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doi:10.3906/fiz-1412-11

Turkish Journal of Physics

http :// journa l s . tub i tak .gov . t r/phys i c s/

Research Article

Crystal dynamics of zinc chalcogenides I: an application to ZnS

Jay Prakash DUBEY1,∗, Raj Kishore TIWARI2, Kripa Shankar UPADHYAYA3,
Pramod Kumar PANDEY1

1Department of Physics, Pandit Sambhoo Nath Shukla Government Post Graduate College, Affiliated to
Awadhesh Pratap Singh University, Rewa, Madhya Pradesh, India

2Department of Physics, Government New Science College, Affiliated to Awadhesh Pratap Singh University,
Rewa, Madhya Pradesh, India

3Department of Physics, Nehru Gram Bharati University, Allahabad, Uttar Pradesh, India

Received: 31.12.2014 • Accepted/Published Online: 21.05.2015 • Printed: 30.11.2015

Abstract:A van der Waals three body force rigid shell model (VTRSM) developed earlier for NaCl and CsCl structure

was expanded by us for zinc blende structure (ZBS). This model includes the effect of three body interactions and van

der Waals interactions in the rigid shell model where short-range interactions were considered up to the second neighbor.

Our model thus developed was applied to study the phonon dispersion curves, Debye temperature variation, two phonon

Raman/IR spectra, and anharmonic elastic properties of ZnS. Our results are in good agreement with the measured data

wherever available.

Key words: Phonons, van der Waals interactions, Debye temperature, combined density of states curve, Raman spectra,
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1. Introduction

In recent years, there has been considerable interest in the theoretical and experimental studies of AN B8−N

type crystals of zinc blende structure (ZBS). This particular attention is primarily due to their high symmetry

and simplicity of their ionic bonding. These semiconductor crystals are ZnS, ZnSe, ZnTe, GaP, GaSb, GaAs,

InP, InAs, InSb etc. i.e. III–V and IIB–VIA groups of compounds. In this structure, ZnS, ZnSe, and ZnTe

have wide band gaps and constitute a family of cubic crystal at ambient pressure. They have the remarkable

property of transverse acoustic (TA) vibrations and have a large region at very low group velocity. The difference

between frequencies of the longitudinal and transverse vibrations at the boundary of the Brillouin zone is very

large. In this communication, we are mainly concerned with the crystal dynamics of zinc sulfide (ZnS). The

experimental data on ZnS for phonon dispersion curves [1], harmonic and anharmonic elastic constants [2],

Debye temperature variation [3,4], two phonon IR [5], and Raman spectra [6] are available. Further, there are

different lattice dynamical models that have been used to explain the vibrational properties of these crystals.

Amongst them are the rigid ion model (RIM) [7,8], rigid shell model (RSM) [9], valence shell model (VSM)

[1], deformation dipole model (DDM) [10], bond bending force model (BBFM) [11,12], and bond charge model

(BCM) [13]. These researchers have tried to interpret the phonon dispersion curves (PDCs) but none has
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succeeded in describing the PDCs and other results of ZnS very well. They have compared their theoretical

results with their measured data but with only partial success.

The general descriptions of lattice dynamics having physical properties of ZBS semiconductors, i.e. the

potentials that include the electrostatic interactions between the point charges and overlap repulsion between

the nearest neighbors only, seem inadequate to take relativistic account of the crystal interactions in view of

the phenomena of logical model calculations [7–16] and quantum mechanics [17,18]. Furthermore, the effects

of long-range (LR) three body interactions (TBI), short-range (SR) interactions, and van der Waals (VDW)

attraction are significant in partially ionic and covalent crystals [19]. Although VDW interactions (VDWI) have

much effective force, Singh and Singh [20] used only three body force shell model (TSM) formulations for ZnS,

ZnSe, and ZnTe without inclusion of VDWI. As far as the calculations on third order elastic constants (TOEC)

and pressure derivatives of second order elastic constants (SOEC) are concerned, Sharma and Verma [21] have

reformulated the expressions derived by Garg et al. [22]. They have derived the correct expressions for TOEC

and pressure derivatives of SOEC for ZBS crystals. Various researchers [23–27] used their correct expressions

for calculating the anharmonic elastic properties for NaCl, CsCl, and ZBS of solids. Therefore, we used the

expressions of Sharma and Verma [21] as such for our computations.

The above information encouraged us to include (i) the effect of VDWI and (ii) TBI in the framework of

RSM where short-range interactions are effective up to the second neighbors. Our new model thus developed

is known as a van der Waals three body force rigid shell model (VTRSM). It has 14 parameters, i.e. four TBI

parameters b, ρ, f(r0), r0 f
′
(r0); six nearest and the next nearest neighbor short-range repulsive interaction

parameters A12 , B12 , A11 , B11 , A22 , B22 ; two distortion polarizabilities of negative and positive ions d1 , d2 ;

and two shell charges of the negative and positive ions Y1 , Y2 respectively. They can be deduced with the

help of measured values of elastic constants, dielectric constants, electronic polarizabilities and VDW coupling

coefficients. This model has been applied to study the lattice dynamics of zinc chalcogenides (ZnS, ZnSe, ZnTe).

In this paper, we report the study of phonon dispersion curves, Debye temperature variation, combined density

of states (CDS), third order elastic constants, and pressure derivatives of SOEC. The formalism of our model

is presented in the next section in detail.

2. Theoretical framework of the present model

We have developed a model that includes the effect of VDWI and TBI in the framework of a RSM where

short-range interactions are effective up to the second neighbors and known as a VTRSM.

2.1. Secular equations

For ZBS crystals, the cohesive energy for a particular lattice separation (r) is expressed as

Φ (r)=ΦLR (r)+ΦSR(r), (1)

where the first term ΦLR (r) represents the long-range Coulomb and TBI energies expressed by

ΦLR (r)= −
∑
ij

i ̸= j ̸= k

ZiZje
2

rij

{
1+

∑
k

f(rik)

}
= −αMZ2e2

r

{
1+

4

Z
f(r)

}
, (2)
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where Z i is the ionic charge parameter of the ith ion, rij is separation between the ith and jth ion, f(rik) is the

three body force parameter dependent on nearest-neighbor separation rik and is a measure of ion size difference

[19], and αM is the Madelung constant (=1.63805 for ZBS).

The second term in Eq. (1) is short-range energy contributions from overlap repulsion and VDWI

expressed as [28]

ΦSR (r)= Nb

2∑
i,j=1

βijexp

[
ri+rj−rij

ρ

]
−
∑
ij

Cij

r6ij
−
∑
ij

dij
r8ij

, (3)

where N is the Avogadro’s a number, b is the hardness parameter, and the first term is the Hafemeister and

Flygare (HF) potential [29], used by Singh and coworkers [19,20,30]. The second term and third term represent

the energy due to VDW coefficients for cij dipole–dipole (d–d) and dij dipole–quadrupole (d–q) interactions,

respectively.

Using the crystal energy expression (1), the equations of motion of two cores and two shells can be written
as

ω2MU=
(
R+ZmC

′
Zm

)
U+

(
T+ZmC

′
Y m

)
W (4)

O =
(
TT+Y mC

′
Zm

)
U+

(
S+K+Y mC

′
Y m

)
W (5)

Here U and W are vectors describing the ionic displacements and deformations, respectively. Zm and Y m are

diagonal matrices of modified ionic charges and shell charges, respectively; M is the mass of the core; T and R

are repulsive Coulombian matrices, respectively; C
′
and Y m are long-range interaction matrices that include

Coulombian and TBI, respectively; S and K are core–shell and shell–shell repulsive interaction matrices,

respectively, andTT is the transpose of matrix T . The elements of matrix Zm consist of the parameter Zm

giving the modified ionic charge.

Zm= ±Z

√
1+

(
8

Z

)
f(r0) (6)

The elimination of W from Eqs. (4) and (5) leads to the secular determinant

|D (q⃗)−ω2M I|= 0 (7)

for the frequency determination. Here D (q) is the (6 × 6) dynamical matrix given by

D (q⃗)=
(
R

′
+ZmC

′
Zm

)
−
(
T+ZmC

′
Y m

)
×
(
S+K+Y mC

′
Y m

)−1 (
TT+Y mC

′
Zm

)
(8)

The numbers of adjustable parameters were largely reduced by considering all the short-range interactions to

act only through the shells.

2.2. Vibrational properties of ZBS

By solving the secular equation (4) along the [q00] direction and subjecting the short- and long-range coupling

coefficients to the long-wavelength limit q⃗→ 0, two distinct optical vibration frequencies are obtained as

(
µω2

L

)
q=0

=R
′

0+
(Z

′
e)

2

vfL

8π

3

(
Z2
m+4Zr0f

′
(r0)

)
(9)
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(
µω2

T

)
q=0

=R
′

0−
(Z

′
e)

2

vfT

4π

3
Z2
m, (10)

where the abbreviations stand for

R
′

0=R0−e2
(
d21
α1

+
d22
α2

)
;R0=

e2

v

[
4
A+ 2B

3

]
;Z

′
=Zm+d1−d2 (11)

fL= 1+

(
α1+α2

v

)
8π

3

(
Z2
m+4Zr0f

′
(r0)

)
(12)

fT= 1−
(
α1+α2

v

)
4π

3
(13)

and

α =α1+α2 (14)

And v = 3.08r30 for ZBS (volume of the unit cell).

3. Debye temperature variation

The specific heat at constant volume Cv at temperature T is expressed as

Cv= 3NkB

∫ νm

{(
hν

kBT

)2
ehν/kBT

}
G(ν)dν

0 /
(
ehν/kBT−1

)2∫ νm

0
G(ν)dν

, (15)

where νm is the maximum frequency, N is the Avogadro’s a number, h is the Planck’s constant, and kB is the

Boltzmann’s constant. Eq. (15) can be written as a suitable form for a computational purpose as

Cv= 3NkB

∑
ν
{E (x) }G (ν) dν∑

ν
G(ν)dν

, (16)

where E(x) is the Einstein function, defined by

E (x)=x2 exp(x)

(exp (x)−1)
2 , (17)

where x =

{(
hν
kBT

)2

e
hν

kBT

}
Moreover,∑

ν
G(ν)dν = Total number of frequencies considered.

= 6000forZBS.

Hence, Eq. (16) can be written for ZBS type crystals as

Cv=
3NkB
6000

∑
ν

E (x)G(ν)dν (18)
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The contribution of each interval to the specific heat is obtained by multiplying an Einstein function corre-

sponding to the mid-point of each interval (say 0.1 THz) by its statistical weight. The statistical weight of the

interval is obtained from the number of frequencies lying in that interval. The contributions of all such intervals

when summed up give
∑
ν
E (x)G(ν)dν . The specific heat Cv is then calculated by expression (18).

4. Second and third order elastic constant

Proceeding with the use of the three body crystal potential given by Eq. (1), Sharma and Verma [21] derived

the expressions for the second order elastic constants and used by Singh and Singh [20] for ZBS crystals. We

report them here as their corrected expressions.

The expressions for second order elastic constants (SOEC) are

C11= L

[
0.2477Z2

m+
1

3
(A1+2B1)+

1

2
(A2+B2)+5.8243Zaf

′
(r0)

]
(19)

C12= L

[
−2.6458Z2

m+
1

3
(A1−4B1)+

1

4
(A2−5B2)+5.8243Zaf

′
(r0)

]
(20)

C44= L

[
−0.123Z2

m+
1

3
(A1+2B1)+

1

4
(A2+3B2)−

1

3
∇(−7.539122Z2

m)+A1−B1

]
, (21)

where A1 = A12 , B1 = B12 , A2 = A11 + A22 , B2 = B11 + B22 , C1 =
A2

12

B12
, and C2 =

A2
2

B2

and the expressions for third order elastic constants (TOEC) are

C111= L

[
0.5184Z2

m+
1

9
(C1−6B1−3A1)+

1

4
(C2−B2−3A2)−2 (B1+B2)−9.9326Zaf

′
(r0)+2.5220Za2f ′′(r0)

]
(22)

C112= L

[
0.3828Z2

m+
1

9
(C1+3B1−3A1)+

1

8
(C2+3B2−3A2)−11.642Zaf

′
(r0)+2.5220Za2f ′′(r0)

]
(23)

C113= L

[
6.1585Z2

m+
1

9
(C1+3B1−3A1)−12.5060Zaf

′
(r0)+2.5220Za2f ′′(r0)

]
(24)

C144 = L

[
6.1585Z2

m+
1

9
(C1+3B1−3A1)−4.1681Zaf

′
(r0)+0.8407Za2f ′′(r0)+

+∇
{
−3.3507Z2

m−2

9
C1+13.5486Zaf

′
(r0)−1.681Za2f ′′(r0)

}
+∇2

{
−1.5637Z2

m+
2

3
(A1−B1)+

1

9
C1−5.3138Zaf

′
(r0)+2.9350Za2f ′′(r0)

}]
(25)

C166 = L

[
−2.1392Z2

m+
1

9
(C1−6B1−3A1)+

1

8
(C2−5B2−3A2)− (B1+B2)−4.1681Zaf

′
(r0)

+0.8407Za2f ′′(r0) +∇
{
−8.3768Z2

m+
2

3
(A1−B1)−

2

9
C1+13.5486Zaf ′(r0)− 1.681Za2f ′′(r0)

}
+∇2

{
2.3527Z2

m+
1

9
C1−5.3138Zaf ′(r0) + 2.9350Za2f ′′(r0)

}]
(26)
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C456 = L

[
4.897Z2

m+
1

9
(C1−6B1−3A1)−B2+∇

{
−5.0261Z2

m−1

9
C1

}
+∇2

{
7.0580Z2

m+
C1

3

}
+∇3

{
−4.8008Z2

m+
1

3
(A1−B1)−

1

9
C1

}]
, (27)

where Zm is the modified ionic charge defined earlier by L = e2 /4a4 and

∇ =

[
−7.53912Z (Z + 8f (r0))+(A1−B1)

−3.141Z (Z + 8f (r0))+ (A1+2B1)+21.765Zaf
′
(r0)

]
(28)

The values of Ai, Bi, and Ci are defined by Sharma and Verma [21].

5. Computations

The model parameters (b, ρ , and f(r0)) were determined by using the expressions (19–21) and the equilibrium

condition
(

dΦ(r)
dr

)
r0=a

√
3

2

= 0, with the inclusion of the VDWI [Eq. (3)]. The values of the input data of Berlin

Court et al. [31], Jai Shankar et al. [32] and Kunc et al. [33] and the model parameters are shown in Table 1.

The values of Ai , B i , and C i were calculated from the knowledge of b and ρ and the values of various order of

derivatives are f(r0) (like f ′(r0), f
′′(r0), f

′′′(r0)) were obtained by using functional form f(r0) = f0e
−r/ρ as

used by Singh and Singh [20]. The values of VDW coefficients used in the present study were determined using

the Slater–Kirkwood variation (SKV) method [34] and the Lee [2] approach as suggested by Singh and Singh

[20]. Thus our model parameters are b, ρ , f(r0), r0 f
′(r0), A12 , A11 , A22, B12 , B11 , B22 , d1 , d2 , Y1 and Y2 .

These values of the VDW coefficients are shown in Table 2. Our model parameters of VTRSM were used to

compute the phonon spectra for ZnS for the allowed 48 nonequivalent wave vectors in the first Brillouin zone.

The frequencies along the symmetry directions were plotted against the wave vector to obtain the PDCs. These

curves were compared with those measured by means of the coherent inelastic neutron scattering technique [1] in

Figure 1 along with the DDM calculations of Kunc et al. [10]. Since the neutron scattering experiments provide

us with very few data for the symmetry directions, we also computed the CDS and the Debye temperature

variation for the complete description of the frequencies for the Brillouin zone.

The complete phonon spectra were used to compute the CDS and N(νj+νj′) corresponding to the sum

modes (νj+νj′) following the procedure of Smart et al. [35]. A histogram between N(νj+νj′) and (νj+νj′) was

plotted and smoothed out as shown in Figure 2. These curves show well defined peaks that correspond to two-

phonon Raman scattering and IR absorption spectra. These CDS peaks were compared with the assignments

calculated and shown in Table 3. The Debye temperature variation for ZnS measured by Martin [3] and Clusius

and Hartech [4] and those calculated by us using VTRSM are compared in Figure 3. The calculated values of

TOEC using Eqs. (22)–(27) were compared with calculated values of Anil et al. [36] and are shown in Table

4. The pressure derivatives of SOEC were also calculated and are compared with those calculated by Anil et

al. [36] and Dinesh et al. [37] and measured by Madelung et al. [38] in Table 5. The Cauchy’s discrepancy of

TOEC was also calculated and is shown in Table 6.
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Table 1. Input data and model parameters for ZnS [C ij and B (in 1011 dyne/cm2) , ν (in THz), r0 (in 10−8 cm), αi

(in 10−24 cm3) , b (in 10−12 erg), ρ (in 10−8 cm)].

Input data Model parameters
Properties Values Parameters Values
C11 10.46a b 1.8000
C12 6.53a ρ 0.4850
C44 4.61a f(r0) –0.0274
B 7.50a r0f

′(r0) 0.1322
r0 2.34a A12 19.7684
νLO(Γ) 10.44b B12 –6.3279
νTO (Γ) 8.30b A11 95.9119
νLO (L) 10.41* B11 –20.5278
νTO (L) 8.51* A22 –2.4330
νLA (L) 4.24b B22 –7.1774
νTA (L) 1.68b d1 0.3515
α1 1.01c d2 2.7619
α2 5.12c Y1 –2.0428
ε0 8.54d Y2 –1.3179

* Extrapolated values from [1].
a-(Berlin Court et al. [31]);b- (Vagelatos et al. [1]); c- (Shankar et al. [32]); d- (Kunc et al. [33]).

Figure 1. Phonon dispersion curves for ZnS at room temperature.
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Figure 2. Combined density of states curve for ZnS.

Figure 3. Debye characteristic temperatures ΘD(◦K) as a function of temperature T for ZnS.

Table 2. Van der Waals interaction coefficients for ZnS (C ij and C in units of 10−60 erg cm6 and d ij and D in units

of 10−76 erg cm8) .

Parameters Numerical values
C+− 165
C++ 60
C−− 580
d+− 111
d++ 19
d−− 498
C 956
D 508
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Table 3. Assignments for the observed peak positions in combined density of states in terms of selected phonon

frequencies at Γ, X, and L critical points for ZnS.

CDS peaks
Raman active Infrared active

(cm−1)
Observed Present study Observed IR Present study
Ramadan peaks Values

Assignments
peaks Values

Assignments
(cm−1) [6] (cm−1) (cm−1) [5] (cm−1)

142 ....... ....... ....... ....... ....... .......
177 176 180 2TA(X) ....... ....... .......
220 219 217 TO–TA (∆) ....... ....... .......
293 295 302 LA+TA(X) ....... ....... .......
353 352 ....... ....... ....... ....... .......
387 386 383 TO+TA (∆) ....... 383 TO+TA (∆)
420 ....... 420 LO+TA (∆) 415 420 LO+TA (∆)
....... ....... ....... ....... 431 432 TO+LA (L)
450 448 467 TO+LA (∆) 455 467 TO+LA (∆)
....... ....... ....... ....... 491 482 LO+LA (L)
510 511 504 LO+LA (∆) 526 504 LO+LA (∆)
....... ....... 584 2TO(L) 593 ....... .......
600 ....... 600 2TO(∆) 605 600 2TO(∆)
613 612 ....... ....... ....... ....... .......
633 636 634 2TO(X) ....... ....... .......
....... ....... 634 LO+TO (L) ....... ....... .......
....... ....... 637 LO+TO(∆) 642 637 LO+TO(∆)
660 665 656 2LO(X) ....... ....... .......
670 ....... 674 2LO(∆) 677 674 2LO(∆)
....... ....... 684 2LO(L) 733 ....... .......
700 ....... 696 2LO(Γ) ....... ....... .......
....... ....... ....... ....... 823 ....... .......

Table 4. Third order elastic constants (in the unit of 1011dyne/cm2) for ZnS.

Property Present study
Other theoretical
results [36]

C111 –95.51 –60.95
C112 –115.15 –30.71
C123 –1.87 –47.20
C144 1.02 –40.00
C166 –29.17 –30.00
C456 35.65 –98.90

Table 5. Values of pressure derivatives of SOEC (dimensionless) for ZnS.

Properties
Values
Present Study Other [36] Other [37] Experimental [38]

dK′/dP 3.17 5.12 ....... 4.90
dS′/dP –0.56 –0.50 ....... .......
dC′

44/dP 0.09 1.14 1.6 .......
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Table 6. Values of Cauchy discrepancy of TOEC (in the unit 1011 dyne cm−2) for ZnS.

Properties Values
C112–C166 –66.09
C123–C456 27.87
C144–C456 15.50
C123–C144 –8.72

6. Results and discussion

6.1. Phonon dispersion curves

From Figure 1, our phonon dispersion curves for ZnS agree well with measured data reported by Vagelatos et

al. [1] at room temperature. It is evident from PDCs that our predictions using the present model (VTRSM)

are better than those by using DDM [10]. Our model successfully explained the dispersion of phonons along

the three symmetry directions. From Figure 1 and Table 7, it is clear that there are deviations of 1.01% along

LO(X), 1.17% along TO(X), 4.74% along LA(X), 11.15% along TA(X), 13.44% along LA(L), and 16.08% along

TA(L). From DDM, deviations are 11.52% along TA(X), 13.91% along LA(L) and 16.67% along TA(L) while

from VTRSM 0.37% along TA(X), 0.47% along LA(L) and 0.50% along TA(L). From Table 7 it is clear that

VTRSM has very small deviation from the experimental data. Our model, VTRSM, has 16.08% improvement

over DDM due to the inclusion of TBI and VDWI coefficients. Therefore, our VTRSM has better agreement

with the experimental data over DDM [10].

Table 7. Comparison of frequencies from various sources (X and L points) for ZnS.

Points

Branches

Expt. [1]

DDM [10] Present Study %

(THz) Value (±) % (a) Value (±) % (b)
Improvement

Deviation Deviation
(a ∼ b)
over DDM

X (100)

LO 9.90 9.75 0.15 1.51 9.85 0.05 0.50 1.01
TO 9.47 9.60 0.14 1.48 9.50 0.03 0.31 1.17
LA 6.34 6.65 0.31 4.89 6.35 0.01 0.15 4.74
TA 2.69 3.00 0.31 11.52 2.70 0.01 0.37 11.15

L (.5.5.5)

LO ....... 9.20 ....... ....... 10.25 ....... ....... .......
TO ....... 9.00 ....... ....... 8.75 ....... ....... .......
LA 4.24 3.65 0.59 13.91 4.22 0.02 0.47 13.44
TA 1.68 1.40 0.28 16.67 1.67 0.01 0.50 16.08

6.2. Combined density of states

The present model is capable of predicting the two phonon Raman/IR spectra [5,6]. The results of these

investigations for CDS peaks are presented in Figure 2. The theoretical peaks are in good agreement with

both observed Raman/IR spectra for ZnS. The assignments made by the critical point analysis are shown in

Table 3. The interpretation of Raman/IR spectra achieved from both the CDS approach and critical point

analysis is quite satisfactory. This shows that there is excellent agreement between the experimental data and

our theoretical results.
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6.3. Third order elastic constants (TOEC), pressure derivatives of second order elastic constants

(SOEC), and values of Cauchy’s discrepancy

Our calculations on TOEC are reported in Table 4. Since there are no measured data on TOEC of ZnS, no

comparison could be made but our results were compared with the theoretical results of Anil et al. [36]. Further,

pressure derivatives of SOEC for ZnS were also compared with the calculated results of Dinesh et al. [37] and

measured data of Madelung et al. [38] as shown in Table 5. The results are in good agreement. Cauchy’s

discrepancy of TOEC was also calculated for ZnS and is shown in Table 6. It is hoped that our values on TOEC

will be helpful to experimental workers in analyzing measured data in future.

6.4. Debye temperature variation

From Figure 3, our study shows better agreement with the measured data of Martin [3] and Clusius and Harteck

[4] and the theoretical results reported by Vagelatos et al. [1] using VSM. To conclude, we can say that our

model gives a better interpretation of the Debye temperature variation for ZnS.

7. Conclusion

The inclusion of VDWI with TBI influenced both the optical branches and the acoustic branches. Another

striking feature of the present model is the excellent reproduction of almost all branches. Hence the prediction

of PDC for ZnS using VTRSM may be considered more satisfactory than from the other models DDM [9,10]

and BBFM [11,12]. The basic aim of the study of two phonon Raman/IR spectra is to correlate the neutron

scattering and optical measured data of ZnS. In this paper, we systematically reported phonon dispersion curves,

combined density of states, Debye temperature variation, and a part of harmonic and anharmonic properties of

ZnS. On the basis of the overall discussion, it is concluded that our VTRSM is adequately capable of describing

the crystal dynamics of zinc sulfide. This model may also be applied equally well to study the crystal dynamics

of other compounds of this group (ZnSe and ZnTe).

Acknowledgments

The authors are thankful to Dr GK Upadhyay, Director, and Dr KK Mishra, Associate Professor, Landmark

Institute of Engineering and Technology, Moradabad, India, for their cooperation. We are also thankful to the

Computer Center, BHU, Varanasi, India, for providing computational assistance. One of us, Mr JP Dubey, is

also thankful to Dr Devendra Pathak, Vice-chancellor, Dr. K. N. Modi University, Newai, Rajasthan, India, for

encouragement.

References

[1] Vagelatos, N.; Wehe, D.; King, S. J. J. Chem. Phys. 1974, 60, 3613–3618.

[2] Lee, B. H. J. Appl. Phys. 1970, 41, 2988–2990.

[3] Martin, D. L. Phil. Mag. 1955, 46, 751–758.

[4] Clusius, K.; Harteck, P. Z. Phys. Chem. 1928, 134, 243–263.

[5] Deutsch, T.: in Proc. Int. Conf. Semiconductors, Exeter, Institute of Physics and Physical Society, London, 1962.

[6] Nilsen, W. G.: Proc. Int. Conf. Light Scattering Spectra of Solids, 1968.

[7] Vetelino, J. F.; Mitra, S. S. Phys. Rev. 1969, 178, 1349–1352.

252

http://dx.doi.org/10.1063/1.1681581
http://dx.doi.org/10.1063/1.1659350
http://dx.doi.org/10.1080/14786440708520602
http://dx.doi.org/10.1103/PhysRev.178.1349


DUBEY et al./Turk J Phys

[8] Talwar, D. N.; Vandevyver, M.; Kunc, K.; Zigone, M. Phys. Rev. B 1981, 24, 741–753.

[9] Kunc, K.; Nielsen, O. H. Computer Phys. Commun. 1979, 17, 413–422.

[10] Kunc, K.; Balkanski, M.; Nusimovici, M. A. Phys. Rev. B 1975, 12, 4346–4355.

[11] Kushwaha, M. S. Phys. Rev. B1981, 24, 2115–2120.

[12] Kushwaha, M. S.; Kushwaha, S. S. Canad. J. Phys. 1980, 58, 351–358.

[13] Rajput, B. D.; Browne, D. A. Phys. Rev. B 1996, 53, 9052–9058.

[14] Yu, Y.; Zhou, J.; Han. H.; Zhang, C.; Cai, T.; Song, C.; Gao, T., J. Alloys Compd. 2009, 471, 492–497.

[15] Cardona, M.; Kremer, R. K.; Lauck, R.; Siegle, G.; Munoz, A.; Romero, A. H.; Schindler, A. Phys. Rev. B 2010,

81, 075207–075220.

[16] Wang, H. Y.; Cao, J.; Haung, X. Y.; Huang, J. M. Cond. Matter Phys. 2012, 15, 13705–13715.

[17] Lowdin, P. O. Phil. Mag. Suppl. 1956, 5, 1–15.

[18] Lundqvist, S. O. Ark. Fys. Sweden 1955, 9, 435–445.

[19] Singh, R. K. Physics Reports (Netherlands) 1982, 85, 259–401.

[20] Singh, R. K.; Singh, S. Phys. Status Solidi (b) 1987, 140, 407–413.

[21] Sharma, U. C.; Verma, M. P. Phys. Status Solidi (b) 1980, 102, 487–494.

[22] Garg, V. K.; Puri, D. S.; Verma, M. P. Phys. Status Solidi (b) 1978, 87, 401–407.

[23] Upadhyaya, K. S.; Pandey, A; Srivastava, D. M. Chinese J. Phys. 2006, 44, 127–136.

[24] Upadhyaya, K. S.; Upadhyay, G. K.; Yadav, M.; Singh, A. K. J. Phys. Soc. Japan 2001, 70, 723–728.

[25] Tiwari, S. K.; Pandey, L. K.; Shukla, L. J. Upadhyaya, K. S. Phyica Scr. 2009, 80, 1–6.

[26] Srivastava, U. C.; Upadhyaya, K. S. Physical Rev. Res. Int. 2011, 1, 16–28.

[27] Mishra, K. K.; Upadhyaya, K. S. Int. Jour. Sci. Engg. Res. 2012, 3, 1388–1398.

[28] Singh, R. K.; Khare, P. J. Phys. Soc. Japan 1982, 51, 141–146.

[29] Hafemeister, D. W.; Flygare. W. H. J. Chem. Phys. 1965, 43, 795–805.

[30] Singh, R. K.; Singh, R. D. Phys. Status Solidi (b) 1982, 114, 235–242.

[31] Berlin Court, D.; Jaffe, H.; Shiozawa, L. R. Phys. Rev. 1963, 129, 1009–1017.

[32] Shankar, J.; Sharma, J. C.; Sharma, O. P. Ind. J. Pure Appl. Phys. 1977, 15, 809–811.

[33] Kunc, K.; Balkanski, M.; Nusimovici, M. A. Phys. Status Solidi (b) 1975, 72, 249–260.

[34] Slater, J. C.; Kirkwood, J. G. Phys. Rev. 1931, 37, 682–697.

[35] Smart, C.; Wilkinson, G. R.; Karo, A. M.; Hardy, J. R. In Lattice Dynamics; Wallis, R. F. Ed. Pergamon Press:

Oxford, UK, 1965.

[36] Anil, T. V.; Menon, C. S.; Kumar Krishna K. Shree; Chandran, K. P.; Jaya, J. Phys., Chem. Sol. 2004, 65,

1053–1057.

[37] Varshney, D.; Sharma, P.; Kaurav, N.; Singh, R. K. Bull. Mat. Sci. 2005, 28, 651–661.

[38] Madelung, O.; Schulz, M.; Weiss, H. Physics of II-VI and I-VII Compounds Semimagnetic, Semiconductors;

Springer-Verlag: Berlin, Germany, 1982.

253

http://dx.doi.org/10.1103/PhysRevB.24.741
http://dx.doi.org/10.1016/0010-4655(79)90104-8
http://dx.doi.org/10.1103/PhysRevB.12.4346
http://dx.doi.org/10.1103/PhysRevB.24.2115
http://dx.doi.org/10.1139/p80-050
http://dx.doi.org/10.1103/PhysRevB.53.9052
http://dx.doi.org/10.1016/j.jallcom.2008.04.039
http://dx.doi.org/10.1103/PhysRevB.81.075207
http://dx.doi.org/10.1103/PhysRevB.81.075207
http://dx.doi.org/10.5488/CMP.15.13705
http://dx.doi.org/10.1016/0370-1573(82)90020-5
http://dx.doi.org/10.1002/pssb.2221400211
http://dx.doi.org/10.1002/pssb.2221020206
http://dx.doi.org/10.1002/pssb.2220870148
http://dx.doi.org/10.1143/JPSJ.70.723
http://dx.doi.org/10.1143/JPSJ.51.141
http://dx.doi.org/10.1063/1.1696846
http://dx.doi.org/10.1002/pssb.2221140128
http://dx.doi.org/10.1103/PhysRev.129.1009
http://dx.doi.org/10.1002/pssb.2220720126
http://dx.doi.org/10.1103/PhysRev.37.682
http://dx.doi.org/10.1016/j.jpcs.2003.11.034
http://dx.doi.org/10.1016/j.jpcs.2003.11.034
http://dx.doi.org/10.1007/BF02708534

	Introduction
	Theoretical framework of the present model
	Secular equations
	Vibrational properties of ZBS

	Debye temperature variation
	Second and third order elastic constant
	Computations
	Results and discussion
	Phonon dispersion curves
	Combined density of states
	Third order elastic constants (TOEC), pressure derivatives of second order elastic constants (SOEC), and values of Cauchy's discrepancy
	Debye temperature variation

	Conclusion

