the generalization of f (R) and f (T ) theories of gravity. Reddy et al. [18,19] investigated

the higher dimensional Kaluza–Klein cosmological models as well as Bianchi type III cosmological models in

the f (R, T ) theory of gravity. A new class of cosmological models using the special form of the average scale

factor is derived by Abdussattar and Prajapati, and Pawar et al. [20,21]. Dark energy and dark energy models

in the f (R, T ) theory of gravity have recently become an interesting subject of investigation for several authors

(Samanta, Shriram et al., Chaubey and Shukla, Reddy et al., Shamir et al., Samanta et al., Sharif et al., Pradhan

et al., Yadav and Yadav [22–31]). The present work is studied in the framework the f (R, T ) theory of gravity

proposed by Hrko et al. (2011) in which Rand T are the Ricci scalar and trace of the stress energy tensor,

respectively, which is different from the f (R, T ) theory used by Myrzakulov [32] in which R is curvature scalar

and T is torsion scalar. In the present paper we investigated the LRS Bianchi type I cosmological model used

by Abdussattar et al. [20] by assuming the spatial law of variation of Hubble’s parameter proposed by Berman

[33] and Pawar et al. [34,35]. We obtained some physical parameters and discussed their physical behaviors.

2. Metric and field equations

We consider the LRS Bianchi Type I metric [20,21] given by

ds2 = −dt2 + a2 (t)

{
dx2 + dy2 +

(
1 + β

∫
dt

a3

)2

dz2

}
, (2.1)

where a (t) is a function of cosmic time t and β is ⊕ve constant.

We have assumed the stress energy tensor of the matter as a perfect fluid, given by

Tij = (ρ+ p)uiuj − pgij . (2.2)

Now assuming the arbitrary function f (R, T ) given by Harko et al. [12] as

f (R, T ) = R+ 2f (T ) , (2.3)

where R is the Ricci scalar and T is the trace of stress energy tensor.

Thus the field equations in the framework of the f (R, T ) theory of gravity are given by

Rij −
1

2
Rgij = 8πTij + 2f ′Tij + [2pf ′ (T ) + f (T )] gij , (2.4)

where overhead prime denotes the differentiation with respect to the argument.

We choose the function f (T ) of the trace of the energy tensor of the matter source so that

f (T ) = λT, (2.5)

where λ is constant.
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By assuming the commoving coordinate system, the field equations (2.4) for the metric (2.1) with the

equations (2.2), (2.3), and (2.5) can be written as

a24
a2

+
2a44
a

= (8π + 3λ) p− λρ,

a24
a2

+
2a44
a

= (8π + 3λ) p− λρ,

a24
a2

+
2a44
a

= (8π + 3λ) p− λρ,

3a24
a2

+
2βa4

a4
(
1 + β

∫
dt
a3

) = λp− (8π + 3λ) ρ, (2.6)

where suffix 4 indicates the differentiation with respect to time.

The above system of the equations (2.6) reduces and takes the form

a24
a2

+
2a44
a

= (8π + 3λ) p− λρ, (2.7)

3a24
a2

+
2βa4

a4
(
1 + β

∫
dt
a3

) = λp− (8π + 3λ) ρ. (2.8)

3. Solution of the field equations

Eqs. (2.7) and (2.8) contain 3 unknowns: a, p, ρ . Therefore, in order to obtain a deterministic solution we

have to use one more additional condition. Here we assume the special law of variation of Hubble’s parameter

proposed by Berman [33] that yields the constant deceleration parameter given by the relation

q = −RR44

R2
4

. (3.1)

Here the sign of the constant deceleration parameter is supposed to be negative because for a negative constant

deceleration parameter the universe undergoes acceleration. In Eq. (3.1) R is the overall average scale factor.

From Eq. (2.1) of given metric R is given by

R =

[
a3

(
1 + β

∫
dt

a3

)] 1
3

. (3.2)

Solving Eq. (3.1) for R we get

R = (ct+ d)
1

(q+1) , q ̸= −1, (3.3)

where c ̸= 0, d are the constants of integrations. This equation indicates that the condition of expansion is

(1 + q) > 0

Comparing Eqs. (3.2) and (3.3) we get

a = T (
1

q+1 )emT(
q−2
q+1 )

(3.4)
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and (
1 + β

∫
dt

a3

)
= e−3mT(

q−2
q+1 )

, (3.5)

where
T = (ct+ d) ⇒ R = T

1
(q+1) . (3.6)

m =
β (q + 1)

3c (2− q)
, q ̸= 2 (3.7)

Using Eqs. (3.4) and (3.5) the metric given by Eq. (2.1) takes the form

ds2 = −dT 2 + T (
2

q+1 )e2mT(
q−2
q+1 ) (

dx2 + dy2
)
+ T (

2
q+1 )e(−4m)T(

q−2
q+1 )

dz2. (3.8)

Eqs. (2.7) and (2.8) with the equations (3.4) and (3.5) become

β2

3c2T
6

(q+1)

+
(1− 2q)

(q + 1)
2
T 2

= (8π + 3λ) p− λρ, (3.9)

(1− 2c)β2

3c2
1

T
6

(q+1)

+
2 (c− 1)β

c (q + 1)

1

T (
q+4
q+1 )

+
3

(q + 1)
2

1

T 2
= λp− (8π + 3λ) ρ. (3.10)

Solving Eqs. (3.9) and (3.10) simultaneously for p and ρ we get

ρ =
β2

T
6

(q+1)

λ2 − (8π + 3λ) (1− 2c)

3c2
[
(8π + 3λ)

2 − λ2
]
− 2β

T (
q+4
q+1 )

 (8π + 3λ) (c− 1)

c (q + 1)
[
(8π + 3λ)

2 − λ2
]


+
1

T 2

 λ (1− 2q)− 3 (8π + 3λ)

(q + 1)
2
[
(8π + 3λ)

2 − λ2
]
 (3.11)

p =
β2

T
6

(q+1)

 (8π + 3λ)− λ (1− 2c)

3c2
[
(8π + 3λ)

2 − λ2
]
− β

T (
q+4
q+1 )

 2λ (c− 1)

c (q + 1)
[
(8π + 3λ)

2 − λ2
]


+
1

T 2

 (8π + 3λ) (1− 2q)− 3λ

(q + 1)
2
[
(8π + 3λ)

2 − λ2
]
 (3.12)

3.1. Some physical parameters

Eq. (3.8) represents the LRS Bianchi Type I cosmological universe with perfect fluid source in the framework

of the f(R, T) theory of gravity. The following physical parameters helped us to discuss the physical properties

of the cosmological model (3.8).

The scalar expansion θ of the model is

θ =
3

(q + 1)T
. (3.13)
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The directional Hubble’s parametersHx = Hy , HZ of the model are respectively given by

Hx = Hy =
1

(q + 1)

[
m (q − 2)

T
3

(q+1)

+
1

T

]
, (3.14)

Hz =
1

(q + 1)

[
2m (2− q)

T
3

(q+1)

+
1

T

]
. (3.15)

Eqs. (3.13) and (3.14) gives the mean generalized Hubble’s parameter H as

H =
1

3
(Hx +Hy +Hz) =

1

(q + 1)T
. (3.16)

Thus from Eq. (3.13) and (3.14) we have

θ = 3H. (3.17)

The spatial volume of the model is

V = T
1

(q+1) . (3.18)

The mean anisotropy parameter of the model is

Am =
2m2 (2− q)

2

T
2(2−q)
(q+1)

. (3.19)

The shear scalar of the model is

σ2 =
6m2 (q − 2)

2

(q + 1)
2
T

6
(q+1)

(3.20)

4. Discussion and conclusion

It can be observed from Eqs. (3.14) to (3.16) that the Hubble’s parameters are the function of cosmic timeT . All

these parameters vanish for large value of T and become infinite atT = 0. The scalar expansion as well as shear

scalar are extremely large at initial moment and are decreasing with increase in time. In the present model the

mean anisotropy parameter Am is a function of cosmic time. Since the mean anisotropy parameter Am ̸= 0 the

models are anisotropic for q ̸= 2 and ifq = 2, Am = 0 then the models become isotropic. The spatial volume

of the model vanishes when time is zero and increases with increase in time. Moreover, since (1 + q) > 0,

the model represents an accelerating universe. Thus the universe starts evolving with big bang singularity at

T = 0; hence it confirms that the universe is not only expanding but also accelerating and represents early

stages evolution of the universe, which is in good agreement with recent observations. Similarly energy density

and pressure are functions of time that vanish for large value of T and diverge when time is zero. The exact

solutions of the field equations are obtained with suitable physical assumptions. Finally we conclude that our

cosmological model in the f (R, T ) theory is consistent with the recent observations of Type-Ia supernovae and

the solutions presented in this work may be one of the best findings to describe the observed universe.
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