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Abstract: Polaron effects on the second-harmonic generation (SHG) in asymmetrical semiexponential quantum wells

(ASEQWs) are investigated theoretically. By using the framework of the compact-density-matrix approach and iterative

method, the analytical expression of the SHG coefficients in ASEQWs is presented. Numerical results are illustrated for

a typical GaAs/AlGaAs. By considering the electron–LO–phonon interaction (ELOPI), the energy levels and the wave

functions of an electron confined in ASEQWs are obtained. It is found that whether we consider the ELOPI or not, the

incident photon frequency ω and parameters U0 and σ also affect the SHG coefficient obviously.
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1. Introduction

In the past several years, nonlinear optical properties related to intersubband transitions in semiconducting

material have aroused much [1–13]. Due to the existence of a quantum confinement effect, nonlinear effects

can be enhanced more dramatically in the low-dimension of quantum systems than that in bulk materials.

It is also found that nonlinear optical properties have the potential for device application such as high-speed

electro-optical modulators and far infrared photodetectors.

Thanks to the fact that the electron–phonon interaction plays an important role in nonlinear optical

properties, polaron effects on nonlinear optical properties are discussed by many researchers [14–20]. When

we consider the electron–phonon interaction, we find that nonlinear optical properties such as absorption,

second-harmonic generation (SHG), and third-harmonic generation in nanostructures are greatly enhanced. The

polaron effects of longitudinal optical (LO) phonons is important in the study of low dimensional semiconductor

systems. Polaron effects on the linear and nonlinear optical absorption coefficients and refractive index changes

in cylindrical quantum dots with applied magnetic field were studied by Wu et al. in 2013 [21]. In 2013, Liu

et al. discussed polaron effects on the optical rectification and the SHG in cylindrical quantum dots with a

magnetic field [22]. In 2011, Xie presented polaron effects on the optical absorption coefficients and refractive

index of an exciton in quantum dots [23]. Xie also discussed polaron effects on the linear and nonlinear optical

absorption coefficients and refractive index changes in two-electron quantum dots. From these researches we

know that when we consider the electron–phonon interaction, nonlinear optical properties are greatly enhanced.

As we all know, the polaron concept was first put forward by Landau [24]. He pointed out that polaron is
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the autolocalized state of a charge carrier in a homogeneous polar medium and originates from the conduction

electron or hole together with its self-induced polarization in an ionic crystal or in a polar semiconductor [22].

The purpose of this paper is to study polaron effects on the second harmonic in asymmetrical semiex-

ponential quantum wells. This paper is organized as follows. In section 2, we obtain the eigenfunctions and

the energy eigenvalues by solving the Schrödinger equation when we consider polaron effects. We obtain the

SHG coefficients by adopting the framework of the compact-density-matrix approach and iterative method. In

section 3, we give numerical results and some discussions. In section 4, a brief conclusion is given.

2. Theory

In this paper, we consider an electron confined in asymmetrical semiexponential quantum wells (ASEQWs).

When we consider the electron–LO–phonon interaction (ELOPI), the Hamilton of the system, in the effective

mass approximation, within the framework of effective mass approximation, can be written as

H = He +Hph +He−ph, (1)

where

He = − ℏ2

2m∗ (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) + U(z), (2)

is the electron part; here z represents the growth direction of the quantum well, m∗ is the effective mass of

electron, and ℏ is the Planck constant. U(z) is the parabolic potential, which is given by

U(z) =

{
U0(e

z/σ − 1) z ≥ 0
∞ z < 0,

(3)

where both U0 and σ are positive parameters, and

Hph =
∑
q

ℏωLOa
+
q aq, (4)

is the phonon part, where a+q and aq are the creation and annihilation operators for the LO-phonon, and ωLO

is the frequency of the optical phonon. He−ph stands for the Hamiltonian of the ELOPI, which can be written
as

He−ph =
∑
q

(vqe
iq·raq + vqe

−iq·ra+q ), (5)

where

vq = − iℏωLO

q
(
4παe

Ω
)

1
2 (

ℏ
2m∗ωLO

)
1
4 , (6)

with

αe =
e2

2ℏωLO
(
2m∗ωLO

ℏ
)(

1

ε∞
− 1

ε0
); (7)

here αe is the electron–phonon coupling constant, ε0 is the static dielectric constant, ε∞ is the optical dielectric

constant, ℏωLO is the energy of the optical phonon, and Ω is the quantum volume of a quantum well.

115



XIAO et al./Turk J Phys

The radial eigenfunction Schrödinger equation and the z-direction schrödinger equation in the absence of

the ELOPI are expressed as

[− ℏ2

2m∗ (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) + U(z)]ψn,k(r) = εn,kψn,k(r), (8)

where εn,k is the energy eigenvalue and ψn,k(r) is the eigenfunction. With the method of separation of variables,

we can get the eigenfunctions and the energy eigenvalues by

ψn,k(r) = ψn(z)uc(r) exp(ik∥ · r∥), (9)

and

εn,k = En +
ℏ2

2m∗ |k∥|2, (10)

where uc(r) is the periodic part of the Bloch function in the conduction band at k=0. ψn(z) and En are the

envelope wave function and the energy eigenvalue in the growth direction of ASEQWs, respectively. k∥ and r∥

are the longitudinal wave vector and coordinate in the x-y plane. The Schrödinger equation of the z direction

can be expressed as

Hzψn(z) = Enψn(z), (11)

here Hz represents the z part of the Hamiltonian H, and it can be given by

Hz = − ℏ2

2m∗
∂2

∂z2
+ U(z), (12)

In order to reduce the difficulty of the problem, we make the following assumptions:

ξ = ae
z
2σ , a2 =

8m2U0σ
2

ℏ2
, b =

8m2(U0 + En)σ
2

ℏ2
; (13)

thus, Eq. (11) can be rewritten as

ξ2
d2ψn(ξ)

dξ2
+ ξ

dψn(ξ)

dξ
− (ν2 + ξ2)ψn(ξ) = 0, (14)

here ν = i
√
b . The above equation is a modified Bessel equation whose solution is [25]

ψn(ξ) = AKν(ξ) +BIν(ξ), (15)

where A and B are arbitrary constants. Because of the fact that Iυ(ξ) increases exponentially when ξ multiplies

toward infinity, Iυ(ξ) cannot satisfy boundary conditions, and B must be 0. As a result, Eq. (15) can be

rewritten as

ψn(z) = AKi
√
b(ae

z
2σ ). (16)

We can obtain the normalized coefficient by normalized condition, and the energy eigenvalues En can be

numerically solved by the standard continuous condition Ki
√
b(a) = 0 [25].
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The eigenfunction of the phonon can be written as |n⟩ . Because the ELOPI is rather weak in many

materials, we can consider H0 = He + HLO as an unperturbed Hamiltonian and the ELOPI He−ph as a

perturbation. As a result, the unperturbed wave eigenfunction and the eigenvalue have the following form:

|ψi⟩ = ψn,k(r)|n⟩, (17)

E0
i = εn,k +

∑
q

nqℏωLO. (18)

We limit our consideration to one-phonon absorption. Through the theory of perturbation, the wave function

of the system can be expressed as

|Φi⟩ = |ψi⟩+
∑
i ̸=j

⟨ψ0
j | He−ph | ψ0

i ⟩
E0

i − E0
j

|ψj⟩. (19)

The energy level of the system with consideration of perturbation is

Ei = E0
i +

∑
i̸=j

|⟨ψ0
j | He−ph | ψ0

i ⟩|2

E0
i − E0

j

. (20)

Next, we will acquire the SHG coefficients by using the compact density matrix method and the iterative

procedure. Suppose an electromagnetic field is applied to the system for excitation. The field vector of the

applied electromagnetic field is

E(t) = E0cos(ωt) = Ẽ exp(−iωt) + Ẽ exp(iωt), (21)

where ω is the frequency of the external incident field with a polarization vector normal to the asymmetrical

semiexponential quantum wells. It is supposed that ρ is the electronic density matrix of the system. The

evolution of ρ obeys the following Liouville’s quantum equation:

∂ρij
∂t

=
1

iℏ
[H0 − ezE(t), ρ]ij − Γij(ρ− ρ(0))ij , (22)

where Γij is the phenomenological relaxation rate, which is caused by the interactions of electron–phonon and

electron–electron and other collision processes, ρ(0) is the unperturbed density matrix, H0 is the Hamiltonian

of the system in the absence of the electromagnetic field E⃗(t), and ez is the dipole moment operator along the

z-axis. For the sake of simplicity, we select Γij = Γ1 = 1/T1 when i ̸= j and Γij = Γ2 = 1/T2 when i = j

, where 1/T1 and 1/T2 are respectively the longitudinal relaxation time and transverse relaxation time of the

system. Eq. (22) can be worked out by using the iterative method:

ρ(t) =

∞∑
n=0

ρ(n)(t), (23)

with

∂ρ
(n+1)
ij

∂t
=

1

iℏ
{[H0, ρ

(n+1)
ij ]− Γijρ

(n+1)
ij } − 1

iℏ
[ez, ρ(0)]ijE(t). (24)
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After we expand the electronic polarization, the system of polarization can be expressed as

P (t) = ε0χ
(1)
ω Ẽeiωt + ε0χ

(2)
2ω Ẽ

2e2iωt + ε0χ
(2)
0 Ẽ2 + c.c, (25)

where χ
(1)
ω , χ

(2)
2ω , and χ

(2)
0 are the linear, second-order nonlinear, and optical rectification coefficients, re-

spectively, and ε0 is the vacuum permittivity. They reflect various optical nonlinear effects. The electronic

polarization of the nth order is presented:

P (n)(t) =
1

V
Tr(ρ(n)ez), (26)

where V is the volume of interaction and Tr denotes the trace or summation over the diagonal elements of the

matrix ρ(n)ez .

Finally, by using the compact density matrix approach and the iterative method, the analytical expression

of the SHG coefficient in a three-level quantum system is given as follows:

χ
(2)
2ω =

συe
3

ε0ℏ2
M12M23M31

(ω − ω21 + iΓ0)(2ω − ω31 + iΓ0)
, (27)

where σν is the electron density in the system, Mij = |⟨ψi|z|ψj⟩|(i,j=1,2,3) is the off-diagonal matrix element,

ℏω21 = E2 − E1 , ℏω31 = E3 − E1 , Γ0 is the phenomenological relaxation rate, and M12M23M31 is matrix

elements’ product.

3. Results and discussion

In this section, the above theory is now applied to study polaron effects on SHG in asymmetrical semiexponential

quantum wells. We will choose the asymmetry of a quantum well as an example to present the numerical. In

the calculations we used the following parameters: m∗ = 0.067m0 (where m0 is the mass of a free electron),

σν = 5.0×1022m−3 , T0=0.14ps, ℏωLO=36.25 mev, ε0 = 12.83, ε∞ = 10.9, and electron–phonon coupling

strength αe= 0.0681.

Figure 1.The SHG coefficients χ2
2ω as a function of the incident photon frequency ω , with U0 = 200 mev for three

different values of the parameter σ , σ = 15 nm, σ = 20 nm, σ = 30 nm.
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In Figure 1, the SHG coefficients as function of the incident photon energy with U0 = 200 mev for

three different values of σ are shown. The dotted lines and solid lines correspond to two cases: with and

without considering the electron-LO-phonon, respectively. From the figure, it can be clearly seen that the SHG

coefficients χ
(2)
2ω are enhanced when we consider the ELOPI. The physical reason for the feature is that the

wave function of an electron spread to wider space when we consider the ELOPI , which leads to the fact that

the overlap of wave function is enhanced. Moreover, we can find a notable feature in the figure, i.e. the peak

of SHG coefficients increases with the augment of σ whether we consider the ELOPI. The physical reason for

this feature is that the increment of σ makes the overlaps between different electronic states increase, which

leads to the increment of matrix elements’ product M12M23M31 . The matrix elements’ product M12M23M31

is plotted in Figure 2.

Figure 2. The matrix elements’ product M12M23M31 as function of σ with U0 = 200 mev.

In Figure 1, we can see that the peaks of the SHG coefficients move toward the lower energy region with

the increment of σ . The physical reason for this feature is that the quantum confinement becomes weak with

the increment of σ , which leads to a decrease in energy intervals E21 and E31 . At last ω21 and ω31 decrease

with increasing σ . In Figure 3, we show that the energy intervals decrease with the increment of σ .

E

Figure 3. The energy intervals as a function of σ with

U0 = 200 mev.

Figure 4. The SHG coefficients χ2
2ω as a function of the

incident photon frequency ω , with σ = 10 nm for three

different values of the parameter U0 ,U0 = 80 mev,U0 =

120 mev,U0 = 200 mev.

In Figure 4, the SHG coefficients as a function of the incident photon energy for three different values

of U0 with σ = 10 nm are shown. From the figure, it can be clearly seen that when we consider the ELOPI
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the SHG coefficient χ
(2)
2ω is enhanced. The physical reason is that the wave function of an electron spread to

wider space when we consider the ELOPI, which leads to the fact that the overlap of wave function is enhanced.

Moreover, from the figure, it is clearly observed that the resonant peaks of the SHG coefficients decrease with

the increment of U0 . The reason for this feature is that whether we take into account ELOPI or not the overlaps

between different electronic states become less with the increment of U0 , which leads to a decrease in the matrix

elements’ product M12M23M31 . The matrix elements’ product M12M23M31 is plotted in Figure 5.

Figure 5. The matrix elements’ product M12M23M31 as a function of U0 with σ = 10 nm.

Furthermore, it is clearly observed that whether the ELOPI is considered or not the resonant peaks of

the SHG coefficients χ
(2)
2ω suffer a blue shift. The reason for this characteristic is that whether the ELOPI

is considered or not the quantum confinement becomes strong with the increment of U0 , which lead to the

increment of E21 . ω21 increases with the increment of U0 . In Figure 6, we show that energy intervals increase

with the increment of U0 . Therefore, the resonant peaks of the SHG coefficients χ
(2)
2ω suffer a blue shift.

E

Figure 6. The energy intervals as a function of U0 with σ = 10 nm.

4. Conclusion

In this paper, we studied theoretically polaron effects on the SHG and calculations were performed by using

the density matrix approach within the effective-mass approximation. The results are presented as a function

of incident photon energy. Our calculations mainly focus on the dependence of SHG on photon frequency ω ,

and parameters σ and U0 . The calculations of our paper reveal that the resonant peak of χ
(2)
2ω is enhanced

when the polaron effect is considered. We can also see that whether the polaron effect is consider or not with
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the increment of U0 or the decrement of σ , due to the enhancement of the quantum confinement, a blue

shift occurs. Finally, we hope that the results obtained in our research above are valuable theoretically and

experimentally for our scientific research in nonlinear optics.
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