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Abstract: In this paper, the third kind of Darboux transformation of generalized Broer–Kaup equations is derived

from the corresponding spectral problem. By virtue of this Darboux transformation, new 2N -soliton solutions with

parameters of the generalized Broer–Kaup equations are obtained. Although 2N is an even number, it is graphically

shown that in the cases of N= 1 and N = 2 the obtained 2N -soliton solutions can degenerate into M -soliton solutions

for any positive integer M less than 2N .
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1. Introduction

Since the celebrated Kortweg–de Vries (KdV) equation was exactly solved in 1967 [1], finding soliton solutions of

nonlinear partial differential equations (PDEs) has become one of the most exciting and active areas of research

investigation. In the past several decades, many effective methods have been proposed for solving nonlinear

PDEs, such as the inverse scattering transformation [2], Hirota’s bilinear method [3], Darboux transformation

(DT) [4], Painlevé expansion [5], homogeneous balance method [6], function expansion methods [7–12], and

others [13–15]. One of the most useful methods to construct soliton solutions is the DT [4], which has been used

in a wide range of applications [16–24]. By virtue of DTs, Geng and Tam [16] obtained soliton solutions of a

generalized nonlinear Schrödinger equation, Li and Zhang [17] obtained multiple soliton solutions of the classical

Boussinesq system, Zhang [18] obtained explicit solutions of a finite-dimensional Hamiltonian system associated

with the KdV equation, Chen and Li [19] obtained new soliton solutions of the Boussinesq–Burgers (BK)

equation, Zhaqilao and Li [20] obtained some new bidirectional soliton solutions of a (2+1)-dimensional soliton

equation, and Guo et al. [21] obtained two types of breather solutions of a generalized nonlinear Schrödinger–

Maxwell–Bloch system. The DT can also be used to construct Laplace sequences in curvature surface and

projective space [22]. The DT, which transforms the spectral problem into another spectral problem of the

same form, is a gauge transformation [23] of the spectral parameter. More recently, by using a Lie algebra and

Tu–Ma scheme [25,26], Zhang et al. [24] constructed a new integrable soliton hierarchy:

utn =

(
v

w

)
tn

=

(
2an+1,x

−2bn+1 − 2wan+1

)
, (1)
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with the following recursive relations:

bn+1 =
1

2
(bnx − 2anx) +

1

2
vbn + wcn,

an+1 = −1

2
anx +

1

2
van − cn,

cnx = 2wan + 2bn.

The Hamiltonian form of the integrable hierarchy (1) is given by [24]:

utn =

(
v

w

)
tn

= JL
δHn

δu
,

where the Hamiltonian operator J and the recurrence operator L are employed as

J =

(
0 −∂

−∂ 0

)
, L =

(
1
2∂

−1v∂ + 1
2

1
2 (∂

−1w∂ + w + 2)

2 1
2 (v − ∂)

)
.

If we set a0 = b0 = 0, c0 = n = 2, t2 = t [24], the integrable hierarchy (1) reduces to new generalized

Broer–Kaup (gBK) equations as follows:

vt = vxx − 2vvx − 4wx, (2)

wt = −wxx − 2(wv)x − 2vx, (3)

whose Lax pair matrices include the spectral problem

ϕx = Uϕ, U =

(
−λ+ 1

2v 1

−2w − 2 λ− 1
2v

)
(4)

and the auxiliary problem

ϕt = V ϕ, V =

(
2λ2 + 1

2 (vx − v2) −2λ− v

4λ(1 + w) + 2v + 2wx + 2wv −2λ2 + 1
2 (v

2 − vx)

)
, (5)

where v = v(x, t) and w = w(x, t) are two potentials, and the constant λ is the spectral parameter.

In [24], the first two kinds of one-fold DTs, bilinear presentation and bilinear Bäcklund transformation

of Eqs. (2) and (3), were obtained. Since the third kind of DT is more applicable than the first two kinds of

DTs [23], in Section 2 we shall derive the third kind of N -fold DT of Eqs. (2) and (3) from Eqs. (4) and (5).

In Section 3, the derived DT is employed to construct multisoliton solutions of Eqs. (2) and (3).

2. Darboux transformation

Constructing the third kind of DT of the gBK Eqs. (2) and (3) is to find the following gauge transformation:

ϕ̄ = Tϕ, (6)
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of the spectral problem of Eqs. (4) and (5). Here T is a two-order matrix to be determined later, and ϕ̄ satisfies

other spectral problems with the same form, namely

ϕ̄x = Ū ϕ̄, Ū = (Tx + TU)T−1, (7)

ϕ̄t = V̄ φ̄, V̄ = (Tx + TV )T−1, (8)

where Ū and V̄ are the resulting matrixes of U and V in Eqs. (4) and (5) by replacing the old potentials v

and w with the new potentials v̄ and w̄ .

To begin with, we suppose that the Darboux matrix is in the form

T = T (λ) =

(
α 0

0 1
α

)(
A(λ) B(λ)

C(λ) D(λ)

)
, (9)

where

A(λ) = λN+
N−1∑
k=0

akλ
k, B(λ) =

N−1∑
k=0

bkλ
k, C(λ) =

N−1∑
k=0

ckλ
k, D(λ) = λN+

N−1∑
k=0

dkλ
k, (10)

and α , ak , bk , ck , and dk(0 ≤ k ≤ N − 1) are undetermined functions of x and t .

Then we let

ϕ(λj) = (ϕ1(x, t, λj), ϕ2(x, t, λj))
T , (11)

φ(λj) = (φ1(x, t, λj), φ2(x, t, λj))
T (12)

be two basic solutions of Eqs. (4) and (5) when λ = λj . To determine T in Eq. (9), we suppose that there

exist constants γj(1 ≤ j ≤ N) satisfying

A(λj)ϕ1(λj) +B(λj)ϕ2(λj)− γj [A(λj)φ1(λj) +B(λj)φ2(λj)] = 0, (13)

C(λj)ϕ1(λj) +D(λj)ϕ2(λj)− γj [C(λj)φ1(λj) +D(λj)φ2(λj)] = 0, (14)

which can be written as a linear algebraic system

A(λj) + σjB(λj) = 0, C(λj) + σjD(λj) = 0, (15)

or
N−1∑
k=0

(ak + σjbk)λ
k
j = −λN

j , (16)

N−1∑
k=0

(ck + σjdk)λ
k
j = −σjλ

N
j , (17)

with

σj =
φ2(λj)− γjϕ2(λj)

φ1(λj)− γjϕ1(λj)
, 1 ≤ j ≤ 2N, (18)

where constants λj , γj(λj ̸= λk as k ̸= j) are suitably chosen so that the determinants of coefficients of Eqs.

(16) and (17) are nonzero. Therefore, ak , bk , ck , and dk(0 ≤ k ≤ N − 1) are uniquely determined by Eqs.

(16) and (17), while α will be further determined.
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It is easy to see from Eqs. (9) and (10) that detT (λ) is a 2N th-order polynomial in λ :

detT (λj) = A(λj)D(λj)−B(λj)C(λj). (19)

Using Eq. (15) we have detT (λj) = 0, which implies that λj(1 ≤ j ≤ 2N) are 2N roots of detT (λj), namely

detT (λj) =

2N∏
j=1

(λ−λj). (20)

Therefore, we have the following proposition.

Proposition 1. Let α satisfy the equation in the form of

∂x(lnα) = − bN−1,x

1 + 2bN−1
, (21)

and then the matrix Ū determined by Eq. (7) has the same form as U , that is

Ū =

(
−λ+ 1

2 v̄ 1

−2w̄ − 2 λ− 1
2 v̄

)
, (22)

where the transformations transform the old potentials v and w into new potentials given by

v̄ = v − 2bN−1,x

1 + 2bN−1
, (23)

w̄ = (1 + 2bN−1)(w + cN−1) + 2bN−1. (24)

Proof Letting T−1 = T ∗/detT and

(Tx + TU)T ∗ =

(
f11(λ) f12(λ)

f21(λ) f22(λ)

)
, (25)

then we can see that f11(λ) and f22(λ) are (2N + 1)th-order polynomials in λ and f12(λ) and f21(λ) are

2N th-order polynomials in λ . On the other hand, when λ = λj(1 ≤ j ≤ 2N), using Eqs. (4), (5), (11), (12),

and (18), we can obtain a Riccati equation:

σj,x = (−2w − 2) + 2(λj −
1

2
v)σj − σ2

j .

Through a direct computation, we can verify that all λ = λj(1 ≤ j ≤ 2N) are roots of fkl(λ)(k, l = 1, 2). Thus,

Eq. (25) can be written as

(Tx + TU)T ∗ = (detT )P (λ), (26)

where P (λ) has the form

P (λ) =

(
P

(1)
11 λ+ P

(0)
11 P

(0)
12

P
(0)
21 P

(1)
22 λ+ P

(0)
22

)
, (27)

and Pm
kl (λ)(k, l = 1, 2,m = 0, 1) are independent of λ .
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We further rewrite Eq. (26) as

Tx + TU = P (λ)T, (28)

and then comparing the coefficients of λN+1 and λN in Eq. (28) yields

P
(1)
11 = −1, P

(0)
11 =

1

2
v + ∂x(lnα), (29)

P
(0)
12 = α2(1 + 2bN−1), (30)

P
(1)
22 = 1, P

(0)
22 = −[

1

2
v + ∂x(lnα)], (31)

P
(0)
21 = − 2

α2
(w + cN−1 + 1). (32)

With the help of Eqs. (21), (23), and (24), from Eqs. (29)–(32) we have

P
(0)
11 =

1

2
v̄, P

(0)
12 = 1, P

(0)
22 = −1

2
v̄, P

(0)
21 = −2w̄ − 2. (33)

Then using Eqs. (22), (27), and (33), we can obtain Ū = P (λ). The proof is completed.

Proposition 2. Suppose that the time dependence of α satisfies the following equation with respect to the

variable t :

∂t(lnα) = ∂xx(lnα)− 2[∂x(lnα)]
2 − 2v∂x(lnα)− 4(w + 1)bN−1 − 2(1 + 2bN−1)cN−1. (34)

The matrix V̄ determined by Eq. (8) then has the same form as V in Eq. (5) except for changing v and w

into v̄ and w̄ , and the old potentials v and w are mapped into new potentials according to the same DT in

Eqs. (6), (23), and (24).

Proof In a similar way to the proof of Proposition 1, we let T−1 = T ∗/detT and

(Tt + TV )T ∗ =

(
g11(λ) g12(λ)

g21(λ) g22(λ)

)
, (35)

And then it is easy to see that g11(λ) and g22(λ) are (2N +2)th-order polynomials in λ and g12(λ) and g21(λ)

are (2N + 1)th-order polynomials in λ .

On the other hand, setting λj(1 ≤ j ≤ 2N) and using Eqs. (4), (5), (11), (12), and (18), we can obtain

another Riccati equation:

σj,t = [4λj(1 + w) + 2v + 2wx + 2wv] + 2[−2λ2
j +

1

2
(v2 − vx)]σj + (2λj + v)σ2

j . (36)

It is easy to verify that all λj(1 ≤ j ≤ 2N) are roots of gkl(λ)(k, l = 1, 2). Hence, Eq. (35) can be written as

(Tt + TV )T ∗ = (detT )Q(λ), (37)
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with

Q(λ) =

(
Q

(2)
11 λ

2 +Q
(1)
11 λ+Q

(0)
11 Q

(1)
12 λ+Q

(0)
12

Q
(1)
21 λ+Q

(0)
21 Q

(2)
22 λ

2 +Q
(1)
22 λ+Q

(0)
22

)
, (38)

where Qm
kl(λ)(k, l = 1, 2,m = 0, 1, 2) are independent of λ . Thus, Eq. (37) can be written as

Tt + TV = Q(λ)T. (39)

We compare the coefficients of λN+2 , λN+1 , and λN in Eq. (39) and then obtain

Q
(2)
11 = 2, Q

(1)
11 = 0, (40)

Q
(1)
12 = −2α2(1 + 2bN−1), (41)

Q
(0)
12 = α2(−v − 2aN−1 − 4bN−2 + 4bN−1 + 2dN−1 + 4bN−1dN−1), (42)

Q
(0)
11 = ∂t(lnα) +

1

2
(vx − v2) + 4(w + 1)bN−1 + 2(1 + 2bN−1)cN−1, (43)

Q
(2)
22 = −2, Q

(1)
22 = 0, (44)

Q
(1)
21 =

4

α2
(cN−1 + w + 1), (45)

Q
(0)
21 =

1

α2
[4cN−2 + 4(1 + w)dN−1 + 2v(1 + w) + 2wx − 4cN−1(1 + aN−1)− 4(1 + w)aN−1], (46)

Q
(0)
22 = −∂t(lnα)−

1

2
(vx − v2)− 4(w + 1)bN−1 − 2(1 + 2bN−1)cN−1, (47)

where a−1 = b−1 = c−1 = d−1 = 0.

At the same time, we compare the coefficient of λN−1 in Eq. (28) and then obtain the following formulae:

aN−1,x = (2w + 2)bN−1 + (1 + 2bN−1)cN−1, (48)

bN−1,x = vbN−1 − aN−1 − 2bN−2 + dN−1 + 2bN−1(dN−1 + 1), (49)

cN−1,x = −vcN−1 + 2cN−2 + (2w + 2)(dN−1 − aN−1)− 2(1 + aN−1)cN−1, (50)

dN−1,x = −cN−1 − (2w + 2)bN−1 − 2bN−1cN−1. (51)

Substituting Eqs. (21), (23), (24), and (34) into Eqs. (41)–(43) and (45)–(47) yields

Q
(1)
12 = −2, Q

(0)
12 = −v̄, Q

(0)
11 =

1

2
(v̄x − v̄2), (52)

Q
(1)
21 = 4(w̄ + 1), Q

(0)
21 = 2v̄ + 2w̄x + 2w̄v̄, Q

(0)
22 =

1

2
(v̄2 − v̄x). (53)

Therefore, we can conclude that V̄ = Q(λ) by using Eqs. (8), (52), and (53). The proof is completed.
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It is shown in Propositions 1 and 2 that transformations (6), (23), and (24) transform the Lax pairs (4)

and (5) into other Lax pairs of the same form, i.e. Eqs. (7) and (8). This is to say that Eqs. (2) and (3) can

be derived from either Lax pairs (4) and (5) or Lax pairs (7) and (8). The transformation (ϕ, v, w) → (ϕ̄, v̄, w̄)

is then called the third kind of DT of Eqs. (2) and (3). In other words, we reach the following theorem.

Theorem 1. The old solutions (v, w) of the gBK equations (2) and (3) are mapped into their new solutions

(v̄, w̄) under the DT in Eqs. (6), (23), and (24), where bN−1 and cN−1 are determined by the linear algebraic

equations (16) and (17).

3. Multisoliton solutions

In this section, we apply the third kind of N -fold DT (6), (23), and (24) to construct multisoliton solutions of

the gBK equations (2) and (3).

Firstly, we set seed solutions (v, w) being constants and we substitute them into the Lax pairs (4) and

(5); two basic solutions are then obtained as follows:

φ(λj) =

(
cosh ξj

cj sinh ξj + kj cosh ξj

)
, ϕ(λj) =

(
sinh ξj

cj cosh ξj + kj sinh ξj

)
, (54)

where

ξj = cj(x+ bjt), cj =

√
(λj −

1

2
v)2 − 2w − 2, bj = −2λj − v, kj = λj −

1

2
v, (1 ≤ j ≤ 2N). (55)

In view of Eq. (18), we have

σj = cj
tanh ξj − γj
1− γj tanh ξj

+ kj , (1 ≤ j ≤ 2N). (56)

Secondly, substituting Eqs. (55) and (56) into Eqs. (16) and (17) and then applying Cramer’s rule to the

resulting equations, we have the following theorem.

Theorem 2. The third kind of DT (ϕ, v, w) → (ϕ̄, v̄, w̄) in Eqs. (6), (23), and (24) can generate the following

2N-soliton solutions of the gBK equations (2) and (3):

v̄[N ] = v − 2bN−1,x

1 + 2bN−1
, (57)

w̄[N ] = (1 + 2bN−1)(w + cN−1) + 2bN−1, (58)

where

bN−1 =
∆bN−1

∆
, cN−1 =

∆cN−1

∆
, (59)

∆ =

∣∣∣∣∣∣∣∣∣∣∣

1 σ1 λ1 σ1λ1 · · · λk
1 σ1λ

k
1 · · · λN−1

1 σ1λ
N−1
1

1 σ2 λ2 σ2λ2 · · · λk
2 σ2λ

k
2 · · · λN−1

2 σ2λ
N−1
2

...
...

...
...

...
...

...
...

...
...

1 σ2N λ2N σ2Nλ2N · · · λk
2N σ2Nλk

2N · · · λN−1
2N σ2NλN−1

2N

∣∣∣∣∣∣∣∣∣∣∣
, (60)
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∆bN−1
=

∣∣∣∣∣∣∣∣∣∣∣

1 σ1 λ1 σ1λ1 · · · λk
1 σ1λ

k
1 · · · λN−1

1 −λN
1

1 σ2 λ2 σ2λ2 · · · λk
2 σ2λ

k
2 · · · λN−1

2 −λN
2

...
...

...
...

...
...

...
...

...
...

1 σ2N λ2N σ2Nλ2N · · · λk
2N σ2Nλk

2N · · · λN−1
2N −λN

2N

∣∣∣∣∣∣∣∣∣∣∣
, (61)

∆cN−1
=

∣∣∣∣∣∣∣∣∣∣∣

1 σ1 λ1 σ1λ1 · · · λk
1 σ1λ

k
1 · · · −σ1λ

N
1 σ1λ

N−1
1

1 σ2 λ2 σ2λ2 · · · λk
2 σ2λ

k
2 · · · −σ2λ

N
2 σ2λ

N−1
2

...
...

...
...

...
...

...
...

...
...

1 σ2N λ2N σ2Nλ2N · · · λk
2N σ2Nλk

2N · · · −σ2NλN
2N σ2NλN−1

2N

∣∣∣∣∣∣∣∣∣∣∣
, (62)

and σ1, σ2, · · · , σ2N are determined by Eqs. (55) and (56).

In particular, giving N = 1 to Eqs. (55) and (56), we have

b0 =
λ1 − λ2

σ2 − σ1
, c0 =

σ1σ2(λ2 − λ1)

σ2 − σ1
, (63)

and hence we obtain two-soliton solutions of the gBK equations (2) and (3):

v̄[1] = v +
4(λ1 − λ2)(λ2σ2 − λ1σ1)

(σ2 − σ1)(2λ1 − 2λ2 + σ2 − σ1)
− 2(λ1 − λ2)(σ1 + σ2)

(2λ1 − 2λ2 + σ2 − σ1)
− 2v(λ1 − λ2)

(2λ1 − 2λ2 + σ2 − σ1)
, (64)

w̄[1] = w +
(λ1 − λ2)(2 + 2w − σ1σ2)

(σ2 − σ1)
− 2σ1σ2(λ1 − λ2)

2

(σ2 − σ1)2
, (65)

where σ1 and σ2 are determined by Eqs. (55) and (56).

When N = 2, Eqs. (57) and (58) give the following four-soliton solutions of the gBK equations (2) and

(3):

v̄[2] = v − 2b1,x
1 + 2b1

, (66)

w̄[2] = (1 + 2b1)(w + c1) + 2b1, (67)

where

b1 =
∆b1

∆
, c1 =

∆c1

∆
, (68)

∆ =

∣∣∣∣∣∣∣∣∣
1 σ1 λ1 σ1λ1

1 σ2 λ2 σ2λ2

1 σ3 λ3 σ3λ3

1 σ4 λ4 σ4λ4

∣∣∣∣∣∣∣∣∣ , ∆b1 =

∣∣∣∣∣∣∣∣∣
1 σ1 λ1 −λ2

1

1 σ2 λ2 −λ2
2

1 σ3 λ3 −λ2
3

1 σ4 λ4 −λ2
4

∣∣∣∣∣∣∣∣∣ , ∆c1 =

∣∣∣∣∣∣∣∣∣
1 σ1 −σ1λ

2
1 λ1σ1

1 σ2 −σ2λ
2
2 λ2σ2

1 σ3 −σ3λ
2
3 λ3σ3

1 σ4 −σ4λ
2
5 λ4σ4

∣∣∣∣∣∣∣∣∣ , (69)

and σ1 , σ2 and σ3 are determined by Eqs. (55) and (56).

It is remarkable that 2N -solutions (57) and (58) are such types of soliton solutions that can degenerate

into even-soliton solutions and odd-soliton solutions as long as the embedded parameters are suitably selected.

In Figures 1 and 2, two seed solutions v = 0 and w = −0.05 are selected to show the spatial structures of

two-soliton solutions (64) and (65) with parameters λ1 = 2.5,λ2 = −2.5,γ1 = 0.1, γ2 = 0.2. However, if we set
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|γ1| = 1 or |γ2| = 1, the two-soliton solutions (64) and (65) can degenerate into single-soliton solutions. For

example, when λ2 = −1 and other parameters are selected as those in Figures 1 and 2, solutions (64) and (65)

degenerate into one-soliton solutions as shown in Figures 3 and 4.

v̄[1

t = 0.5

]

–7.5 –5 –2.5 2.5 5 7.5
x

–2

–1

1

2

v̄[1 ]

–4

–2

0

2

4

x –0.4

–0.2

0

0.2

0.4

t

–2

–1

0

1

2

–4

–2

0

2

4

Figure 1. Two-soliton solution determined by solution (64).
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–7.5

t = 0.5

–5 –2.5 2.5 5 7.5
x

0.5

1

1.5

2

w̄ [1 ]

–4

–2

0

2

4

x –0.4

–0.2

0

0.2

0.4

t

0

2

4

–4

–2

0

2

4

Figure 2. Two-soliton solution determined by solution (65).
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1
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–2

0

2

4
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–0.2

0

0.2

0.4

t

0
0.5

1

1.5

2

–4

–2

0

2

4

Figure 3. One-soliton solution degenerated from solution (64).
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w̄ [1 ]

–4

–2

0

2

4

x –0.4

–0.2

0

0.2

0.4
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–4
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0

2

4

w̄ [1 ]

–7.5 –5 –2.5 2.5 5 7.5
x

0.5

1

1.5

2
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Figure 4. One-soliton solution degenerated from solution (65).

Similarly, we show in Figures 5–12 that the four-soliton solutions (66) and (67) can also degenerate into

three-soliton solutions, two-soliton solutions, and one-soliton solutions. In Figures 5–12, the seed solutions are

set as v = 0 and w = −0.05, and the same parameters are chosen as λ1 = 2,λ2 = −2.5, λ3 = 3, λ4 = 3.2

while different parameters are chosen as γ1 = 0, γ2 = 0.2, γ3 = 1.5, γ4 = 0.5 in Figures 5 and 6; γ1 = 1,

γ2 = 0.2, γ3 = 1.5, γ4 = 0.5 in Figures 7 and 8; γ1 = 1, γ2 = −1, γ3 = 1.5, γ4 = 0.5 in Figures 9 and 10; and

γ1 = −1, γ2 = −1, γ3 = 1.5, γ4 = 1 in Figures 11 and 12.
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Figure 5. Four-soliton solution determined by solution (66)
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Figure 6. Four-soliton solution determined by solution (67).
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Figure 7. Three-soliton solution degenerated from solution (66).
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Figure 8. Three-soliton solution degenerated from solution (67).
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Figure 9. Two-soliton solution degenerated from solution (66).

4. Conclusion

In summary, we have obtained the third kind of N -fold DT (6), (23), and (24) of the gBK equations (2) and

(3). By virtue of this DT, 2N -soliton solutions (57) and (58) with parameters of the gBK equations (2) and (3)

are obtained. We would like to note that some relevant studies like those in [27–29] on the known original BK
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Figure 10. Two-soliton solution degenerated from solution (67).
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Figure 11. One-soliton solution degenerated from solution (66).
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Figure 12. One-soliton solution degenerated from solution (67).

equation and DT have been given. However, solutions (57) and (58) are different from the known solutions [27–

29] of the original BK equation because the gBK equations (2) and (3) are new. To the best of our knowledge,

the DT (6), (23), and (24) and 2N -soliton solutions (57) and (58) have not been reported in the literature. It

is graphically shown that the 2N -soliton solutions (57) and (58) obtained through the third kind of DT can

degenerate into even-soliton solutions and odd-soliton solutions. How to construct the third kind of DTs and

multisoliton solutions of some other new nonlinear PDEs is worthy of study. This is our task in the future.
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