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Abstract:In this work we investigate semiconductor laser dynamics with optoelectronic delay feedback, both analytically

and numerically. Stability criteria are derived from the delay differential equations of the system. Stability curves are

obtained in the feedback strength–delay parameter space. We show that delay has a role in determining the stability

only for a range of feedback strength and this range can vary depending on other parameters. Effects of bias current

and nonlinear gain reduction on the stability curves are shown in the analysis and numerically verified.
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1. Introduction

Semiconductor lasers (SLs) with delayed feedback have been investigated extensively in recent years, due to

the rich variety of nonlinear phenomena they exhibit and also because of their potential applications [1]. They

are excellent dynamical models that show many exciting phenomena such as low and high dimensional chaos

[2], local and global bifurcations [3], control [4] and synchronization of chaos [5,6], intensity instabilities [7],

multistability and hysteresis [8], and stochastic resonance effects [9,10]. Incorporating time delay into the

system makes it infinite dimensional and consequently the system can exhibit very complex dynamics. Many

aspects of delay dynamics have been observed and studied first in laser systems [1,11]. These nonlinear effects

in semiconductor lasers have novel technological applications like secure information encryption [9,12] and

chaotic lidar [13]. Modification of laser dynamics with feedback depends on many factors such as type and

strength of feedback, delay time involved in the feedback mechanism, bias current, and other parameters like

gain nonlinearities. Feedback mechanism can be either optical [14,15] or optoelectronic [16,17]. In optical

feedback, a part of the output laser field is injected back into the laser cavity. The other technique involves a

high bandwidth photodetector for optoelectronic conversion of the laser output and the injection of a suitably

amplified detector signal into the pumping current of the SL. Even when the nonlinear gain reduction is strong

enough to inhibit period doubling and chaos in current modulated semiconductor lasers [18], delay feedback

has been proved to induce bifurcations and chaos [19]. Destabilization of the fixed point by Hopf bifurcation in

SLs with optoelectronic feedback has been reported in many works [15,17]. Given such considerations, it is of

utmost importance for the system designer to know how the SL stability varies with feedback and changes with

different parameters. In this work, we analyze the delay differential equations of the SL with optoelectronic
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delay feedback to study the dependence of Hopf bifurcation phenomena on the nonlinear gain reduction factor,

for a range of values of feedback strength and bias current. In addition, the effect of initial condition on the

dynamics is studied by switching on the delay mechanism at different stages in the operation of the laser.

2. Model and analysis

In optoelectronic delay feedback the phase of the output optical field is not involved in determining the system

dynamics. Therefore, the dynamics can be studied using 2 rate equations, one for carrier density (N) and the

other for photon density (P). Single mode rate equations of an SL are given by [18,20]

dN

dt
=

1

τe

(
I

Ith
−N − N − δ

1− δ
P

)
(1)

dP

dt
=

1

τp

(
N − δ

1− δ
(1− εP )P − P + βN

)
, (2)

where I is the total pumping current, I th is threshold laser current, and τe and τp are the electron and photon

lifetimes, respectively. δ = n0/n th , n0 is the carrier density required for transparency and n th is the threshold

carrier density. ε is related to the nonlinear gain reduction factor εNL by the equation [18]

ε = εNLΓ

(
τe
τp

)
nth. (3)

is the confinement factor. β is the spontaneous emission factor. When optoelectronic feedback is introduced

the total pumping current at any instant of time becomes

I (t) = Ib + FP (t− τ) . (4)

Here Ib is the constant bias current, F is the feedback strength, and τ represents the delay in feedback. This

delay can arise from time taken for external transit of the laser beam and finite response time of the detector

as well as the intentional delays included in the feedback circuitry. The values of the parameters are chosen as

τp = 6 ps, τe = 3 ns, δ = 0.692, β = 5.0 × 10−5 [18].

To determine the stability of the fixed point of the system consisting of Eqs. (1) and (2), the nature of

the roots of the characteristic equation has to be calculated. The characteristic equation of a delay differential

system is a transcendental equation that admits several solutions, given by [11]∣∣J0 + e−λτJτ − λI
∣∣ = 0, (5)

where J0 is the Jacobian with respect to the present variables, Jτ is the Jacobian with respect to the delayed

variables evaluated at the equilibrium point, and λs are the eigen values with λ = α + iγ . If all of the

eigenvalues of the characteristic equation have negative real parts, then the equilibrium point is said to be

stable. On the other hand, if at least one of the eigenvalues has a positive real part, then the equilibrium point

is unstable. The characteristic equation for our set of rate equation becomes

λ2 +K2λ+K3 +K4e
−λτ = 0, (6)

where

K2 =

(
1

τe

)[
1 +

P0

(1− δ)

]
− (N0 − 1− 2εP0 (N0 − δ))

τp (1− δ)
(7)
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K3 =
−1

τeτp (1− δ)

[(
1 +

P0

(1− δ)

)
(N0 − 1− 2εP0 (N0 − δ)) +

(
εP 2

0 − P0 − β (1− δ)
)(N0 − δ

1− δ

)]
(8)

K4 =
−F

τeτpIth (1− δ)

[
−εP 2

0 + P0 + β (1− δ)
]
. (9)

A change in stability can occur only when a root of Eq. (5) crosses the imaginary axis, that is when the real

part of the eigenvalue changes from negative to positive, where λ with α = 0 is a solution of the equation.

Substituting α = 0 in Eq. (6) and equating the real and imaginary parts of the resulting equation we get

K2γ −K4sin (γτ) = 0 (10)

and

−γ2 +K3 +K4cos (γτ) = 0, (11)

which leads to

τ±. =
±arccos

([
γ2−K3

K4

])
+ 2nπ

γ
, (12)

where n is an integer. Squaring and adding Eqs. (10) and (11) result in a fourth degree equation in γ

γ4 + γ2
(
K2

2 − 2K3

)
+
(
K2

3 −K2
4

)
= 0. (13)

This equation is solved to find the range of F, where γ2 is real and positive. τ± are calculated using Eq. (12)

for these values of F. Both τ− and τ+ satisfy the characteristic equation for α = 0. The results we present

in this work are specific to 2 types of feedback schemes: when feedback starts after the SL has stabilized to

steady state operation and when feedback is present from the beginning of SL operation. In the first scheme

the bifurcations happen on τ− , but feedback can be applied in many possible ways, of which one may lead to

bifurcations on τ+ . As delay systems generally exhibit abundant multistability, to devise such a unique scheme

can be difficult. Since the feedback schemes we use in this work do not give bifurcations on τ+ , in the following

discussions we assume

τi (n) =
−arccos

(
γ2
i −K3

K4

)
+ 2nπ

γi
, (14)

i = 1,2 corresponding to 2 real and positive solutions of Eq. (13). Negative or imaginary values of γ will yield

τi (n)’s that are unphysical. These are the critical values of delay (τc) where the stability changes. To find the

direction in which the eigen value crosses the imaginary axis, dα/dτ is calculated on each τ (n). If dα/dτ

is positive, at delay equal to τi (n), the eigenvalue crosses the imaginary axis to the positive side as the delay

is increased and the fixed point becomes unstable. If dα/dτ is negative at τi (n), the eigen value crosses the

imaginary axis to the negative side of α and the fixed point becomes stable. Thus it can be seen that for the

same value of F, depending on the value of delay, the fixed point can be stable or unstable.

dα

dτ λ=iγ
=

− (K4) γsin (γτ) (−K2 +K4τcos (γτ))−K4γcos (γτ) (2γ −K4τsin (γτ))

(−K2 +K4τcos (γτ))
2
+ (2γ −K4τsin (γτ))

2 (15)
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3. Simulation and results

Figure 1a shows the plot of τ (n)’s from Eq. (12) plotted against F/I th for the parameter values I0 = 1.5 and

ε = 0.025, where I0 is defined as Ib /I th . Solid curves represent the critical delays with dα/dτ positive and

the dashed curves represent the critical delays with dα/dτ negative. Substituting Eq. (14) in Eq. (15) we find

that dα/dτ is positive for τ1 and negative for τ2 for all values of n. τ1 and τ2 for the same value of n join to

form closed curves (τ1τ2 (n)). Four such closed curves for n equal 1 to 4 are shown in Figure 1a. They exist only

for a range of F; outside this range stability does not depend on τ . Moreover, immediately outside this range,

α is negative, indicating the fixed point is stable. Figure 1b shows the scan of (F/I th , τ) parameter space,

by simulating the laser dynamics with feedback at each point. The shaded area represents points where the

solution P(t) converged to a fixed point and the unshaded region represent the points where P(t) is oscillatory.

Substituting τ = 0 in the characteristic equation and solving, we find that α is negative at τ = 0 below the

curve τ1 (n = 1). Therefore, the fixed point is stable at τ = 0. Thus the first stability region is the area enclosed

between the curves τ = 0 and τ1 (n = 1). In Figure 1b, this is the shaded region below the first unshaded

patch. From τ1 (n = 1), stability regions are formed between a lower dashed curve and an upper solid curve.

Inside the region enclosed by τ1τ2 (n), the fixed point is always unstable because α calculated at the fixed point

is always greater than zero, as indicated by the solid lower curves and dashed upper curves. However, at both

ends of these curves, where there are no overlaps, stability regions are formed between τ2 (n) and τ1 (n + 1).

These are the protruding shaded regions on both sides in Figure 1b. Successive curves overlap to greater extent

in the middle and the stability regions are pushed towards both sides, reducing their area. In the simulations

it is assumed that the feedback is applied after the laser has stabilized to its steady state. What happens when

the feedback is applied before stabilization is discussed in section 3.3. Figure 2 depicts the Hopf bifurcations

at the critical delay values. At F/I th = 0.45, the first instance of losing stability occurs at the critical value of

delay τc = 0.33 ns; this point is marked P1 in Figure 1a. Figure 2a shows P(t) at 0.2 ns where τ < τc . When

feedback is applied P(t) suddenly stabilizes to the new fixed point with highly damped oscillations. At τ = τc

a periodic solution appears as shown in Figure 2b. When τ > τc , undamped growing oscillations are obtained
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Figure 1. (a) Curves representing Eq. (14) for the parameter values I0 = 1.5 and ε = 0.025 and for n from 1 to 4.

Solid curves represent τ1 (n) and dashed curves represent τ2 (n). τ1 and τ2 for the same value of n are joined to form

closed curves. dα/dτn is positive for τ1 and negative for τ2 . (b) Stability regions obtained by simulating the dynamical

Eqs. (1) and (2). Shaded regions show the points at which the laser goes to a steady state when feedback is applied and

the unshaded regions show the points at which the laser goes to an oscillatory state.
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(Figure 2c). Figures 2d–2f depict the same scenario across the second instance (marked P2 in Figure 1a) of

losing stability at τc = 0.8 ns. This numerically verifies the Hopf bifurcation phenomena occurring along the

critical delay curves with dα/dτ is positive, that is, on τ1 (n).
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Figure 2. Solution P(t) of the laser dynamical equations when the feedback is applied at t = 50 ns with F/I th = 0.45.

(a) Damped oscillatory decay to the fixed point at τ = 0.2 ns. (b) Periodic solution at τ = τc = 0.33 ns. (c) Undamped

growing oscillations at τ = 0.4 ns. (d) Damped oscillatory decay to the fixed point at τ = 0.75 ns. (e) Periodic solution

at τ = τc = 0.8 ns. (f) Undamped growing oscillations at τ = 0.85 ns. (a),(b), and (c) show Hopf bifurcation happening

at τc = 0.33 ns and (d),(e), and (f) show the same for τc = 0.8 ns.

3.1. Effect of nonlinear gain reduction factor

We show that changes in ε can drastically change the critical delay curves. In Figure 3 delay curves for

increasing values of ε are plotted. For small values of ε stability regions are formed only on the lower side

of F/I th except for the first stability region that lies between τ = 0 and τ1 (n = 1). This result is shown in

Figure 3a for the value 0.01 of ε . Here all τ1 ’s where dα/dτn is positive (solid curves) converge closer to the

τ = 0 axis for higher values of F/I th and at least one eigen value has a positive real part above τ1 (n = 1),

on the right end. The span of the curves decreases as ε is increased to 0.02 in Figure 3b, which indicates that

delay has a role in determining stability only for shorter ranges of F/I th . With further increase in ε , the curves

with dα/dτn positive and negative for the same n join at the right end to form closed structures (τ1τ2 (n))

and stability regions are formed at both ends. At the same time, the extent of overlap between these closed
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curves decreases. In Figure 3c, τ1τ2 (1) and τ1τ2 (2) completely move apart from overlap for ε = 0.03 and the

stability region becomes continuous between them. More curves move apart as ε is increased and they change

to elliptical as shown in Figure 3d. Around ε = 0.035 the curves completely disappear, making the stability of

the fixed point independent of τ .
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Figure 3. Critical delay curves for 4 different values of ε . (a) ε = 0.01, (b) ε = 0.02, (c) ε = 0.03, (d) ε = 0.031.

3.2. Effect of bias current

Figures 4a–4c show critical delay curves at ε = 0.025 for I0 equal to 1.4, 1.7, and 1.9, respectively. Increase

in I0 has similar effects as increase in ε . Dependence of stability on delay converges to shorter ranges of F for

higher I0 ’s. The closed curve structures (τ1τ2 (n)) change to oval and the extent of overlap between the them

decreases. Around I0 equal to 1.9 four curves move apart and form continuous stability regions between them.

As a result of flattening of the curves, for higher I0 successive Hopf bifurcations come closer in delay. The

curves completely disappear before I0 is increased up to 2.

3.3. Effect of initial condition

Numerical simulations in the previous sections had the assumption that the laser has settled to the steady state

before feedback is applied. Thus for the delay differential equations representing the delay feedback dynamics the

initial condition is a constant function, namely the steady state solution without feedback. However, situations

can arise where this is not the case. Feedback can be present from t = τ , where τ is the delay in feedback. Here,
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Figure 4. Critical delay curves for 3 different values of I0 . (a) I0 = 1.4, (b) I0 = 1.7, (c) I0 = 1.9.
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Figure 5. Differences in final states when feedback is applied after the SL is stabilized to the fixed point and before

stabilization for the parameter values I0 = 1.5, ε = 0.025. In the completely shaded region the SL goes to the same

final state in both cases. In the completely unshaded area, SL goes to a fixed point when feedback is started after the

laser is stabilized to the fixed point and to an oscillatory solution when the feedback is started at time t = τ (delay).

In the half-shaded regions the dynamics are switched. The SL goes to an oscillatory state in the first situation and to a

fixed point in the second.
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if τ is shorter than the time taken by SL to stabilize to the fixed point after relaxation oscillations, the initial

function is not a constant. In this scheme the parameter space is divided based on 3 types of behavior: regions

where the attractor remained the same as with the previous case, regions where the attractor changed from

fixed point to a limit cycle, and regions where the attractor changed from a limit cycle to a fixed point. Figure

5 characterizes the (F/I th ,τ) parameter space for these 3 types of behavior. One such instance for parameter

values F/I th = 0.52, I0 = 1.5, and τ = 1.1 ns is given in Figure 6. In Figure 6a, when the feedback is applied

at t = 50 ns, SL is already operating at the steady state, and P(t) settles to the new fixed point after damped

oscillations. Figure 6b shows the case when feedback is present from 1.1 ns, which is equal to the delay. In this

case P(t) is undamped and slowly growing. Such points are represented by the unshaded regions in Figure 5.

If P(t) is oscillatory when the initial feedback function is constant, one would expect the same for a case when

the initial feedback function itself is oscillatory, but we get the unexpected result as shown in Figures 6c and

6d. Here the final state is the fixed point when feedback is applied at t = τ (0.53 ns), but the final state is

oscillatory when feedback is applied after the stabilization of the SL to the fixed point. The half-shaded regions

in Figure 5 represent this behavior.
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Figure 6. Solution P(t) of the rate equations for 2 different initial conditions for the parameter values F/I th = 0.52, I0

= 1.5, and τ = 1.1 ns. (a) Feedback is applied at 50 ns when the laser is already operating at its steady state. Dynamics

converge to the new fixed point after damped oscillations. (b) Feedback mechanism is present from a time t = τ after

the beginning of the operation. Here the solution goes to oscillatory state. (c) and (d) show the final states switched for

F/I th = 0.99 and τ = 0.53 ns.
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4. Conclusions

We have done the linear stability analysis of the nonlinear delay differential equations arising in a SL with

optoelectronic delay feedback. Critical stability curves and Hopf bifurcation points obtained from the analysis

are verified by simulating the delay dynamics of the SL. Here simulations are done such that delay feedback is

switched on only after the SL has stabilized to the fixed point. Deviations from the predicted behavior, when

the feedback is present from the beginning, are discussed. Effects of nonlinear gain reduction factor and bias

current are deduced from the analysis and are numerically verified. Increase in both of these parameters reduces

the range of feedback strength where the stability depends on delay. Beyond a critical value, stability of the

steady state solution becomes independent of delay.
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