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Abstract: The nonplanar Burgers’ equation for dust-ion-acoustic shock waves was derived for unmagnetized adiabatic

dusty plasmas, comprising static negatively charged dust fluid, nonthermal distributed electrons, and Boltzmann dis-

tributed positron and adiabatic ion fluid, by employing the standard reductive perturbation method. The solution of the

modified Burgers’ equation for nonplanar geometry is numerically analyzed. The dependence of dust-ion-acoustic shock

waves on some plasma parameters is explored. It is observed that inclusion of the nonthermal electron distribution mod-

ifies the shock wave profile significantly. Likewise, it is found that the nonplanar geometry effects have an important role

on the establishment of shock waves. It is also found that an increasing positron concentration decreases the amplitude

of the dust-ion-acoustic shock waves.

Key words: Dust-ion-acoustic shock, nonplanar geometry, multicomponent adiabatic dusty plasma, nonthermal elec-

trons

1. Introduction

Fully ionized gases consisting of electrons and positrons of equal masses and ions are usually characterized

as electron-positron-ion plasma [1]. The pressure of ions brings about the existence of several low-frequency

waves, which otherwise do not propagate in electron-positron plasmas. The interplay between charged dust

grains and plasma has led to much interest in a new research area called dusty (or complex) plasma. Linear

as well as nonlinear collective processes in dusty or complex plasmas have received special attention due to

the realization of their occurrence in planetary rings, interstellar clouds, and cometary environments [2–7].

There has been rapidly growing interest in nonlinear phenomena (such as shocks, solitons, and vortices) in

dusty plasma (plasmas with extremely massive and negatively charged dust grains) because of its crucial role

in understanding electrostatic disturbance in space and laboratory dusty plasmas [8–12]. It is obvious that the

presence of statically charged dust grains modifies the existing plasma wave spectra [13–15].

Numerous studies have clearly indicated the presence of energetic (nonthermally/suprathermally) elec-

trons in a variety of astrophysical plasma environments and measurements of their distribution functions, and

have shown them to be highly nonthermal [16]. The nonthermal electron and ion distributions [17–19] are

turning out to be characteristic features of space plasma, where structures like solitons, shocks, double layers,

vortices, etc. are expected to play important roles. Since the electron and ion distributions play important

roles for the formation of nonlinear structures, it is interesting to study the coherent nonlinear wave structures

with non-Maxwellian distribution of electrons/ions. Most of the astrophysical plasmas usually contain highly
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charged (negative/positive) impurities or dust particulates in addition to the electrons, positrons, and ions.

However, the properties of wave motions of electron-positron-ion-dust plasma should be different from those in

three-component electron-positron-ion plasmas [20–22].

Dust-ion-acoustic shock waves in an unmagnetized dusty plasma may arise owing to the interplay between

nonlinearity (associated with the harmonic generation) and the dust-ion drag. The formation of a dust-ion-

acoustic shock wave (DIASW) was observed by Nakamura et al. [23]. They discovered that both monotonic

and oscillatory shock waves exist and the dust density has a vital role in the shock waves and phase velocity of

the wave. A number of papers by several investigators have shed light on the properties of DIASWs in dusty

plasma [24–27].

Recently, Sahu [28] carried out a theoretical investigation of the effect of nonplanar DIASWs in adiabatic

dusty plasma. The objective of the present investigation is to study the nonlinear propagation of DIASWs

in multicomponent adiabatic dusty plasma comprising electrons, positrons, ions, and dust respectively in a

nonplanar geometry. In this regard, Burgers’ equation is derived using the reductive perturbation method

(RPM). Hence, we have analyzed the DIASWs in nonplanar geometry showing how the inclusion of nonthermal

electron distribution gets the shock wave structure modified. We have also studied the effect of increasing

positron concentration on the propagation of DIASWs in nonplanar geometry. The paper is organized in the

following manner: the basic equations governing the adiabatic dusty plasma system under consideration are

given and the nonplanar Burgers’ equation is derived in Section 2. In Section 3, we discuss the numerical results,

and Section 4 gives the conclusion.

2. Basic equations and derivation of nonplanar Burgers’ equation

A four-component unmagnetized plasma comprises static negatively charged dust fluid, nonthermal distributed

electrons, Boltzmann distributed positrons, and adiabatic ion fluid. The dynamic of the DIASWs in nonplanar

geometry for such dusty plasma is governed by the following normalized fluid equations.
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+
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∂
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= 0 (4)

Here, β = 4α1

1+3α1
;α1 is parameter determining the number of nonthermal electrons present in our plasma model.

In the above equation, ni is the ion number density normalized by its equilibrium value nio, ui is the

ion fluid speed normalized by ci = (KBTe/mi)
1/2 , φ is the wave potential normalized by KBTe/e, pi is the ion

thermal pressure normalized by nioKBTi, α = Ti/Te . The time and space variable are normalized by reciprocal

plasma frequency w−i
pi

=
(
mi

/
4∧̄nioe

2
)1/2 and the Debye length λD =

(
KBTe

/
4∧̄nioe

2
)1/2 , respectively, while

ν = 0 for one-dimensional geometry and v = 1, 2 for cylindrical and spherical geometry, respectively. ηi is
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the viscosity coefficient of ion fluid normalized by wpiλ
2
D, µ = ne0/ni0 ,andδp = np0/ni0 . In Eq. (4), we have

assumed the quasineutrality condition.

Employing the RPM and stretched coordinates ξ =∈1/2 (r − V0t) and τ =∈3/2 ti , we derive Burgers’

equation from Eqs. (1)–(4) in terms of ξ and τ as follows.

∈3/2 ∂τni − V0 ∈1/2 ∂ξni+ ∈1/2 ∂ξ (niui) +
ν ∈3/2
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Here, ∈ is a smaller parameter measuring the weakness of the nonlinearity, V0 is the phase speed of DIASWs

normalized by Ci , and η =∈1/2 η0 is assumed [29]. The dependent variables ni, ui, pi , and φ are expanded in

a power series of ∈ as follows.

ni = 1+ ∈ ni1+ ∈2 ni2 + ...
ui = 0+ ∈ ui1+ ∈2 ui2 + ...
pi = 1+ ∈ pi1+ ∈2 pi2 + ...
φ = 0+ ∈ φ1+ ∈2 φ2 + ...

 (9)

Now, substituting Eq. (9) into Eqs. (5)–(8), we obtain the lowest order of the coefficient of ∈ as follows.

ni1 = [(1− β)µ+ δp]φ1 (10)

ui1 = V0 [(1− β)µ+ δp]φ1 (11)

pi1 = 3 [(1− β)µ+ δp]φ1 (12)

V0 =
√
3α+ 1/(1− β)µ+ δp (13)

The next higher order in ∈ is as given below.

∂τni1 − V0∂ξni2 + ∂ξ (ni1ui1) + ∂ξui2 +
vui1

V0τ
= 0 (14)

∂τui1 − V0∂ξui2 + ui1∂ξui1 − V0ni1∂ξui1 + α∂ξpi2 = −∂ξφ2 − ni1∂ξφ1 + η0∂
2
ξui1 (15)

∂ξpi1 − V0∂ypi2 + ui1∂ξpi1 + 3∂ξui2 + 3pi1∂ξui1 +
3vui1

V0τ
= 0 (16)
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ni2 = {µ (1− β) + δp}φ2 +
1

2
{µ (1− β) + δp}φ2

1 (17)

Using Eqs. (10)–(17) and eliminating ni2, ui2, pi2 , and φ2 , we finally obtain a modified Burgers’ equation as:

∂τφ1 +
vφ1

2τ
+Aφ1

∂φ1

∂ξ
− C

∂2φ1

∂ξ2
= 0, (18)

where:

A =
12α [(1− β)µ+ δp]

2
+ 3 [(1− β)µ+ δp]− 1

2
(√

3α+ 1/ (1− β)µ+ δp

)
((1− β)µ+ δp)

(19)

C = η0/2 (20)

3. Numerical results and discussion

The modified Burgers’ equation as given in Eq. (18) describes the nonlinear propagation of the DIASWs

for a four-component unmagnetized dusty plasma comprising static negatively charged dust fluid, nonthermal

distributed electrons, Boltzmann distributed positrons, and adiabatic ion fluid. The stationary DIASWs of this

modified Burgers’ equation for planar geometry (v = 0) is as follows.

φ1 =
V

A

[
1− tanh

(
V (ξ − V τ)

2C

)]
(21)

Here, V is a constant velocity normalized by ci . For nonplanar geometry Eq. (18) is not possible; hence, it

is solved numerically. The results are displayed in Figures 1–7. The initial condition that we have considered

for all our numerical results is the form of the stationary solution of Eq. (21) without the geometry term at

τ = −10. Figure 1 shows the evolution of the shock wave structures for different geometries with respect to the

considered parameters. It is obvious that the developed shock amplitude in different geometries are different

from each other, while the shock steepness is the same for all geometries. The planar geometry shock wave with

higher amplitude is the strongest. The cylindrical shock wave amplitude is bigger than that of the spherical

shock wave but smaller than that of the planar geometry shock wave.
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Figure 1. How the shock profile (φ1Vsξ curves) varies in different geometries for τ = −5, η0 = 0.5, α = 0.5, β = 0.3, µ =

0.4, and δp = 0.3.
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The variation of cylindrical and spherical shock wave structures for different τ with respect to the chosen

parameters are plotted in Figures 2 and 3, respectively. We can observe that as time increases (τ), the amplitude

of the nonplanar geometry (Figures 2 and 3) shock waves also increases. It can also be observed that the shock

wave profiles for the nonplanar geometry (Figures 2 and 3) are similar to what is obtained for the planar

geometry of Figure 1 in terms of the amplitude for larger values of |τ | . This result confirms the fact that

the large value of the nonplanar geometrical effect
(

v
2τ

)
is no longer dominant. The nonplanar geometrical

effects will become effective as the value of τ decreases. The effect of positron concentration on the shock wave

structures for cylindrical and spherical geometries are presented in Figures 4 and 5, respectively. To study the

effect of positron concentration in the DIASWs, we set β = 0.01 for Figures 4 and 5, while other parameters

for the numerical analysis are as obtained in Figures 1–3. From Figures 4 and 5, it is found that increase in

positron concentration decreases the amplitude of the DIASWs for nonplanar geometry. In physical situations,

it is obvious that any increase in positron concentration decreases the ion concentration. Since we are dealing

with DIASWs, the amplitude of the shock structures will decrease for increase in positron concentration. The

effects of nonthermal electron distribution parameter (β) on shock wave are also studied. In Figures 6 and 7, we

present the plot of the shock wave structures for different values of β in the cylindrical and spherical geometry,

respectively. It is clear that small variations in the magnitude of β significantly affect the shock wave profile.

The shock height is found to be increasing monotonically with β . This effect is found to be more pronounced

in the cylindrical geometry (Figure 6) compared to the spherical geometry (Figure 7).
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Figure 2. Variation of φ1 with respect to ξ at different

values of τ for the cylindrical geometry (v = 1) while

other parameters are the same as in Figure 1.

Figure 3. Variation of φ1 with respect to ξ at different

values of τ for the spherical geometry (v = 2) while other

parameters are the same as in Figure 1.

4. Conclusion

We have derived the nonplanar Burgers’ equation for dust-ion-acoustic shock waves in unmagnetized adiabatic

dust plasma, comprising static negatively charged dust fluid, nonthermal electron distribution, Boltzmann

distributed positrons, and adiabatic ion fluid, by employing the standard RPM.
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Figure 4. Variation of φ1 with respect to ξ at different

values of the positron concentration for β = 0.01 in the

cylindrical geometry (v = 1) while other parameters are

the same as in Figure 1.

Figure 5. Variation of φ1 with respect to ξ at different

values of the positron concentration for β = 0.01 in the

spherical geometry (v = 2) while other parameters are the

same as in Figure 1.
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Figure 6. Variation of φ1 with respect to ξ at different

values of the nonthermal electron parameter (β) for the

cylindrical geometry (v = 1) while other parameters are

the same as in Figure 1.

Figure 7. Variation of φ1 with respect to ξ at different

values of the nonthermal electron parameter (β) for the

spherical geometry (v = 2) while other parameters are the

same as in Figure 1.

We have found that the propagation of DIASWs in nonplanar geometry with the inclusion of nonthermal

electron distribution modifies the shock wave structure, as the shock profile is found to vary significantly with the

nonthermal parameter β . This effect is more prominent in the cylindrical geometry as compared to the spherical

geometry. It is also observed that the shock height increases monotonically with the nonplanar geometry. For

large negative values of τ , it is observed that the nonplanar geometries approach the planar geometry.
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Finally, increasing positron concentrations decrease the amplitude of the DIASWs. The present investi-

gation may be very vital in the understanding of the nonlinear propagation characteristic of DIASWs that are

necessary in laboratory plasma as well as in plasma applications.
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