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Abstract: Using a standard reductive perturbation technique, a nonlinear Schrödinger equation has been derived that

describes the nonlinear evolution of ion-acoustic waves in magnetized electron-positron-ion plasma with electrons and

positrons following q-nonextensive distribution. It is shown that excitation of both bright and dark envelope solitary

structures is possible in the model plasma under consideration. The conditions for the excitation and structure of these

envelope solitary waves are shown to depend sensitively on the strength of the external magnetic field, obliqueness of

wave propagation relative to the external magnetic field, and other plasma parameters such as the q-nonextensivity of

plasma species, positron concentration, and electron-positron temperature ratio.
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1. Introduction

The widespread existence of electron-positron-ion (e-p-i) plasma in astrophysical, space, and laboratory envi-

ronments [1–12] inspired many researchers to study the phenomenon of nonlinear wave propagation in various

e-p-i plasma systems. Data obtained from space satellites such as POLAR, S3-3, and FAST [13–16] suggest

the presence of multicomponent e-p-i plasmas in the high altitude cusp, polar cap, and plasma sheet boundary.

On the surface of fast rotating neutron stars and magnetars and in the pulsar magnetosphere [1,2], a strong

magnetic field exists, and this magnetic field has a significant impact on nonlinear wave propagation, partic-

ularly in the low-frequency ion-acoustic region. For this, in recent years an interest has been developed to

study nonlinear propagation of ion-acoustic waves in magnetized e-p-i plasmas [17–25]. Most of these studies

considered Maxwellian distribution for electrons and positrons, but it is well known that the extremely turbu-

lent nature of space plasma leads to a non-Maxwellian distribution for plasma species. There have been many

experimental, space, and satellite observations [26–42] that endorse the presence of non-Maxwellian plasma

species in space and astrophysical environments. This non-Maxwellian distribution of plasma species fits ex-

cellently with the power law distribution explained by Cairn [43] and Vasyliunas [28]. Considering this reality,

Alinejad et al. [20,44] investigated the characteristics of ion-acoustic solitary waves in magnetized e-p-i plasma

with superthermal and nonthermal particle distribution. Large-amplitude ion-acoustic solitary wave profiles

have been investigated by El-Tantawy et al. [45] in magnetized e-p-i plasma with κ -distributed electrons and

positrons. Their findings endorse that magnetized e-p-i plasma with non-Maxwellian species gives a trustworthy
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justification to the physics of nonlinear electrostatic waves in space and laboratory plasmas where wave damping

produces a power law tail of plasma distribution.

A complex regime of cosmological or astrophysical plasmas can be characterized as a physical system

driven in far-from-equilibrium states. Since Tsallis q-nonextensive particle distribution [46,47] is supposed

to be the most general distribution that can describe this complexity more appropriately, in recent years

some authors [48–50] have studied nonlinear wave propagation in e-p-i plasma with q-nonextensive particle

distribution. During the last few years q-nonextensive distribution has been successfully applied to describe

many non-Maxwellian systems such as self-gravitating polytrophic systems, solar neutrino deficit problem,

galaxy clusters, wave propagation in plasma, and microwave radiation in cosmic regions [50–57]. In the context

of wave propagation in plasma, recently Ferdousi et al. [21] considered ion-acoustic solitary waves in magnetized

e-p-i plasma with both electrons and positrons having q-nonextensive distribution and studied the properties

of oblique propagation of solitary waves. Similar research was also done by Alinejad [50]. Sahu [48] reported

that both the profiles of compressive and rarefactive solitary waves and double layers are affected by the

nonextensivity of plasma species. Regarding modulational instability of ion-acoustic waves in e-p-i plasmas,

very few results have been reported in the literature. Jehan et al. [24] studied modulational instability of

ion-acoustic waves in magnetized e-p-i plasma considering Boltzmann’s distribution for electrons and positrons.

Eslami et al. [56] investigated the modulational instability of ion-acoustic waves in unmagnetized e-p-i plasma

having q-nonextensive distribution for electrons and positrons.

As far as we know, no one has reported an investigation of amplitude modulation for ion-acoustic solitary

waves in magnetized e-p-i plasma with q-nonextensive electrons and positrons. The purpose of this paper is to

address this problem. In this paper we have considered magnetized e-p-i plasma having Tsallis q-nonextensive

distribution for both the electrons and positrons and studied the formation of ion-acoustic envelope solitons. For

this purpose we have derived a nonlinear Schrödinger (NLS) equation by using a standard reductive perturbation

technique and studied how the external magnetic field and nonextensivity of electrons and positrons affect the

stability/instability of the wave and the structure of envelope solitons. In order to study numerically the effect

of nonextensivity on the characteristics of the nonlinear wave structure we have used, following suggestion of

Verheest [57], a value of q in the range of 1
3 < q < 1. The limit q = 1 corresponds to Boltzmann statistics

and q ̸= 1 corresponds to the case of Tsallis statistics. For q > 1 there is a thermal cut-off on the maximum

value allowed for the velocity of an electron and it makes this range unsuitable to model superthermality in the

plasma. However, for q < 1, this is not the case, and it can be used to model superthermality. Normalization of

the distribution function requires that q > −1 and the requirement of finite energy further restricts the range

to 1
3 < q < 1 [57].

2. Basic equations

We consider collisionless e-p-i plasma with q-nonextensive electrons and positrons in the presence of an external

magnetic field. The normalized equations governing ion dynamics in such plasma are the following [21]:

∂ni

∂t
+

−→∇. (ni−→ui) = 0, (1)

∂u⃗i
∂t

+
(−→ui .−→∇)−→ui = −

−→
∇ϕ+ ωci (u⃗i × ẑ) , (2)
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where ni and −→ui are respectively the normalized concentration and velocity of the positive ions; ωci = eB0

mi

is the ion gyrofrequency. The density ni is normalized by the equilibrium electron density ne0 , velocity u⃗i is

normalized by the ion-acoustic speedCs =
√

kBTe

mi
, all length by the electron Debye length λDe =

√
kBTe

4e2ne0
,

time by λDe

Cs
, and electrostatic potential ϕ by kBTe

e .

In the above we have assumed that phase speed is much larger than ion thermal speed but smaller than

the thermal speed of electrons and positrons [22] and the external constant magnetic field is directed along the

z-axis, i.e.
−→
B0 = B0ẑ . The propagation is considered to be in the (x, z) plane.

The equilibrium charge neutrality condition is ne0 = ni0 + np0 , where ns0 is the unperturbed number

density of the particle species s(sequals e for the electrons, i for the ions, and p for the positrons). The

equilibrium charge neutrality condition in normalized form will be ni0

ne0
= 1−χ , where χ =

np0

ne0
. The normalized

number densities of q-nonextensive electrons and positrons are given by [21,46,48,50]:

ne = [1 + (q − 1)ϕ]
1+q

2(q−1) (3)

and

np = χ [1− (q − 1)σPϕ]
1+q

2(q−1) , (4)

where σp = Te/Tp is the ratio between electron and positron temperatures; parameter q stands for the strength

of nonextensivity. The nonextensive distribution is unnormalizable under the condition q < −1 and for q → 1

the distribution approaches the well-known Maxwell–Boltzmann distribution.

Simplifying Eqs. (3) and (4), Poisson’s equation can be written as:

∇2ϕ =

(
q + 1

2

)
[1 + χσP ]ϕ+

(q + 1) (q − 3)

4

(
1 + χσ2

p

)
ϕ2 +

(q + 1) (q − 3) (3q − 5)

16

(
1 + χσ3

p

)
ϕ3 − ni. (5)

3. Derivation of the NLS equation

To study the nonlinear evolution of the wave we make the following Fourier expansions for the field quantities

[58]:

F = ε2F
′

0 +
∞∑
s=1

εs{Fs exp(isψ) + F ∗
s exp(−isψ)}, (6)

where F stands for the field quantities ni,
−→ui , and ϕ ; F

′

0 and Fs are assumed be functions ξ and τ where

ξ = ε(lxx + lyy + lzz − Cgt) and τ = ε2τ ; ε is a small parameter measuring weakness of dispersion and

nonlinearity; lx, ly, lz are the directional cosines of the wave vector k⃗ along the x, y, and z directions, respectively;

Cg = dω
dk is the group velocity; and ψ = kxx̂ + kz ẑ − ωt . In the x-z plane wave vector k⃗ will be given by

k⃗ = x̂k sin θ + ẑk cos θ .

Now substituting the expansions of Eq. (6) into Eqs. (1), (2), and (5) and then equating from both sides

the coefficients of exp(iψ), exp(2iψ) and terms independent of ψ , we obtain three sets of equations, which we

call respectively I, II, and III (see the Appendix).

To solve these equations we make the following perturbation expansion for the z-component of the field

quantities:

X = X(1) + εX(2) + ε2X(3) + · · · (7)
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For x-component of the field quantities it is:

X =
√
εX(1) + 3

√
εX(2) + 5

√
εX(3) + · · · (8)

Solving the lowest-order equations obtained from the set of equations I, we get the following solutions for the

first harmonic quantities in the lowest order:

u
(1)
ix1

=
kxω

ω2 − ω2
ci

α.

For ion-acoustic wavesω << ωci and we can write:

u
(1)
ix1

≈ −kxω
ω2
ci

α, (9)

u
(1)
iy1

≈ i
kx
ωci

α, (10)

u
(1)
iz1

=
kz
ω
α, (11)

and

n
(1)
i1 = q1 + k2, (12)

in which

α = ϕ
(1)
1 (13)

and

a1 =
q + 1

2
(1 + χσP ) . (14)

The linear dispersion relation obtained for the low frequency ion-acoustic wave is

ω2 =
k2zω

2
ci (1− χ)

ω2
ci (a1 + k2) + k2x (1− χ)

, (15)

and its group velocity is

Cg =
dω

dk
=

1

ω

[
ω4
cik (1− χ) cos2 θ

(
a1 + 2k2

)
{ω2

ci (a1 + k2) + k2x (1− χ)}2

]
. (16)

In Figures 1 and 2 we show graphically the linear dispersion relation with wave frequency ω plotted as a function

of the wave vector k for various values of ωci and q. Figure 1 shows that the wave frequency increases with

increase in the strength of magnetic field while Figure 2 shows that the wave frequency decreases with increase

in the value of q in the range of 1
3 < q < 1. It is also numerically found that the wave frequency depends

sensitively on the obliqueness of wave propagation. In the case of unmagnetized plasma, ωci must be zero and

then the wave propagation is one-dimensional in nature. Considering this situation we get the same dispersion

relation as obtained by Eslami et al. [56]. By putting q = 1 (Boltzmann distribution) in the linear dispersion

relation of Eq. (15) we find that our result reduces to that obtained by Jehan et al. [24].

First harmonic quantities in the second order can be obtained by substituting the perturbation expansions

of Eqs. (7) and (8) in the set of equations I and solving order ε2 equations. Thus, we obtain the following:
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Figure 1. Linear dispersion relation for different mag-

netic field strength (ωci = 0.35, 0.45, and 0.55); other pa-

rameters are q= 0.35, θ = 300 , σP = 0.3, and χ= 0.3.

Figure 2. Linear dispersion relation for different values of

nonextensivity (q = 0.35, 0.65, and 0.95); other parameters

are ωci = 0.5, θ = 300 , σP = 0.5, and χ= 0.4.

ϕ
(2)
1 = 0, (17)

u
(2)
iz1 =

i

kz (1− χ)

[
(1− χ)

kz
ω

− 2ωk − Cg

(
a1 + k2

)] dα
dξ
,

n
(2)
iz1 = −2ik

dα

dξ
.

The second harmonic quantities in the lowest order obtained from the set of equations II after substituting the

expansions of Eq. (6) are the following:

ϕ
(1)
2 =

k2z
[
(1− χ)A+ 2ω

(
a1 + k2

)]
− 2ω3ω2

cia2

2ω [ω2 (a1 + 4k2)− k2z (1− χ)]
α2,

u
(1)
ix2 =

kxA

ω2
ci

α2 − 4kxω

ω2
ci

ϕ2,

u
(1)
iy2 = i

[
kxA

2ωciω
α2 − ωciuix2

2ω

]
,

u
(1)
iz2 =

kz
ω
ϕ2 +

kz
2ω2

A.α2,

n
(1)
i2 =

(
a1 + 4k2

)
ϕ2 + a2α

2, (18)

where

A =
k2z
ω

− k2xω

ω2
ci

,

a2 =

(
1 + χσ2

p

)
(q + 1) (q − 3)

4
. (19)
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The zeroth harmonic components generated through nonlinear self-interaction of the finite amplitude wave are

obtained from the set of equations III after substituting the expansions of Eq. (6):

ϕ
(1)
0 =

2kz
[
(1− χ) kz + 2

(
a1 + k2

)
ω
]
− Cga2ω

2ω2
ci

ω2
[
C2

ga1 − 2 (1− χ)
] αα∗,

u
(1)
ix0 =

ϕ0
Cg

− 2kzkx
Cgω2

ci

αα∗,

u
(1)
iy0 = i

2kzkx
Cgωciω

αα∗,

u
(1)
iz0 =

ϕ0
Cg

+
2k2z
Cgω2

αα∗, (20)

n
(1)
i0 = a1ϕ0 + a2αα

∗.

Now to derive the desired NLS equation we need first harmonic quantities in the third order. Collecting

coefficients of ε3 from both sides of the set of equations I after substituting the perturbation expansions of Eqs.

(7) and (8), we get a set of equations for first harmonic quantities in the third order, from which after proper

elimination we obtain the following NLS equation:

i
∂α

∂τ
+ P.

∂2α

∂ξ2
= Q.α2α∗, (21)

where

P =
ω2

(a1 + k2)ω2 − (1− χ) k2z

[[
(1− χ)

{
kz
ω

− kxω

ω2
ci

}
− 2ωk

](
1

kz
− Cg

ω

)
− 3ω − 2kCg

]
(22)

and

Q =
ω2

(a1 + k2)ω2 − (1− χ) k2z

[
F1 +

(1− χ) kz
ω

F3 − ωF4

]
, (23)

in which

F1 =
(
a1 + 4k2

)
Aϕ2 + a1Aϕ0 +

(
a1 + k2

)
Cg

{
kx

(
ϕ0 −

2kzkx
ω2
ci

)
+ kz

(
ϕ0 +

2k2z
ω2

)}

+
(
a1 + k2

) [k2x (A− 4ωϕ2)

ω2
ci

+
k2z
ω

(
ϕ2 +

A

2

)]
, (24)

F3 =
kz
ω
A.

(
ϕ2 +

A

2ω2

)
+
kz
ω

[
k2x (A− 4ωϕ2)

ω2
ci

+
k2z
ω

(
ϕ2 +

A

2ω2

)]

+

(
ϕ0 +

2k2z
ω2

)
1

Cg

{
2k2z
ω

− k2xω

ω2
ci

}
+
kxkz
ωCg

{
ϕ0 −

2kxkz
ω2
ci

}
, (25)

F4 = a2 (ϕ2 + ϕ0) + a3, (26)
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and

a3 =
(q + 1) (q − 3) (3q − 5)

(
1 + χσ3

p

)
16

. (27)

The NLS equation of Eq. (21) describes the nonlinear evolution of the amplitude of ion-acoustic waves in

magnetized e-p-i plasma with q-nonextensive electrons and positrons. The NLS equation (Eq. (21)) has been

studied extensively in connection with the nonlinear propagation of different wave modes in plasma.

Thus, a uniform wave train may be modulationally stable or unstable depending on the sign of the

product of the group dispersive and the nonlinearity coefficient, i.e. PQ. It has been shown that the wave

becomes modulationally unstable for PQ < 0 and stable for PQ > 0.

In the unstable region the growth rate of instability has a maximum value gm given by:

gm = |Q|α2
0. (28)

For the unstable wave packet (PQ < 0), the ion-acoustic wave generates bright solitons, and for the stable wave

packet (PQ > 0 ) it generates dark solitons. Thus, the sign of the product PQ determines the stability/instability

profile of ion-acoustic waves as well as the type of soliton structure. The width of the solitons is found to be

proportional to |P | and soliton amplitude is inversely proportional to |Q| . Thus, we find that the nonlinear

evolution of the wave depends on the product PQ. As the coefficients P and Qdepend on different plasma

parameters such as nonextensive parameter q , positron concentration χ , ion gyrofrequency ωci , obliqueness

of propagation, and electron-positron temperature ratio σp , product PQ can have both positive and negative

values over different parametric regions. Thus, these physical parameters are expected to significantly influence

the stability character of the modulated ion-acoustic wave.

4. Results and discussion

It has been found numerically that there is a critical value of the wave number below which the wave is stable

(PQ > 0 ) and above which the wave is unstable (PQ < 0 ). The value of the critical wave number is found to

depend on different physical parameters. In the unstable region (PQ < 0 ) it can be show that the ion-acoustic

wave can propagate as an envelope bright soliton. On the other hand, in the stable region (PQ > 0 ), the wave

can propagate in the form of an envelope hole called a dark soliton.

In order to investigate the stability profile we have numerically investigated the ratioP/Q in terms of

different parameters involved. In Figure 3 we show the variation of P/Q with wave number for different values

of the ion gyrofrequency (ωci), keeping other plasma parameters constant. It shows that increase in ωci , i.e.

increase in magnetic field strength, lowers the value of the critical wave number separating stable and unstable

regions. Thus, increase in the strength of the magnetic field tends to destabilize the wave. It is also noticed

that as ωci increases the width of both the dark and bright solitons increases. These observations agree with

those obtained by Jehan et al. [24] and are found to be true only for 0.36 < ωci < 0.70. For values of ωci

beyond this range (i.e. ωci < 0.36 or ωci > 0.70), the magnetic field is shown to have an opposite effect.

To study the effect of nonextensivity on the nonlinear properties of ion-acoustic waves we plot in Figure 4

P/Q as a function of k for different values of the nonextensive parameter q , keeping other plasma parameters

constant. It is seen that as q increases in the range of 1
3 < q < 1 the critical wave number separating the stable

and unstable regions decreases. Also, with increase in q , the width of the dark soliton increases and that of the

bright soliton decreases. Similar results were obtained by Eslami et al. [56] for the nonextensive parameter in

the range of q < 0 for unmagnetized plasma.
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Figure 3. P/Q vs. wave number (k) plot for differ-

ent magnetic field strength (ωci = 0.37, 0.47, and 0.57);

other parameters are q = 0.35, θ = 100 , σP = 0.25, and

χ=0.25.

Figure 4. P/Q vs. wave number (k) plot for differ-

ent values of nonextensivity (q = 0.50, 0.60, and 0.70);

other parameters are ωci = 0.57, θ = 100 , σP = 0.5, and

χ=0.45.

We have also studied the dependence of modulational instability growth rate |Q| on various physical

parameters. In Figure 5 we show the dependence of the instability growth rate on the strength of the magnetic

field and nonextensive parameter q . It shows that for a given value of q the instability growth rate increases

with increase in magnetic field strength. Also, for a given magnetic field, the instability growth rate decreases

with increase in nonextensive parameterq in the range of 1
3 < q < 1. One possible physical explanation for

this is that as q approaches 1 in the range of 1
3 < q < 1 the electrons and positrons evolve from nonextensive

distribution towards equilibrium Maxwellian distribution. Consequently, there is a relatively smaller number of

energetic particles, which results in lower growth rate of instability.
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Figure 5. Instability growth rate |Q| vs. ωci plot for different values of nonextensivity (q= 0.355, 0.380, and 0.405);

other parameters are θ = 100 , σP = 0.5, and χ = 0.4.
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To conclude, we have studied both analytically and numerically the modulational instability of low-

frequency ion-acoustic waves in magnetized e-p-i plasma having q-nonextensive electrons and positrons. It

has been shown that the presence of an external magnetic field and the nonextensivity of plasma species play

important roles in determining the critical wave number above which the wave becomes modulationally unstable

and also in determining the nature and structure of envelope solitons excited in the model plasma under study. It

has been observed that increase in the strength of the magnetic field or increase in the value of the q -parameter

in the range of 1
3 < q < 1 widens the instability region of the wave in the k -space. It was also noticed that

increase in the strength of the magnetic field increases the width of both the dark and bright solitons. On the

other hand, increase in the value of the q parameter in the range of 1
3 < q < 1 increases the width of dark

solitons and decreases that of the bright soliton.

Furthermore, our results in the limit of no magnetic field qualitatively agree with that obtained by Eslami

et al. [56]. It may be noted that Eslami et al. [56] considered unmagnetized plasma, whereas in the present

paper we have considered magnetized plasma. For numerical analysis they used the range q < 0 and q > 1,

but we have used the most relevant range, 1
3 < q < 1. Our results also agree with those obtained by Jehan et

al. [24] in the limit of Boltzmann’s distributions (q → 1) for electrons and positrons.

Finally, we would like to point out that the present results may be helpful to understand the amplitude

modulation of ion-acoustic waves and formation of bright and dark solitons in magnetized e-p-i plasma having q-

nonextensive electrons and positrons, which are common in many space and astrophysical plasma environments.
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Appendix

Set of equations I:
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Set of equations II:

−iωn(1)
i2 + ikx (1− χ)u

(1)
i2x = −

[
ikz (1− χ)u

(1)
i2z + ikxn

(1)
i1 u

(1)
ix1 + ikzn

(1)
i1 u

(1)
iz1

]
(A6)

−2iωu
(1)
ix2 + 2ikxϕ

(1)
2 − ωciu

(1)
iy2 = −

[
ikx (ui1x)

2
+ ikzu

(1)
ix1u

(1)
iz1

]
(A7)

−2iωu
(1)
iy2 + 2ikyϕ

(1)
2 − ωciu

(1)
ix2 = −

[
ikxu

(1)
ix1u

(1)
iy1 + ikzu

(1)
iz1u

(1)
iy1

]
(A8)

−2iωu
(1)
iz2 + 2ikzϕ

(1)
2 = −

[
ikz (ui1z)

2
+ ikxu

(1)
ix1u

(1)
iz1

]
(A9)

−4
(
k2x + k2y + k2z

)
ϕ
(1)
2 −

(
q + 1

2

)
ϕ
(1)
2 (1 + χσp) + n

(1)
i2 =

2

[
(q + 1) (q − 3)

(
1 + χσ2

p

)
8

]
ϕ21 (A10)

1



GHOSH and BANERJEE/Turk J Phys

Set of equations III:
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