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Abstract:A simple optical potential of Woods–Saxon form is used within the framework of the Klein–Gordon equation,

for the first time, to analyze the elastic differential cross sections for 1.37 GeV (lab) incident α -particles on 12C and

calcium isotopes 40,42,44,48Ca. The relativistic energy–momentum relation assures the need for relativistic calculations.

As such, the previously determined parameters of all optical potential forms, used in the nonrelativistic Schrödinger

equation and successfully analyzing the α -12C and α -40,42,44,48Ca data at 1.37 GeV, are to be revised. In the presence

of Coulomb potential, as in the cases under consideration, the asymptotic solution of the Klein–Gordon equation differs

from the corresponding one for the Schrödinger equation and the codes are modified accordingly.
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1. Introduction

The high-energy scattering of alpha particles from different nuclei has been of considerable importance for

studying interesting phenomena and gleaning important information about nuclear matter distributions [1].

Contrary to protons, alpha particles have neither spin nor isospin. This has given them an advantage to

be used as spectroscopic probes for nuclear densities and to unravel certain nuclear mysteries. Although

Glauber’s nucleus–nucleus scattering theory [2] has been successful in describing high-energy hadron-nucleus

elastic scattering data, it is still far from complete. In fact, its success is considered more qualitative than

quantitative. This is very clear in its use in the analyses of α -12C and α -40,42,44,48Ca at 1.37 GeV. The ”rigid

projectile” assumption [3,4] leads to a better description, but not a complete one, for the interaction of alpha

particles with 40Ca at 1.37 GeV. Moreover, the impulse approximation, using either a simple nucleon–alpha

interaction or the nucleon–alpha t-matrix models, only gives a fair agreement to the α -12C experimental elastic

differential cross sections at small angles (θ < 10◦) for the 1.37 GeV incident α -particles [5]. Nevertheless,

Antonov et al. [6] have tried to analyze the experimental data of elastic alpha-particle, with 1.37 GeV incident

kinetic energy, scattering on 12C and 40,42,44,48Ca in the framework of the model of coherent fluctuations

of nuclear density, called the coherent fluctuations model. Although their analyses are remarkably successful

compared to all previous ones, they still underestimate the second and third minima for α -12C and the third

minima for α -40,42,44,48Ca cases

In astrophysics, it is well known that alpha particles represent more than 10% of the primary galactic
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cosmic ray flux [7]. This warrants a study on the nuclear interactions of high-energy alpha particles with

spacecraft. The collision of space elements, from hydrogen to nickel, with the walls of spacecraft usually causes

a serious hazard of radiation to astronauts as well as instruments, mainly microelectronic measuring devices, in

the cabin [8]. Sabra et al. [9] have studied the fragmentation of silicon by alpha-particles at incident energies

up to 1.0 GeV (cm). Such a study required knowledge of the potential between two emerging fragments, which

is taken to be an optical potential of molecular type [10].

The complexity and limited success of all the mentioned theoretical models and theories have led interested

researchers to use an optical potential of Woods–Saxon form, used in the nonrelativistic Schrödinger equation,

to describe available high-energy alpha-nucleus elastic scattering data. In fact, Bauhoff [11] and Nakano et al.

[12] have reported different results about the nature of the real part of an optical potential. Another study

[13] has suggested that the optical potential should be weakly attractive to account for the observed minima in

the α -12C and α -40,42,44,48Ca elastic differential cross sections. Furthermore Khoa et al. [14] have suggested

different optical potential forms, used in the nonrelativistic Schrödinger equation with relativistic kinematics

[15], to reanalyze the alpha-calcium data at 1.37 GeV. Although all these studies suggested and used an optical

model to explain the elastic differential cross sections for the α -12C and α -40,42,44,48Ca at 1.37 GeV, they

unfortunately met with limited success. In addition, the high energy double-folding optical potential with the

first and second order corrections to the eikonal phase shifts [16] did not do any better. In their paper, Bonin

et al. [17] measured alpha-nucleus elastic differential cross sections, and tried analyzing them using optical

potentials with Woods–Saxon forms.

Recently, Shehadeh [18–20] has used different optical potential forms to analyze pion-nucleus elastic

scattering data using the Klein–Gordon equation. Adopting a complete relativistic treatment, the agreements

between theory and experiment, in analyzing π±−nucleus elastic scattering data, were very satisfactory.

This creates a strong inducement to use an optical potential in the Klein–Gordon equation, instead of the

nonrelativistic Schrödinger equation, to describe α -12C and α -40,42,44,48Ca elastic scattering data at 1.37

GeV. This is evidently justified since one can show that, by simply using the relativistic energy–momentum

equation [21], the scattering of alpha particles at such high energy is relativistic.

As such, we are going to investigate here the use of a Woods–Saxon optical potential form, for both real

and imaginary parts, in the full Klein–Gordon equation to explain the α -12C and α -40,42,44,48Ca measured

elastic differential cross sections at 1.37 GeV, and to settle the debate about the nature of the potential.

Section 2 presents the theory. Section 3 is concerned with the results and discussion. It includes new potential

parameters that are different from any previously reported ones. The major conclusions of this investigation

are summarized in section 4.

2. Theory

The use of an optical potential, within the framework of the nonrelativistic Schrödinger equation with only

relativistic kinematics to substitute for all relativistic effects, proves to be unsuccessful in explaining the data

reasonably well. As such, we investigate here the use of an optical potential, with Woods–Saxon form for both

its real and imaginary parts, within the framework of the full Klein–Gordon equation. The radial part of the

Klein–Gordon equation has the following form [22]:

d2χn,ℓ (r)

dr2
+

[
k2 − 2E

ℏ2c2

(
V (r)− V 2 (r)

2E

)
− ℓ (ℓ+ 1)

r2

]
χn,ℓ (r) = 0, (1)
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with

k2 =
E2 − µ2c4

ℏ2c2
, (2)

where ℏ, c , µ , and E are, respectively, Planck’s constant divided by 2π, velocity of light in a vacuum, reduced

mass, and total energy of the two colliding particles; and V (r) is the sum of the complex nuclear part VN (r)

and the Coulomb potential VC (r), i.e. V (r) = VN (r) + VC (r). The Coulomb potential VC (r) is considered

due to a uniformly charged spherical distribution given by

VC (r) =


ZpZT e2

8πεoRC

(
3− r2

R2
C

)
r ≤ RC

ZpZT e2

4πεor
r > RC

(3)

where Zp , ZT , e , εo , and RC are, respectively, the projectile atomic number, target atomic number, electronic

charge, permittivity of free space, and Coulomb radius.

Outside the nuclear radius, VN (r) = 0 compared to the Coulomb and centrifugal terms, Eq. (1) reduces

to

d2χn,ℓ (r)

dr2
+

[
k2 − 2E

ℏ2c2
V (r)− β − ℓ (ℓ+ 1)

r2

]
χn,ℓ (r) = 0, (4)

with

β =
V 2
C (r)

(ℏ2c2) r2
=

Z2
pZ

2
T e

4

(4π)
2
ε2oℏ2c2

=
Z2
pZ

2
T

(4π)
2
ε2o
α2, (5)

where α = e2
/
ℏc ∼= 1/137 is the Sommerfeld fine-structure constant.

The solution of Eq. (4) in terms of the dimensionless variable ρ = kr is expressed as

χn,ℓ (ρ) −→
r→∞

√
A2

ℓ (k) +B2
ℓ (k) ∗

 sin
[
ρ− η ln (2ρ)− π

2

(
γ + 1

2

)
+ arg Γ

(
γ + iη + 1

2

)]
+(−1)

ℓ
tan δℓ cos

[
ρ− η ln (2ρ)− π

2

(
γ + 1

2

)
+ arg Γ

(
γ + iη + 1

2

)]
 (6)

where Aℓ (k) = Xℓ (k) sin δℓ andBℓ (k) = Xℓ (k) cos δℓ are the coefficients of the linear combination with δℓ

being the phase shift for the partial waveℓ . Here ηand γ are defined as

η =
ZpZT e

2E

4πεok
, (7)

γ =

√(
ℓ+

1

2

)2

− ZpZT e2

(4πεo)
2 , (8)

i.e. γ is not an integer, and the recursion relations used for the nonrelativistic Schrödinger equation do not hold

any more. Therefore, the calculations are done for each ℓ , which is, no doubt, a lengthy and tedious process.

It is worth noting that when the squared potential term, V 2 (r)
/
2E , in the Klein–Gordon equation is

neglected, Eq. (1) reduces to the nonrelativistic Schrödinger equation with all well-known subsequent dues.

The argument of the gamma function is evaluated by using the following series expansion [23]:

arg Γ (x+ iy) = yψ (x) +
∞∑

n=0

[
y

x+ n
+ tan−1

(
y

x+ n

)]
(9)
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with

ψ (x) =
Γ′ (x)

Γ (x)
=

d

dx
[ln Γ (x)] (10)

and

ln Γ (x) ∼=
(
x− 1

2

)
lnx− 1

2
ln (2π) +

1

12x
− 1

360x3
+

1

1260x5
+ ... (11)

Usually the experimental values are in the laboratory system, while the theoretical ones are in the center of

mass system. As such, one needs to find the kinetic energy of the projectile in the center of mass system (Tcm)

from the kinetic energy in the laboratory system (TL), and the appropriate relation is [24]

Tcm = − (mp +mT ) c
2 +

√
(mT −mp)

2
c4 + 2mT c2TL, (12)

where mpand mT are the projectile and target rest masses.

The nuclear potential adopted in this investigation has the following form:

V (r) = V f (xv) + iWf (xw) + VC (r) , (13)

with f (x) = (1 + ex)
−1

, xi = (r −Ri) /ai , and VC (r) as given in Eq. (3).

To obtain the phase shifts δℓ for each ℓ , the logarithmic derivative of the inner solution, evaluated by

using Numerov’s integration method, is matched with the outer one of the asymptotic solution. For a complete

relativistic treatment, we have used here the relativistic Coulomb functions instead of the nonrelativistic ones.

As such, one can calculate the scattering amplitude f (θ) given by

f (θ) =
1

2ik

∞∑
ℓ=0

iℓ (2ℓ+ 1)
{
1− e2i[arg Γ(γ+iη+ 1

2 )−η ln(2ρ)−π
2 (γ+

1
2 )+δℓ]

}
Pℓ (cos θ) . (14)

The elastic scattering differential cross section, dσ/dΩ, is defined as

dσ

dΩ
= |f (θ)|2 , (15)

and the reaction cross section, σr , has the form

σr =
π

k2

∞∑
ℓ=0

(2ℓ+ 1)
[
1− |Sℓ|2

]
(16)

where the complex scattering matrix Sℓ is related to the scattering phase shifts δℓby Sℓ = e2iδℓ .

3. Results and discussion

Many theories, theoretical models, and approximations have treated the scattering of 1.37 GeV α particles from
12C and 40,42,44,38Ca nonrelativistically. In addition, all previous optical potential forms that tried to explain the

measured elastic differential cross sections at 1370 MeV incident energy for α -12C and α -40,42,44,48Ca systems

are used within the framework of the nonrelativistic Schrödinger equation. Yet no reasonable physical agreement
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has been achieved between theory and experiment for these systems. On the other hand, the relativistic energy–

momentum relation reveals the need for relativistic treatment for the nuclear cases under consideration. In fact,

the speed (v) of a 1370 MeV incident alpha-particle is about 0.7 the speed of light in a vacuum (c); i.e. v

≈ 0.7c, which is relativistic. As such, we have treated the scattering cases under consideration as completely

relativistic.

In this regard, the parameters of our potentials are listed in the Table. These parameters are totally

different from any previously reported parameters, which assures that our potentials are new updated ones. The

calculated elastic differential cross sections, compared to the measured ones, along with the potentials used, are

shown in Figures 1–3.

Table. The potential parameters V (in MeV), Rv (in fm), av (in fm), W (in MeV), Rw (in fm), and aw (in fm), used

in Eq. (13) for α -particles with energy Tα = 1370 incident on carbon-12 and calcium isotopes. Our calculated reaction

cross sections σr in millibarns and volume integrals, real JR and imaginary JI , in MeV.fm3 are noted in columns 8, 9,

and 10, respectively.

Target V Rv av W Rw aw σr JR JI
12C –39.0 2.60 0.44 –135.0 1.97 0.75 471.7 –62.6 –294.6
40Ca –62.0 3.68 0.53 –77.0 3.80 0.85 1085.2 –97.4 –165.2
42Ca –45.0 3.85 0.57 –77.0 3.80 0.85 1085.9 –77.8 –165.2
44Ca –41.0 3.98 0.57 –77.0 3.80 0.85 1086.8 –73.9 –150.2
48Ca –35.0 4.28 0.44 –77.0 3.98 0.85 1158.6 –66.1 –137.7
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Figure 1. In the right part, the calculated angular distributions (solid line) are compared with the observed angular

distributions [9] (solid circles) for the scattered alpha particles from 12C at 1370 MeV. These angular distributions are

obtained by using the real and imaginary parts of the potential, V and W, respectively, for the parameters listed in the

Table, represented by solid and dashed lines in the left part of the figure.

In Figure 1, the agreement between theory and experiment is excellent over all the angular range and not

only at smaller angles [5]. Our calculated reaction cross section is also in excellent agreement with the values

reported by Peng et al. [25] and Khoa et al. [14]. This is a remarkable success for our optical potential, used

within the framework of the Klein–Gordon equation, compared to all other theoretical models. While Antonov

et al. [6] have attributed the unsuccessful description of the α -12C scattering to some peculiarities of the 12C

structure, Viollier and Turtschi [3] have interpreted the noticeable discrepancy between theory and experiment

as being due to anomalies in the target nucleus 12C. Moreover, the approach, based on the multiple diffraction

scattering theory and α -cluster model [17], did not explain the measured elastic differential cross sections for

α -12C interaction at 1370 MeV.

Although there have been improvements in analyzing α -40,42,44,48Ca data, deficiencies still exist. As an

example, the potential parameters of the optical potentials reported in the literature [12,14] changed randomly
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Figure 2. The real and imaginary parts of the potential, V and W, respectively, for the parameters listed in the Table

and used in the analyses of α -40,42,44,48Ca scattering data at Tα = 1370 MeV.
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Figure 3. The calculated angular distributions (solid lines) are compared with the observed angular distributions [9]

(solid circles) for the scattered alpha particles from 40,42,44,48Ca . These angular distributions are obtained by using the

potential forms, represented in Figure 2, in the Klein–Gordon equation.
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and did not follow a certain trend. Moreover, maxima and minima that appear in the experimental elastic

differential cross sections were not well accounted for [3]. Undoubtedly, these maxima and minima are crucial

in fixing the potential parameters and in determining correctly the nature of the potential. The rectification of

these deficiencies was always kept in mind in this investigation. Obviously our potential parameters listed in the

Table, namely the depth V and the radius Rv of the real part of the potential, show a decrease and a systematic

increase, respectively, with the mass number of the target nucleus. It is worth mentioning that the increase in

Rv did not follow theA1/3 rule (A is the atomic mass of the target nucleus) as in the similar nonrelativistic

treatments. In fact, this is dominant in the relativistic treatments. A careful look at the Table reveals that

V , for calcium isotopes, decreases with increasing mass number, while the parameters of the imaginary part

are kept unchanged except for a slight increase in Rw for 48Ca isotope. The decrease in V might indicate

that the three calcium isotopes, 42,44,48Ca, are more compact than 40Ca. One can also note that the trend

in the decrease of V is in accord with the values reported by Nakano et al. [12], and related to the neutron

excess in the 42,44,48Ca isotopes. In fact, our V -values are the same as Nakano et al.’s ones, for 42,44,48Ca,

multiplied by a factor of 6.3. It has been noted that the depth of the real part, V , is crucial in accounting

for the angular distributions, especially the dips, as presented in Figure 4. This point was also stressed by

Nakano et al. [12]. Furthermore, for 48Ca in particular, one may note an abrupt decrease in the real diffuseness

parameter, av , which may be attributed to a small neutron skin for this doubly closed shell isotope [26] and,

as such, to nuclear matter distribution [27]. With our obtained potential parameters, the calculated reaction

cross sections for α -40Ca are in good agreement with the values reported by Khoa et al. [14]. On the other

hand, our calculated reaction cross sections are in good agreement with the ones reported by Nakano et al. [12],

especially for α -42Ca , using the Mexican-hat shape potential. In their work, they assumed that σr is due to

the surface interaction and approximated by

σr (A1) =

(
A1

A2

)2/3

σr (A2) , (17)

where A1 and A2 are the mass numbers of two nuclei.
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Figure 4. The calculated angular distributions for various V-values while the other five parameters are kept unchanged.

The solid line shows the best-fit angular distributions with V = –62 MeV. The dashed and dotted lines show the angular

distributions with V = –5 MeV and V= +5 MeV, respectively.
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In fact, the reported values for the reaction cross sections using both Woods–Saxon and Mexican-hat

potential shapes differ in magnitude and trend.

Our successful results achieved by complete relativistic treatment for alpha-nucleus scattering at 1.37

GeV, implementing our potential in the Klein–Gordon equation, settle the debate about the nature of alpha-

nucleus potential at the indicated energy. Both parts, real and imaginary, of our optical potential are attractive

as shown in Figures 1 and 2. It is interesting to point out that the approximated relation in (17) applies

nicely for our calculated cross sections. Obviously if one considers σr (A1) = 471.7mb for 12C, the values of the

obtained σr (A2) for calcium isotopes are in nice agreement with the ones listed in the Table.

In the Table, the calculated real and imaginary volume integrals per nucleon, JR and JI , respectively,

given by

JR =
4π

APAT

∞∫
0

V (r) r2dr, (18)

and

JI =
4π

APAT

∞∫
0

W (r) r2dr, (19)

where AP and AT are the mass numbers of projectile and target nuclei, are listed.

The values for JR and JI are in accord with the published ones JR ≈ −70MeV.fm3and JI ≈ −170MeV.fm3

for the optical potential used in the analysis of p-40Ca elastic scattering experiments [28]. The negative values

of JR and JI reflect the negative potential strengths for the real and imaginary parts of our adopted potential.

In addition, the noticeable decrease in JR for the three calcium isotopes, 42,44,48Ca, compared to JR for 40Ca is

in accord with the corresponding decrease in V . One needs to emphasize here that all these good simultaneous

results are obtained in connection with the forward-angle available data. For a uniquely determined potential

and strong confidence of such a potential, large-angle elastic scattering data are needed.

4. Conclusions

This investigation indicates the necessity for using a nuclear optical potential of Woods–Saxon form, within

a relativistic framework, to describe correctly high-energy alpha-nucleus scattering data. The Klein–Gordon

equation, rather than the Schrödinger equation, is the correct one for the relativistic description of α -nucleus

interaction at Tα = 1370MeV . As such, our potential parameters are totally new and different from any

other published ones. In fact, the attractive nature of both parts of the potential is demonstrated. With such a

potential, the α -12C and α -40,42,44,48Ca experimental elastic differential cross sections are nicely accounted for,

and our calculated reaction cross sections and volume integrals are strong supporters of the adopted potential.

Based on the available forward-angle data, the obtained simultaneous good results are a trademark of promising

potential. This potential may contribute positively to nuclear astrophysics and nuclear technology.
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