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Abstract:A two-parameter nuclear softness (NS2) model for the transition energies is proposed by treating the variation

of the moment of inertia with spin. The model has been applied to the yrast superdeformed (SD) bands in even-even

nuclei in the mass region A ∼ 190. The model parameters have been determined from the fitting procedure in order

to minimize the relative root mean square deviation between the experimental E2 transition γ -ray energies and the

calculated ones. The basic experimental data on SD bands are given in the form of a series of γ -ray transitional

energies and the spins were determined in our previous works. The excellent agreement between the theory and the

experiment give good support to the model. The presence of identical bands between the two isotopes 192Hg and 194Pb

is investigated because their differences in γ -ray energies are small and constant up to rotational frequency ℏω ∼ 0.25

MeV. Our analysis also leads to the appearance of ∆I = 2 staggering effect in 194Hg (SD1). A comment on equilibrium

deformation for each nucleus is also given.
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1. Introduction

Over the past decade, the study of superdeformation has been one of the most important and exciting topics

in nuclear spectroscopy. Since the discovery of the first discrete superdeformed (SD) rotational band in the

nucleus 152Dy [1] in 1986, high-spin SD states were recognized in mass regions A = 40, 60, 80, 110, 130, 150,

190, and 240 [2,3]. Superdeformation in the mass 190 region was first observed in 191Hg [4], and since then

more 85 SD bands were reported in the mass A ∼ 190 region. Most SD bands of this region exhibit the same

smooth increase of the dynamical moment of inertia with rotational frequency due to the gradual alignment

of quasiparticles occupying specific high-N intruder orbitals (namely j15/2 neutrons and i13/2 protons) in the

presence of pair correlations.

Because of the nonobservation of the discrete linking transitions between the SD states and the low-lying

states of normal deformation, the spins, parity, and excitation energies have not been determined until now.

Several approaches to assign the spins were proposed [5–9]. In this paper we will use the values of bandhead

spins of our selected SD bands from our previous works [10–12]. Consequently, in the Hg-Pb mass region the

lowest bandhead spins in SD bands are as low as about 10 ℏ . The observation of the SD band at low spins

forced many researchers to study the structures of these well-deformed shape isomers.
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The 194Pb nucleus is the first lead isotope where superdeformation was found experimentally [13,14].

The bandhead spin in this nucleus is I0 = 6 ℏ [15] and its γ -ray energies are very close to the energies of

the 192Hg SD band [16]. Calculations using the cranked Nilsson–Strutinsky method [17] and the Hartree–Fock

method [18] suggested that nuclei with N = 112 and Z = 80 or 82 should be particularly stable at these large

deformations due to the presence of large shell gaps at deformation corresponding to a 1.6:1 axis ratio. As a

result, 192Hg and 194Pb may be considered as doubly magic SD nuclei.

One of the unexpected features of the SD bands is the existence of identical bands (IBs) [19,20], that is,

nearly identical γ -ray transition energies Eγ . It is found that several SD bands in the A ∼ 190 region have

differences in Eγ of only 1–3 KeV. For the underlying physics of the IBs, some studies [8,9,21] showed that

there is special physics on symmetry behind IBs, while others [22,23] suggested that the same Eγ and identical

moments of inertia are due to the competition among the stretching effect, pairing interaction, blocking effect,

rotation alignment, and Coriolis antipairing effect.

The ∆I = 2 staggering was also observed in some SD bands [24–28]. It manifests itself in systematic shifts

of the energy levels, which are alternately pushed down and up with respect to a purely rotational sequence. It

was suggested that their origin could be associated with the presence of C4 symmetry [24,25]. To date, some

models have been proposed to explain the experimental results [9,28]. The purpose of the present paper is to

study some properties of the yrast SD bands in the A ∼ 190 mass region in terms of the nuclear softness model.

The paper is organized as follows: in Section 2 we describe the formalism of the nuclear softness approach

briefly. Sections 3, 4, and 5 deal the IBs and the staggering and electric quadrupole transition probabilities,

respectively. In Section 6, the calculation results and some discussions are presented. Finally, a conclusion is

given in Section 7.

2. Soft rotor formula

The energy expression for a rigid rotator is given by:

E (I) =
ℏ2

2J
I(I + 1), (1)

where J is the variable moment of inertia. We can write J in terms of the softness parameters σ to the first

order as:
J = θ (1 + σI) , (2)

where θ is a proportional constant and the bandhead moment of inertia is J0 when I = I0 , the bandhead spin.

Substituting from Eq. (2) into the energy expression of Eq. (1) yields:

E (I) = A
I (I + 1)

1 + σI
, (3)

with

A =
ℏ2

2θ
. (4)

Eq. (3) contains only two parameters, A and σ . Eq. (3) is denoted by nuclear softness NS2 or the soft rotor

formula [29]. For excited states, Eq. (3) is written as:

E (I) = A
I (I + 1)

1 + σI
+ Ebh, (5)
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where Ebh denotes the bandhead energy.

The transition energies take the following formulae:

Eγ (I0 + 4 → I0) = E (I0 + 4)− E (I0)=A

[
(I0 + 4) (I0 + 5)

1 + σ(I0 + 4)
− I0(I0 + 1)

1 + σI0

]
(6)

Eγ (I0 + 2 → I0) = E (I0 + 2)− E (I0)= A

[
(I0 + 2) (I0 + 3)

1 + σ(I0 + 2)
− I0(I0 + 1)

1 + σI0

]
(7)

Now we define the transitional energy ratio λ as

λ =
Eγ(I0 + 4 → I0)

Eγ(I0 + 2 → I0)
. (8)

This leads to a quadratic equation in σ :

[I0 (I0 + 2) (I0 + 4)λ− 2I0 (I0 + 2) (I0 + 4)]σ2 +
[(
3I20 + 13I0 + 12

)
λ− 2

(
3I20 + 13I0 + 10

)]
σ

+ [(2I0 + 3)λ− 2(2I0 + 5)] = 0. (9)

The positive root of Eq. (9) represents the softness σ , and, when substituting in Eq. (7), we can determine the

other parameter, A. Therefore, the two parameters σ and A of the NS2 model energies are then calculated.

3. Identical transition energies

The discovery of the phenomenon of IBs [19] awoke considerable interest. It was found that several SD bands

were identical to other bands. That is, the γ -transition energies of the two bands are identical to within ±3 KeV.

Their IBs have identical supershell structures, but generally different alignment configurations. The observed

range of frequencies of the kinematic J (1) and dynamic J (2) moments of inertia are completely determined by

the supershell structure and the high –j configuration. Hence, the moments of inertia are nearly identical. There

are more examples of IBs in the A ∼ 190 region occurring in pairs separated by two mass units and assuming
192Hg as a doubly magic core. Usually, the difference between transition energies ∆Eγ for the identical pair of

SD bands is plotted versus the transition energy Eγ , which shows the degree of similarity between transition

energies in the pair. Another way of relating the energies of different bands to those of reference 192Hg is to

use incremental alignment.

4. Test of a ∆I = 2 staggering

Another surprising feature in SD nuclear bands is the ∆I = 2 staggering. Sequences of states differing by four

units of angular momentum are displaced relative to each other. A few theoretical proposals for the possible

explanation of this ∆I = 4 bifurcation were made [9,24,25,28].The deviation of the γ -ray transition energies

from the rigid rotor behavior can be measured by the staggering quantity [26]:

∆4Eγ (I) =
1

16
[6Eγ (I)− 4Eγ (I − 2)− 4Eγ (I + 2) + Eγ (I − 4) + Eγ(I + 4)] . (10)

It represents the finite difference approximation to the fourth derivative of the transition energies with respect

to the spin in a ∆I = 2 band. The staggering quantity ∆4Eγ (I) contains five consecutive Eγ values and is
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called the 5-point formula. We define the staggering S(4) as the difference between the experimental transition

energies and an axillary reference as

S(4) = 24
[
∆4Eexp

γ (I)−∆4Ecal
γ (I)

]
. (11)

5. Quadrupole moment and deformation

A number of high-precision measurements are now available for charge quadrupole moments of yrast SD bands

[30], which provide opportunities to further challenge our predictions. In the axial rotor model [31], where the

configuration is described by the Nilsson diagram, the transition electric quadrupole moment Qt is derived from

the reduced transition probability B (E2) using the following formula:

B (E2,∆I = 2) =
5

16π
Q2

t |⟨IK20 | (I − 2)K⟩|2 e2fm2. (12)

Qt is related to the deformation parameter β2 by the following relation:

Qt =
3√
5π

ZR2β2

(
1 +

2

7

√
5

π
β2

)
10−2eb

= 0.757ZR2β2 (1 + 0.36β2) 10
−2eb

= 1.09ZA2/3β2 (1 + 0.36β2) 10
−2eb, (13)

where R = 1.2 A1/3 fm, A is the nucleon number, and Z is the proton number.

The bandhead moment of inertia J0 is related to the quadrupole deformation β2 by the Grodzins formula

[32]:

J0 = C (Z)A5/3β2
2 , (14)

where C (Z) describes the calibration of the relationship between Jo and β2 , which remains constant for each

isotopic chain and varies smoothly with Z.

Table 1. The calculated values of the model parameters λ , σ , and A employed in the calculations for eight yrast SD

bands in even-even nuclei in the A ∼ 190 region. I0 is the bandhead spin value obtained from our previous works

[10–12]. For each band transition from I0 + 2 to I0 is included. J0 and β2 denote the bandhead moment of inertia

and the quadrupole deformation, respectively.

SD Band

Eγ

λ σ

J0

C(Z) B2I0 (I0 + 2 → I0) A Θ
(ℏ) (KeV) (KeV) (ℏ2 MeV−1) (ℏ2 MeV−1)

190Hg (SD1) 12 316.9 2.1360 3.7710 × 103 6.3098 79.2418 82.8276 0.050 0.5136
192Hg (SD1) 8 214.4 2.2024 2.3117 × 103 5.8226 85.8722 87.4602 0.050 0.5232
194Hg (SD1) 8 211.7 2.1994 3.2016 × 103 5.8182 85.9372 88.1382 0.050 0.5207
192Pb (SD1) 8 214.8 2.2100 1.4554 × 103 5.6639 88.2783 88.3810 0.040 0.5880
194Pb (SD1) 4 124.9 2.3572 2.2618 × 103 5.7778 86.5381 87.3210 0.040 0.5794
196Pb (SD1) 6 171.4 2.2578 2.4032 × 103 5.8620 85.2951 86.5249 0.040 0.5719
198Pb (SD1) 12 304.4 2.1422 1.7844 × 103 5.8367 85.6648 87.4991 0.040 0.5702
198Po (SD1) 6 175.9 2.2528 3.8152 × 103 6.1060 81.8866 83.7610 0.045 0.5260
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6. Calculations and discussion

We have applied the transition energy Eγ (I) formula described in Section 2 to eight yrast SD bands in even-even

nuclei in the A ∼ 190 region, namely 190−194Hg, 192−198Pb, and 198Po. In our nuclear softness (NS2) model,

the two parameters σ and A occurring in Eq. (3) are determined after calculating the transitional energy ratio

λ . In our calculations, the spin assignments of these SD bands are taken from our previous works [10–12]. In

Table 1 we list the parameters used in the calculations and some useful calculating quantities. Using these set of

parameters, the Eγ (I) transitions are calculated and compared with experimental ones. The results are shown

in Figure 1 and are listed in Table 2.
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Figure 1. Calculated γ -ray transition energies Eγ (I) versus spin I for the eight SD bands are compared with

experimental values [2,3]. Solid curves indicate theoretical calculations and filled circles indicate experimental values.

Figure 2 shows the difference in γ -ray transition energies δEγ between the yrast SD bands in 192Hg

and 194Pb (closed circles) versus Eγ ; they are very similar (the average deviation in energy is around 3 KeV).

Therefore, these two bands have been considered as IBs. In the same figure δEγ for the pair 192Hg and 194Hg

(open circles) is also seen; the differences are too large to consider these two bands as identical ones.

182



KHALAF et al./Turk J Phys

Table 2. Calculated and experimental γ -ray transition energies Eγ(KeV ) and aligned spins for the eight SD bands in

even-even nuclei in the A ∼ 190 region.

190Hg (SD1) 192Hg (SD1) 194Hg (SD1) 192Pb (SD1)

Spin Ecal
γ E

exp[2]
γ Spin Ecal

γ E
exp[2]
γ Spin Ecal

γ E
exp[2]
γ Spin Ecal

γ E
exp[2]
γ

14 316.896 316.9 10 214.399 214.4 10 211.69 211.7 10 214.797 214.8
16 359.994 360.0 12 257.793 257.8 12 253.911 253.93 12 259.9043 262.4
18 402.179 402.34 14 300.605 300.1 14 295.347 295.99 14 304.9724 303.7
20 443.476 442.98 16 342.844 341.4 16 336.027 337.18 16 350.0012 344.6
22 483.911 482.71 18 384.529 381.6 18 375.967 377.39 18 394.9908 384.6
24 523.506 521.3 20 425.636 421.1 20 415.187 416.6 20 439.9412 423.7
26 562.286 558.6 22 466.225 458.8 22 453.703 454.76 22 484.8525 461.5
28 600.272 594.9 24 506.273 496.0 24 491.531 491.86 24 529.7247 498.7
30 637.486 630.1 26 545.797 532.1 26 528.689 527.88 26 574.5579 535.3
32 673.948 664.1 28 584.806 567.4 28 565.192 562.92 28 619.352 570.3
34 709.68 696.9 30 623.309 601.7 30 601.055 596.87 30 664.1073 604.7
36 744.688 728.5 32 661.315 634.9 32 636.293 629.93 32 708.8236 640.0
38 779.025 757.4 34 698.832 668.1 34 670.920 662.07
40 812.677 783.5 36 735.868 700.1 36 704.951 693.4
42 845.671 801.8 38 772.433 731.5 38 738.400 723.91

40 808.533 762.3 40 771.279 753.92
42 844.176 792.7 42 803.601 783.67
44 879.371 822.9 44 835.378 813.12
46 914.125 853.1 46 866.624 842.55
48 948.445 888.7 48 897.35 872.41

50 927.566 903.1

Table 2. Continued.

194Pb (SD1) 196Pb (SD1) 198Pb (SD1) 198Po (SD1)

Spin Ecal
γ E

exp[2]
γ Spin Ecal

γ E
exp[2]
γ Spin Ecal

γ E
exp[2]
γ Spin Ecal

γ E
exp[2]
γ

6 124.8985 124.9 8 171.398 171.4 14 304.396 304.4 8 175.898 175.8982
8 169.1895 169.52 10 216.893 215.6 16 347.681 347.7 10 220.365 220.3654
10 212.8928 213.26 12 259.151 259.5 18 390.517 390.3 12 263.859 263.8592
12 256.0186 256.22 14 302.111 303.0 20 432.910 432.4 14 306.407 306.4078
14 298.5771 298.49 16 344.474 345.8 22 474.867 473.8 16 348.038 348.0385
16 340.5782 339.9 18 386.251 387.6 24 516.393 514.6 18 388.777 388.7775
18 382.0317 380.2 20 427.454 428.5 26 557.494 554.8 20 428.65 428.65
20 422.9469 420.0 22 468.092 469.4 28 598.175 594.4 22 467.680 467.6804
22 463.3332 458.4 24 508.177 508.5 30 638.444 633.4 24 505.892 505.8924
24 503.1997 495.8 26 547.717 546.9 32 678.304 671.8 26 543.308 543.3086
26 542.5552 532.5 28 586.723 584.2 34 717.763 709.4
28 581.4084 568.3 30 625.205 620.6 36 756.824 746.7
30 619.7678 603.4 32 663.171 654.9 38 795.4939 782.7
32 657.6418 638.1 34 700.631 688.8 40 833.7771 818.5
34 695.0386 672.3 36 737.595 720.1 42 871.679 851.2
36 731.966 706.2 38 774.069 752.1 44 909.2046 890.0
38 768.432 739.5
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Another result in the present work is the observation of a ∆I = 2 staggering effect in the γ -ray transition

energies in 194Hg (SD1). We calculated the staggering quantity S(4) and plotted it as a function of rotational

frequency ℏω in Figure 3, and the values are listed in Table 3. Significant anomalous staggering has been

observed. The calculated bandhead moments of inertia J0 in terms of our NS2 model for 190Hg, 192Hg, and
194Hg are listed in Table 1. Assuming that C (Z) in Eq. (14) is constant for the three bands C (Z) = 0.05,

the extracted quadrupole deformation β2 for 190Hg and 194Hg would be 1.8% and 0.47% smaller than that for
192Hg. This is consistent with the extracted β2 in [17], where the β2 deformations for 190,192,194Hg are 0.463,
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Figure 2. Differences in γ -ray transition energies δEγ

versus Eγ between the yrast bands in 192Hg and 194Pb

(closed circles) and 192Hg and 194Hg (open circles).

Figure 3. S(4) staggering pattern for the yrast SD band

in 194Hg.

Table 3. The staggering parameter S(4) as a function of rotational frequency ℏω for 194Hg (SD1).

ℏω (KeV) S(4) (KeV)
0.1582 0.5906
0.1786 0.0907
0.1984 –0.0284
0.2178 0.0406
0.2366 –0.0096
0.2549 0.1206
0.2727 –0.2096
0.2899 0.3103
0.3067 –0.2293
0.3230 0.1402
0.3388 –0.1194
0.3543 0.3301
0.3694 –0.0793
0.3843 –0.2799
0.3991 0.3204
0.4139 0.1706
0.4287 –0.0499
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0.475, and 0.475 respectively, which correspond to a deviation in the deformation from 192Hg of 2.5% and 0%

for 190Hg and 194Hg. Furthermore, for each band in lead isotopes 192−198Pb, the J0 values are calculated and

listed in Table 1, assuming that C (Z) = 0.04 for the four SD bands, and the extracted β2 deformations for

194,196,198Pb are found to be smaller than that of 192Pb by 1.4%, 2.7%, and 3%, respectively. This is consistent

with the Hartree–Fock calculations plus BCS theory [18], which predicted the occurrence of a SD well for 192Pb.

7. Conclusion

We have shown in this paper that the SD nuclear states can be described in the framework of nuclear softness

(NS2) based on the variable moment of inertia model. After adopting the model parameters by using the

experimental transition energies, we calculated the transition energies Eγ and the rotational frequencies ℏω of

eight yrast SD bands in the A ∼ 190 mass region. In all cases the bandhead spins were assigned in our previous

works. Excellent agreement between theory and experiment was obtained. The bandhead moments of inertia

and the differences between transition energies suggest that the yrast SD bands of 192Hg and 194Pb are IBs and

the SD bands in 190Hg and 194Hg have a slightly smaller quadrupole deformation than that of 192Hg, in good

agreement with the predictions from Woods–Saxon–Strutinsky calculations. A staggering quantity containing

five consecutive Eγ values was used to present the ∆I = 2 staggering in 194Hg (SD1).
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