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Abstract: The family of metrics corresponding to the plane-fronted gravitational waves with parallel propagation,

commonly referred to as the family of pp-wave metrics, is studied in the context of various modified gravitational models

in a self-contained and coherent manner by using a variant of the null coframe formulation of Newman and Penrose and

the exterior algebra of differential forms on pseudo-Riemannian manifolds.
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1. Introduction

The purpose of the present work is to present a brief and self-contained discussion of the pp-wave solutions

to the modified gravitational models in connection with the corresponding solutions in the general theory of

relativity (GR). In particular, the previous results reported in [1, 2, 3, 4, 5, 6] and some other results long known

in the literature are presented in a unified manner by making use of the algebra exterior forms and the complex

null tetrad formalism [7, 8] of Newman and Penrose (NP).

The layout of the paper is as follows. The paper is roughly divided into two main parts. In the first

part, the geometrical techniques of null coframe formalism in connection with a variant of the spin coefficient

formalism of Newman and Penrose is developed in Section 2. The mathematical properties of the gravitational

plane fronted waves with parallel propagation, so-called pp-waves, are briefly reviewed in the notation developed.

The second part is composed of the application of the geometrical techniques to various metric theories of

modified gravity that allow a unified treatment presented in Section 3. In particular, the derivation of the field

equations for the Brans–Dicke (BD) theory and the Chern–Simons modified gravity are discussed in a relatively

more detailed manner compared to the discussions of the other models such as the metric f(R) gravity and

the gravity model involving a nonminimally coupled Maxwell field and a tensor-tensor gravity theory with a

torsion. The pp-waves solutions to the general quadratic curvature gravity in four dimensions are also discussed

in some detail as well.

The references are not by any means complete and the reader is referred to more authoritative books

[9, 10, 11] that introduce the NP technique in full detail and apply it extensively in the context of GR.

2. Geometrical preliminaries

In this preliminary section, the essentials of the null tetrad formalism that are required to derive almost any

geometrical quantity from scratch are presented. However, because the family of pp-wave metrics has a relatively
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simple form to deal with, a thorough presentation of the NP formalism, which would be excessive to the purposes

in what follows, is avoided.

The use of exterior algebra of differential forms on pseudo-Riemannian manifolds is made use of through-

out the paper, and it proves to be practical and powerful in calculations relative to an orthonormal or a null

coframe and a coordinate coframe as well. The expressions for the geometrical quantities relative to a coordinate

coframe are only discussed briefly in connection with the corresponding expressions relative to a null coframe.

2.1. The definitions of connection and curvature forms relative to a null coframe

All the calculations in the following will be carried out relative to a set of orthonormal and/or complex null

basis coframe 1-forms, denoted by {θa} , for which the metric reads g = ηabθ
a⊗ θb with the metric components

ηab as constants. The mathematical conventions closely follow those of the “Exact Solutions” books [9, 10].

The signature of the metric is assumed to be mostly plus. The set of basis frame fields is {ea} and the

abbreviation iea ≡ ia is used for the contraction operator with respect to the basis frame field ea . ∗ denotes

the Hodge dual operator acting on basis forms and ∗1 = θ0∧ θ1 ∧ θ2 ∧ θ3 is the oriented volume element. When

the Einstein summation convention is used, the exterior products of the basis 1-forms are also abbreviated as

θa ∧ θb ∧ · · · ∧ θc ∧ θd · · · ≡ θab··· cd··· for the sake of notational simplicity. The complex null coframe basis will

also be denoted by {θa} = {k, l,m, m̄} with a = 0, 1, 2, 3 and an overbar denotes a complex conjugation. The

associated complex basis frame fields will be denoted by {ea} . In terms of the NP-type null coframe basis, the

invariant volume element explicitly reads

∗1 =
1

4!
ϵabcdθ

abcd = +ik ∧ l ∧m ∧ m̄, (1)

where the completely antisymmetric permutation symbol admits the numerical values values 0,∓i with ϵ0123 =

+i relative to a null coframe and in this case the indices are raised and lowered by the metric having nondiagonal

and constant elements η01 = η10 = −η23 = −η32 = 1. For example, a numerical index 1 goes to 0 accompanied

by a sign change whereas a numerical index 2 goes to 3 retaining the sign.

In particular, it follows from these definitions that the self-dual 2-forms that diagonalize the Hodge dual

operator are

∗(k ∧m) = ik ∧m

∗(l ∧ m̄) = il ∧ m̄

∗(k ∧ l −m ∧ m̄) = i(k ∧ l −m ∧ m̄).

(2)

The anti-self-dual 2-forms follow from the complex conjugation of the Hodge duality relations given in Eq. (2)

above.

The first structure equations of Cartan with vanishing torsion read

Θa = Dθa = dθa + ωa
b ∧ θb = 0 (3)

with Θa = 1
2T

a
bcθ

b∧θc where T a
bc represents the components of the torsion tensor. D is the covariant exterior

derivative acting on tensor-valued forms. A suitable definition and its relation to covariant derivative can be

found, for example, in [13, 12]. In terms of the complex connection 1-forms and the null coframe, the first
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structure equations of Cartan explicitly read

dk + ω0
0 ∧ k + ω̄0

3 ∧m+ ω0
3 ∧ m̄ = 0,

dl − ω0
0 ∧ l + ω1

2 ∧m+ ω̄1
2 ∧ m̄ = 0,

dm+ ω̄1
2 ∧ k + ω0

3 ∧ l − ω3
3 ∧m = 0,

(4)

where the complex conjugate of the last equation has been omitted for convenience. Because the Levi-Civita

connection is metric-compatible, one has Dηab = dηab − ηacω
c
b − ηbcω

c
a , which implies the antisymmetry

ωab +ωab = 0 for a null (and also for an orthonormal) coframe. Consequently, ω1
0 = ω0

1 = ω2
3 = ω3

2 = 0 and

there are three complex connection 1-forms

ω0
3, ω1

2,
1
2 (ω

0
0 − ω3

3) (5)

related to the other connection 1-forms by complex conjugation. Explicitly, one has the conjugation relations

ω̄0
2 = ω0

3 , ω̄
1
2 = ω1

3 , ω̄
0
0 = ω0

0 and ω̄3
3 = ω̄2

2 = −ω̄3
3 . The charge conjugation amounts to the interchange

2 ↔ 3 of the null coframe indices. The twelve NP spin coefficients can be identified as the components of the

above complex connection 1-forms [9]. In contrast to the structure equations expressed in terms of six real

connection 1-forms relative to an orthonormal coframe, it is possible to write the structure equations using only

three complex connection 1-forms displayed in Eq. (5) as in Eq. (4).

The curvature 2-form Ωa
b with Ωa

b =
1
2R

a
bcdθ

c∧θd satisfies the second structure of equations of Cartan

Ωa
b = dωa

b + ωa
c ∧ ωc

b, (6)

and in terms of the complex connection 1-forms defined above and the complex curvature 2-forms defined

accordingly, the complex structure equations can be written in the form

Ω0
3 = dω0

3 − ω0
3 ∧

(
ω0

0 − ω3
3

)
,

Ω1
2 = dω1

2 + ω1
2 ∧

(
ω0

0 − ω3
3

)
,

Ω0
0 − Ω3

3 = d(ω0
0 − ω3

3) + 2ω0
3 ∧ ω1

2,

(7)

where the use of complex differential forms reduces the number of independent tensor-valued 2-forms by half

compared to the corresponding components defined relative to an orthonormal coframe.

In four dimensions, the curvature 2-form can be decomposed into the irreducible parts in the form [9]

Ωa
b = Ca

b +
1
2 (θ

a ∧ Sb − θb ∧ Sa) + 1
12Rθ

a ∧ θb, (8)

where Ca
b is the traceless fourth-rank Weyl tensor, and the second term on the right-hand side is expressed in

terms of second-rank traceless Ricci 1-form Sa ≡ Ra− 1
4Rθ

a and the last term is the scalar trace. It is possible

to show (see, for example, Ref. [14]) that each term has definite self-duality/self anti-self-duality property by

using the defining relation of Eq. (8). Namely, the first and the third terms on the right-hand side are self-dual,

whereas the traceless Ricci part constitutes the anti-self-dual. Now, using the above definitions, it is possible

to express the decomposition of the curvature 2-form of Eq. (8) relative to a complex null coframe in terms of
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the original NP curvature scalars as

Ω0
3 = −Ψ0l ∧ m̄−Ψ1(k ∧ l −m ∧ m̄) + Ψ2k ∧m

− Φ00l ∧m− Φ01(k ∧ l +m ∧ m̄) + Φ02k ∧ m̄+ 1
12Rk ∧m,

1
2 (Ω

0
0 − Ω3

3) = +Ψ1l ∧ m̄+Ψ2(k ∧ l −m ∧ m̄)−Ψ3k ∧m

+Φ10l ∧m+Φ11(k ∧ l +m ∧ m̄)− Φ12k ∧ m̄− 1
24R(k ∧ l −m ∧ m̄),

Ω1
2 = +Ψ2l ∧ m̄+Ψ3(k ∧ l −m ∧ m̄)−Ψ4k ∧m

+Φ20n ∧m+Φ21(k ∧ l +m ∧ m̄)− Φ22k ∧ m̄+ 1
12Rl ∧ m̄.

(9)

The scalar NP field equations, i.e. the Ricci identities in component form, can be reproduced from Eqs. (7)

and (9) by also taking the original definitions of the NP spin coefficients into account.

The above exterior algebra equations and the definitions belonging to the null coframe formalism closely

follow the variant of the NP formalism presented in [9]. The mathematical formula introduced above is sufficient

for the description of gravitational wave metrics in the context of modified gravity models starting from scratch

provided that the field equations are formulated accordingly by using the algebra of differential forms. Thus,

the above geometrical formulas are sufficient for the formulation of the field equations in a form suitable for the

discussion below. Except for Section 3.6, in which a particular tensor-tensor model of gravity allowing a torsion

that can consistently be set to zero is studied, the discussion on the modified gravity models is confined to the

pseudo-Riemannian case.

2.2. The geometrical description of pp-wave metrics

The pp-wave metrics were introduced quite a long time ago by Brinkman [15] and shortly after that by Jeffrey

and Baldwin [16]. Subsequently, they were interpreted as the metrics representing gravitational waves [17] by

Peres. From an idealized point of view, pp-waves metrics can be regarded as a far-field description of an isolated

astrophysical source radiating gravitational waves.

It is well known that the family of pp-wave metrics can conveniently be defined by introducing a

covariantly constant geodesic null congruence [18, 19, 20] with all the optical scalars corresponding to shear,

divergence, and twist vanishing. The Killing symmetries of the pp-wave metrics were studied by Sippel and

Goenner, and by Bondi et al. [21, 22], for a variety of profile functions in both pseudo-Riemannian and

Riemann-Cartan geometry settings. Another well-known peculiar property of the pp-wave metric is that all the

polynomial scalar invariants vanish [23, 24, 25]. It is of Petrov type N with only one nonvanishing complex Weyl

curvature spinor [9]. The classical gravitational plane waves are shown [26] to be unaffected by the vacuum

polarization effects to all loop orders.

In terms of the global null coordinates {xα} = {u, v, ζ, ζ̄} for α = 0, 1, 2, 3, respectively, the pp-wave

ansatz in so-called Kerr–Schild form can be expressed as

g = −du⊗ dv − dv ⊗ du− 2Hdu⊗ du+ dζ ⊗ dζ̄ + dζ̄ ⊗ dζ (10)

with a real profile function H = H(u, ζ, ζ̄). For H = 0, the metric becomes the Minkowski background. The

real null vector ∂v , the four-fold repeated principle null direction of the Weyl tensor, defines the direction of

propagation and that u = constant surfaces are the flat transverse planes.
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The particular form of the pp-wave metric given in Eq. (33) is also known to be the Brinkman form and

there is yet another useful form that is known as the Rosen form [27]. By a suitable coordinate transformation,

the metric in the Brinkman form in Eq. (33) can be related to a corresponding Rosen form, which explicitly

illustrates the transverse character of the pp-wave metrics. For the particular case of the plane wave metrics, the

explicit coordinate transformations relating the two forms can be found in [10]. In the discussion that follows,

the Brinkman form for the family of pp-wave metrics will be used.

To begin with, the metric of Eq. (33) is to be cast into the following familiar complex null form

g = −k ⊗ l − l ⊗ k +m⊗ m̄+ m̄⊗m (11)

in terms of null basis coframe 1-forms k, l,m, m̄ . In practical calculations, such a null coframe can be constructed

with the help of a set of orthonormal basis 1-forms as well. Although there are different possible choices for the

frames and associated coframes in the literature for the pp-wave metric, a natural choice for the set of basis

coframe 1-forms is

θ0 = k = du, θ1 = l = Hdu+ dv, θ2 = m = dζ (12)

in terms of the complex null coordinates and that θ3 = θ̄2 . The other choices of the basis coframe 1-forms

can be related to Eq. (12) by, for example, the interchanges k ↔ l and m ↔ m̄ (see the Appendix). The

corresponding volume 4-form defined up to an orientation is explicitly given by

∗1 = idu ∧ dv ∧ dζ ∧ dζ̄, (13)

which is identical to that of the Minkowski volume 4-form. The set of orthonormal basis frame fields associated
with the above coframe can be written as

e0 = −∂v, e1 = −∂u +H∂v, e2 = ∂ζ̄ , e3 = ∂ζ . (14)

The definition of the frame fields of Eq. (14) are identical to the frame fields adopted in [9]. The set of frame

fields are useful in the calculations making use of the tensorial methods, and when this is the case, both of the

minus signs in the defining relations of e0 and e1 are usually transferred to the coframe fields. The geometrical

quantities for the pp-wave metric then can be calculated readily by using the commonplace techniques of the

exterior algebra of differential forms.

By definition, the only nonvanishing exterior derivative of basis coframe 1-forms can be expressed in the

form
dl = −Hζk ∧m−Hζ̄k ∧ m̄. (15)

In Eq. (15) and in the expressions that follow, a coordinate subscript to a function denotes the partial derivative

with respect to the coordinate. Consequently, by making use of the derivative expression in connection with

the first structure equations, one readily finds that the only nonvanishing connection 1-form is

ω1
2 = Hζk. (16)

As a result, there is only one nonvanishing spin coefficient for the pp-wave metric ansatz. Now using Eq. (16),

it is straightforward to show that the vector field kaea , associated to the basis 1-form θ0 = k , is covariantly

constant and real.

Turning now to the second structure equations of Eq. (7), it is easy to see that relative to the NP-type

complex null coframe of Eq. (12), there are only two nonvanishing curvature components of the curvature
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2-form Ω1
2 . The pp-wave metric ansatz is known to linearize the curvature 2-forms and, accordingly, the only

nonvanishing curvature 2-form components then take the form

Ω1
2 = dω1

2 = −Hζζk ∧m−Hζζ̄k ∧ m̄ (17)

with Ω0
3 = Ω0

0 = Ω3
3 = 0. The nonvanishing components of the Riemann tensor are R13

02 and R13
03 relative

to the null coframe. Consequently, one finds R = 0. The set of basis 2-form k∧m , l∧ m̄ and 1
2 (k∧ l−m∧ m̄)

defined by Eq. (2) are self-dual, whereas their complex conjugates define the set of anti-self-dual 2-forms relative

to the null coframe and the volume element defined in Eq. (1). The set of all self-dual and anti-self-dual 2-forms

form a convenient basis for the 2-forms.

Thus, for example, the k∧m component of the curvature 2-form of Eq. (17) corresponds to the component

of the complex Weyl 2-form. The curvature spinors can be obtained by comparing the general expression of Eq.

(8) with the curvature expression in Eq. (17). One finds

C1
2 = −Hζζk ∧m, R1 = −2Hζζ̄k (18)

for the pp-wave metric ansatz of Eq. (10). Accordingly, the nonvanishing curvature scalars are given by

Ψ4 = Hζζ , Φ22 = Hζζ̄ . (19)

As a side remark, note that in general the Einstein field equations Gab = κ2Tab can conveniently be implemented

directly into the curvature expression as the anti-self-dual part of the curvature expansion of Eq. (8), e.g., Φik

components of the curvature 2-forms in Eq. (9), in the NP formalism. In addition, the use of exterior algebra

also offers some alternate means to calculate the Ricci spinors, as will be exemplified below in the case of the

pp-wave metrics.

The explicit form of the Weyl spinor ψ4 can be obtained after the profile function is determined from

the field equations that determines the Ricci components. In a vacuum, the amplitude of a pp-waves is then

determined by the nonvanishing component of the Weyl tensor |Ψ4| , whereas its polarization is determined by

the angle φ in Ψ4 = |Ψ4|eiφ . By introducing a suitable frame, it is possible to show that the real and imaginary

parts can be identified with the usual “+” and “×” transverse polarization modes obtained by linearizing the

Einstein field equations around the Minkowski spacetime.

To facilitate the comparison with the coordinate expressions in the literature, it is possible to relate the

curvature 2-form expression relative to the orthonormal coframe easily in the particular case of the pp-wave

metric ansatz. For this purpose, first note that the curvature expression Ω1
2 = dω1

2 can be written in the form

Ω1
2 = dHζ ∧ k . Considering the coordinate expressions of the tensorial quantities labeled by the Greek indices,

one arrives at the relation

Ω1
2 = ∂ζ∂[αHkβ]dx

α ∧ dxβ , (20)

where ∂α ≡ ∂/∂xα and the expansion k = kβdx
β of the basis 1-form k are used. The square brackets imply

the antisymmetrized indices. Furthermore, it is now convenient to rewrite the partial derivative of the profile

function with respect to the complex coordinate ζ in the form

Ω1
2 = m̄ν(∂ν∂[αH)kβ]dx

α ∧ dxβ (21)

using the definition of the basis frame vectors. As the curvature 2-form Ω1
2 can be expanded into the coordinate

basis with respect to the last pair of indices as in Eq. (20), the first pair of indices can also be expressed in
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terms of the contractions of the Riemann tensor with the coordinate basis frame fields. Consequently, it follows

from the definition of the curvature 2-form that

Ω1
2 = 1

2 l
µm̄νRµναβdx

α ∧ dxβ . (22)

Finally, by making use of the fact that g(k, l) = gµνk
µlν = −1, one readily finds that the coordinate components

of the Riemann tensor are given by the relation

Rµναβ = −4k[µ(∂ν]∂[αH)kβ]. (23)

The corresponding expression for the Ricci tensor components can be found, by the contraction Rµν =

gαβRµανβ , as

Rµν = kµkνg
αβ∂α∂βH = 2kµkν∂ζ∂ζ̄H (24)

by using the fact that kµ∂µH = 0 by definition. Consequently, the scalar curvature defined by R = gµνRµν

vanishes identically as a consequence of the fact that kµ∂µ is a null vector. It is now straightforward to see

that any contraction of the vector kµ∂µ with the curvature tensor of Eq. (23)vanishes identically. Explicitly,

the curvature tensor expression implies the relations kµRµναβ = 0 and kµRµν = 0.

Alternatively, Eq. (23) can also be obtained by using the Christoffel symbols Γα
µν . Although the

orthonormal coframe expression of Eq. (17) for the curvature tensor is not particularly less convenient than the

corresponding expression relative to the coordinate basis from a merely technical point of view, the coordinate

expression (23) is more frequently used in the literature.

Now returning to the calculation of the Einstein form relative to the orthonormal coframe, the Einstein

3-form can be calculated from the general formula

∗Ga = 1
2Ωbc ∧ ∗θabc, (25)

where Ga = Gabθ
b is a covector-valued 1-form that can be expressed in terms of Ricci tensor and curvature

scalar as Ga ≡ (Rab − 1
2ηabR)θ

b . Explicitly, by specializing the indices to the null coframe introduced above

and with the help of Hodge duality relations, one arrives at

∗G1 = Ω̄1
2 ∧ im̄− Ω1

2 ∧ im = −2Hζζ̄ ∗ k. (26)

As was noted previously, because the scalar curvature vanishes identically, one has G1 = R1 and thus the Ricci

tensor is of the form Rabθ
a ⊗ θb = 2Hζζ̄k ⊗ k or equivalently in components Rµν = 2Hζζ̄kµkν after expanding

the basis 1-form k to its coordinate components. The expression for the Ricci tensor components is consistent

with the previous coordinate expression of Eq. (24). In addition, by using the Ricci spinor definitions [10], one

finds Φ22 ≡ 1
2 l

µlνRµν = Hζζ̄ .

It is also worth noting that the contracted second Bianchi identity reduces to D ∗G1 = d ∗G1 = 0 and,

consequently, the Einstein 3-form can be rewritten as an exact form [28]. For this purpose, one first notes that

∗G1 = id(ω̄1
2 ∧m− ω1

2 ∧ m̄) (27)

by making use of dm = ddζ ≡ 0. This alternate expression can be simplified further. It is possible to verify by

direct calculation that for the pp-wave ansatz of Eq. (10), the real null basis 1-forms k, l satisfy the following

relation:
d ∗ dl = −2Hζζ̄ ∗ k, (28)
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by making use of (15). Note also that d ∗ l = 0 by definition. Consequently, one ends up with the relation

∗G1 = −d ∗ dl (29)

illustrating the linearization of the components of the metric ansatz in an explicit and compact form.

The vacuum equations for the pp-wave metric then reduce to the Laplace equation Hζζ̄ = 0 on the

transverse plane spanned by the complex coordinate ζ . This equation has the general solution of the form

H(u, ζ, ζ̄) = h(u, ζ) + h̄(u, ζ̄) with h(u, ζ) being an arbitrary complex function of the coordinates u, ζ and it is

analytic in ζ . Because the field equations do not determine the profile function fully, it is possible to construct

various metrics, for example those involving distribution functions of the form δ(u).

The pp-wave ansatz in the form above is restrictive in admitting a matter source. However, the discussion

can be generalized to include a null electromagnetic field in a straightforward way as follows. The self-dual

Faraday 2-form can be defined as

F = 1
2 (F + i ∗ F ) = Φ0l ∧ m̄+Φ1(k ∧ l −m ∧ m̄)− Φ2k ∧m (30)

in terms of the complex Maxwell spinor scalars Φk . Maxwell’s equations can be written as equations for 3-forms

in the form dF = 0 and d ∗ F = 0. These equations can also be rewritten in the complex form as dF = 0

in terms of self-dual Maxwell 2-form defined by F ≡ 1
2 (F + i ∗ F ). In terms of F , the components of the

energy-momentum 3-forms for the Faraday 2-form field read

∗T a[F ] = 1
2 (i

aF ∧ ∗F − F ∧ ia ∗ F ), (31)

and note that these expressions are valid relative to an orthonormal frame and to a null coframe. ∗T a[F ] can

also be expressed in terms of self-dual 2-form F as well by making use of Eq. (30).

For the pp-wave metric, it is straightforward to see that a 2-form F compatible with the metric ansatz of

Eq. (33) can have only one nonvanishing component. For F = Φ2k ∧m with the nonvanishing Maxwell spinor

Φ2 = Φ2(u, ζ, ζ̄). Maxwell’s equations in the complex form

dF = ∂ζ̄Φ2k ∧m ∧ m̄ = 0 (32)

imply that ∂ζ̄Φ2 = 0 and therefore one can define a convenient four-potential 1-form. Explicitly, it is possible

to define Φ2 = Φ2(u, ζ̄) ≡ ∂ζf(u, ζ) with f(u, ζ) being an arbitrary function analytic in the variable ζ .

Consequently, the Faraday 2-form F can be derived from the gauge potential A = Aaθ
a that has the expression

A = [f(u, ζ) + f̄(u, ζ̄)]du. (33)

In terms of the self-dual Faraday 2-form F , and relative to the complex null coframe, the energy-

momentum form has the only nonvanishing component

∗T 1[F ] = −2Φ2Φ̄2 ∗ k = −2[∂ζf(u, ζ)∂ζ̄ f̄(u, ζ̄)] ∗ k. (34)

The electrovacuum Einstein field equations ∗Ga = κ2 ∗ T a[F ] reduce to ∗G1 = κ2 ∗ T 1[F ] or equivalently can

be written in the form Φ22 = κ2Φ2Φ̄2 , which explicitly reads

Hζζ̄ = κ2∂ζf(u, ζ)∂ζ̄ f̄(u, ζ̄) (35)
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where κ2 ≡ 8πG/c4 with G and c standing for Newton’s gravitational constant and the speed of light,

respectively. Note that the field equations can also be written as an equation for 3-forms as

d ∗ dl = κ2fζ f̄ζ̄ ∗ k. (36)

In general, one can show that the Einstein–Maxwell field equations can be expressed in the form Φik =

κ2ΦiΦ̄k in terms of the Ricci and the Maxwell spinors with i, k = 0, 1, 2 provided that the complex components

of the curvature 2-forms of Eq. (7) are identified in terms of the Ricci spinors Φik with i, k = 0, 1, 2 given in

Eq. (9).

The general solution to the field equation of Eq. (35) can be written in the form

H(u, ζ, ζ̄) = h(u, ζ) + h̄(u, ζ̄) + κ2f(u, ζ)f̄(u, ζ̄) (37)

with h and f being arbitrary functions of the coordinates u and ζ and analytic in ζ . As has been stated

above, the field equations do not determine the u-dependence of the profile function and the complex function

h and because the superposition principle holds as an exception, h can be expanded as

h(u, ζ) =

∞∑
n=2

an(u)ζ
n + µ ln ζ +

∞∑
n=1

bn(u)ζ
−n. (38)

The superposition principle also implies that the pp-waves propagating in the same direction do not interact.

n = 0 and n = 1 terms in the first sum are omitted because these terms can be eliminated by the coordinate

transformation defined by

ζ = ζ ′ + a(u), v′ = v + b(u) + ȧζ̄ + ˙̄aζ, u′ = u (39)

that leaves the form of the metric of Eq. (33) invariant provided that the new profile function H ′ is identified

as H ′ = H + äζ̄ + ¨̄aζ − ȧ ˙̄a + ḃ where ˙≡ d/du . Therefore, it is possible to choose the complex functions a(u)

and b(u) such that the profile function has the form of Eq. (38) without any loss of generality.

In Eq. (38), the term of the form µ ln ζ requires a null particle source with T00 ∼ δ(u). This impulsive

pp-wave solution is known as the Aichelburg–Sexl solution [9]. It is originally obtained [29] by boosting the

Schwarzchild solution to the speed of light in the limit of the Schwarzchild mass reducing to zero.

The impulsive pp-waves solutions can also be constructed by the geometrical method [10, 30] of Penrose,

by cutting the Minkowski background along a null hypersurface and then reattaching the two parts with a warp.

The ‘Cut and Paste’ method of Penrose was used to construct spherical impulsive gravitational waves [31] as

well.

One can construct the pp-wave solutions with a profile function involving some other dependence on the

real null coordinate u , instead of a Dirac delta function. For example, a sandwich pp-wave metric [10], which

has a discontinuity that can be expressed in terms of a a particular function having nonzero values only over a

finite interval u1 ≤ u ≤ u2 , can be constructed.

The particular vacuum solution with h = a2(u)ζ
2 corresponds to gravitational plane waves (or homoge-

neous pp-waves) having a constant wave amplitude. The solutions with profile function of the form bn(u)ζ
−n

also require null particles with multipole structure [32]. The solutions with the terms of the form anζ
n were

recently studied in [33, 34, 35, 36, 37] and it was shown that the geodesic structure of these pp-wave spacetimes

leads to chaotic motion of the test particles.
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It is also possible to construct solutions corresponding to a linear superposition of two distinct null

electromagnetic fields. Let us consider a four potential A in Eq. (33) expressed as a superposition of the form

f(u, ζ) = f1(u, ζ) + f2(u, ζ) (40)

where the two independent functions f1 and f2 are analytic in ζ . Then, for the superposed electrovacuum

metric, the profile function is given by

H(u, ζ) = h(u, ζ) + h̄(u, ζ̄) + κ2
{
|f1|2 + |f2|2 + f1f̄2 + f2f̄1

}
. (41)

Although the pp-wave metric ansatz linearizes the Einstein tensor, a nonlinearity arises from the electromagnetic

energy-momentum tensor [38, 39]. On the other hand, the superposition is allowed for the profile function, as

well as it is valid at the level of the corresponding curvature tensor as can be observed from Eqs. (16) and (17).

The profile function of an electrovacuum solution can be combined with that of a vacuum solution defined

at different regions of the transverse plane [40, 10] to have a new profile function of the form

H(u, ζ, ζ̄) =

α2(u)(|ζ − ζ0|2 − r2), |ζ − ζ0| ≤ r

α2(u)r2 ln(|ζ − ζ0|2/r2), |ζ − ζ0| > r.
(42)

The composite function H is defined to be continuous across the boundary |ζ − ζ0| = r . Note also that the

logarithmic part of the profile function is in accordance with the cylindrically symmetric metric exterior to an

infinite line source that can be obtained in the linear approximation [40] and that the logarithmic singularity

|ζ−ζ0| 7→ ∞ is a coordinate singularity as one can show by studying the geodesics of test particles. The function

of Eq. (42) requires an electromagnetic ansatz of the form f(u, ζ) = α(u)(ζ − ζ0) for the region |ζ − ζ0| ≤ r on

the transverse planes and that the corresponding metric represent the gravitational field of an infinite uniform

beam of light with circular cross-section centered at ζ0 and having a radius a finite radius r . It is conformally

flat in the region |ζ − ζ0| ≤ r , whereas Ψ4 = −(αr)2(ζ − ζ0)
−2 outside the beam. One can superpose [40, 10]

any number of profile functions of the form (42) for the nonintersecting parallel light beams having distinct

centers of symmetry.

The pp-waves metrics are solutions in various gravitational theories; for example, the pp-wave solutions

were studied in the supergravity theories [41, 42, 43, 44, 45] and in the gravitational models relevant to the low

energy limit of string theories [46, 47]. The plane wave solutions to Yang–Mills type non-Abelian gauge fields

was first studied by Coleman [48]. Shortly thereafter, Güven [49] presented the extension of Coleman’s solutions

to curved spacetime. Dereli and Güven [50] later generalized Coleman’s solutions to the non-Abelian Yang–Mills

gauge fields with supersymetry. Trautmann [51] also presented the plane wave solutions to non-Abelian gauge

fields and to the quadratic curvature model discussed in Section 3.5 below.

Another universal and remarkable property of the gravitational plane waves, due to Penrose, is that any

spacetime has a plane wave as a limit [52]. The Penrose limit was later extended in [53] to all five of the string

theories by Güven. It was also shown by Penrose [54] that there is no global Cauchy hypersurface for the plane

wave metrics.

The impulsive gravitational wave solutions to some popular alternative gravitational models were studied

previously in [55] by Barrabès and Hogan. The gravitational wave solutions of some modified gravity theories,

such as f(R) and the models involving higher curvature terms in their Lagrangian, were previously studied
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[56, 57, 58] in the linearized approximation. These solutions to the linearized equations are relevant to the

discussion below because it is well known that the pp-wave metrics constitute their own linearizations.

The discussion of pp-wave type solutions below is reserved to a number of modified gravitational models

that allow a unified treatment in deriving the field equations that the profile functions satisfy.

3. pp-waves in modified gravity

From the point of view of a modified gravitational model, it is an interesting question to investigate whether the

simple family of the pp-wave type metrics can be lifted to a set of gravitational wave solutions for that model.

3.1. pp-waves in Brans–Dicke theory

The Brans–Dicke theory of gravity [59] is one of the most popular scalar-tensor theories of gravity. Although

it was proposed to incorporate Machian ideas of inertia into the general relativity theory by introducing a

geometry-matter coupling via a dynamical scalar field, it has now become popular in the context of the f(R)-

type modified gravity models. Some peculiar properties of the radiative metrics in BD theory were studied in

[60, 61] and the radiative metrics in the linear approximation in BD theory were previously studied in [62] by

Wagoner. More recently, the pp-wave solutions for the BD theory with Maxwell field were studied by Robinson

[2], who observed that the BD-Maxwell theory admits solutions with BD scalar with propagating scalar and

nonvanishing Maxwell field in the Minkowski background. Interestingly, a certain part of the results pertaining

to the BD vacuum case rediscovered recently by Robinson are the pp-wave solutions presented some time ago

in [1]. Similar solutions to the scalar tensor theories involving a potential term were also reported in [63]. The

cylindrically symmetric gravitational wave solutions generalizing those given by Einstein and Rosen [64] were

also discussed in [65] recently. As a side remark related to the paper by Einstein and Rosen, the reader is

referred to references [66, 67] for interesting historical accounts on gravitational waves.

In order to be able to use the null coframe language in connection with the exterior algebra developed

above, it is necessary to write the field equations relative to a null or orthonormal coframe. This can be achieved

for example by using a first-order formalism where the connection and the coframe 1-forms are assumed to be

the independent gravitational variables. The field equations for the pseudo-Riemannian metric (equivalently,

the equations for coframe 1-forms) are then obtained by constraining the independent connection 1-form to be

a Levi-Civita connection as a subcase. Such a formulation has also been worked out, for example, in [68] for the

formulation of BD theory including the fermion fields. The details of the application of the first-order formalism

to the BD Lagrangian is provided below for convenience.

Expressed in terms of the differential forms, the total Lagrangian 4-form for the original BD theory

interacting with matter fields reads

Ltot. = LBD[ϕ, θa, ωa
b] +

8π

c4
Lm[g, ψ] (43)

where the gravitational part in the so-called Jordan frame is

LBD =
ϕ

2
Ωab ∧ ∗θab − ω

2ϕ
dϕ ∧ ∗dϕ. (44)

The matter fields with the Lagrangian Lm[g, ψ] are assumed to couple to the metric minimally and are also

assumed to be independent of the BD scalar field. The gravitational coupling constant is replaced by a dynamical
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scalar field ϕ−1 with a corresponding kinetic terms for the scalar field. ω is the free BD parameter and in

general the corresponding general relativistic expression is recovered in the ω 7→ ∞ limit. However, such a

correspondence is not always warranted [69, 70], as the case with matter energy-momentum tensor having a

vanishing trace furnishes a well-known counter example.

In the general framework of first-order formalism for gravity, the independent gravitational variables are

the set of basis coframe 1-forms {θa} and the connection 1-forms {ωa
b} . The local Lorentz invariance of a

gravitational Lagrangian forbids the gravitational action to have explicit dependence on {ωa
b} and the exterior

derivatives {dθa} and {dωa
b} . However, instead of the explicit dependence on derivatives {dθa} and {dωa

b} ,
a gravitational Lagrangian can have dependence on Θa and Ωa

b , respectively. Moreover, the minimal coupling

prescription for the matter fields also implies that dθa and dωa
b occur only in the gravitational sector in a total

Lagrangian with matter fields. On the other hand, the BD scalar field ϕ couples nonminimally to the metric

simply because it multiplies the scalar curvature. As a consequence of the nonminimal coupling, the BD scalar

field is a dynamical field even in the absence of the kinetic term for it.

The vanishing torsion constraint for the independent connection 1-form can be implemented into the

variational procedure by introducing Lagrange multiplier 4-form term

LC = λa ∧ (dθa + ωa
b ∧ θb) (45)

to the original Lagrangian form LBD , where the Lagrange multiplier 2-form λa is a vector-valued 2-form

enforcing the constraint Θa = 0. The Lagrangian for the extended gravitational part then has the explicit form

Lext.[ϕ, θ
a, ωa

b, λa] = LBD[ϕ, θa, ωa
b] + LC [θ

a, ωa
b, λ

a]. (46)

The total variational derivative of Lext. with respect to the independent variables can be found as

δLext. = δϕ

(
1

2
R ∗ 1− ω

2ϕ
d ∗ dϕ+

ω

2ϕ2
dϕ ∧ ∗dϕ

)
+ δθa ∧

(
ϕ

2
Ωbc ∧ ∗eabc +Dλa +

ω

ϕ
∗ T a[ϕ]

)
+ δωab ∧ 1

2

[
Dϕ ∗ θab − (θa ∧ λb − θb ∧ λa)

]
+ δλa ∧Θa (47)

up to an omitted exact form. The energy-momentum forms of the scalar field ∗T a[ϕ] = T a
b[ϕ] ∗ θb stand for

∗T a[ϕ] ≡ 1
2 ((iadϕ) ∗ dϕ+ dϕ ∧ ia ∗ dϕ). (48)

The field equations for the connection then read

D(ϕ ∗ θab) = θa ∧ λb − θb ∧ λa (49)

and these equations can be considered as equations for the Lagrange multiplier 2-forms λa . Eq. (49) can

uniquely be solved for the Lagrange multiplier 2-form by calculating its contractions and taking the constraint

Θa = 0 into account. Explicitly, by calculating two successive contractions and subsequently combining them,

one finds
λa = ∗(dϕ ∧ θa) (50)

as the unique solution. Consequently, using the expression of Eq. (50) for the Lagrange multiplier form in the

metric field equations induced by the coframe variational derivative δLext./δθ
a ≡ ∗Ea in Eq. (47) read

∗Ea ≡ −ϕ ∗Ga +D ∗ (dϕ ∧ θa) + ω

ϕ
∗ T a[ϕ] +

8π

c4
∗ T a[F ] = 0 (51)
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where ∗Ea = Ea
b ∗ θb is vector-valued 1-form and ∗T a[F ] stands for the energy-momentum forms for the

Faraday 2-form field F derived from the variational derivative of the Maxwell Lagrangian 4-form with respect

to basis coframe 1-forms and it is defined by Eq. (31) above.

As a consequence of the diffeomorphism invariance of the BD Lagrangian, it follows from the correspond-

ing Noether identity that D ∗ Ea = 0 [71]. Consequently, from the relation D ∗ T a[ψ] = 0 one can derive the

geodesic postulate for point-like test particles. Explicitly, with the help of the identities

D (ϕ ∗Ga) = dϕ ∧ ∗Ga, (52)

D2 ∗ (dϕ ∧ θa) = dϕ ∧ ∗Ra, (53)

D

(
ω

ϕ
∗ T a[ϕ]

)
= (iadϕ)

(
ω

2ϕ
d ∗ dϕ− ω

2ϕ2
dϕ ∧ ∗dϕ

)
, (54)

one eventually arrives at

D ∗ Ea = 1
2 (i

adϕ)

(
ω

ϕ
d ∗ dϕ− ω

ϕ2
dϕ ∧ ∗dϕ+R ∗ 1

)
(55)

as expected. The right-hand side vanishes identically provided that the field equation for the BD scalar is

satisfied since the terms on the right-hand side are proportional to the field equations for the BD scalar given

below.

In addition, the field equation for the BD scalar that follows from the variational derivative δLBD/δϕ is

given by

ωd ∗ dϕ− ω

ϕ
dϕ ∧ ∗dϕ+ ϕR ∗ 1 = 0. (56)

The BD scalar couples to the matter energy-momentum through the last term in Eq. (56). In fact, by combining

it with the trace of the metric equations, the equation for the BD scalar simplifies to

d ∗ dϕ =
8π

c4
1

2ω + 3
∗ T [ψ] (57)

where T [ψ] ≡ T a
a[ψ] is the trace of the matter energy-momentum tensor. As pointed out above, the reduced

scalar field equation of Eq. (57) follows from the Bianchi identity for the BD field equations together with the

trace. Since the only matter field present in the discussion is Maxwell field F , T [F ] = 0 identically and the

BD scalar satisfies a homogeneous equation corresponding to Eq. (57).

The BD-Maxwell field equations can be written by specializing the indices of the field equations of Eq.

(51) to a complex null coframe. For a = 0, 1, 2 relative to a null coframe they can explicitly be written in the

form

∗E0 = −ϕ ∗G0 +D ∗ (dϕ ∧ k) + ω

ϕ
∗ T 0[ϕ] +

8π

c4
∗ T 0[F ] = 0,

∗E1 = −ϕ ∗G1 +D ∗ (dϕ ∧ l) + ω

ϕ
∗ T 1[ϕ] +

8π

c4
∗ T 1[F ] = 0,

∗E2 = −ϕ ∗G2 +D ∗ (dϕ ∧m) +
ω

ϕ
∗ T 2[ϕ] +

8π

c4
∗ T 2[F ] = 0,

(58)
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respectively. Note that the above expressions for ∗E0 and ∗E1 are real, whereas the expressions for the

components ∗E2 and ∗E3 are complex conjugates. It is worth noting that the BD field equations of Eq.

(58) can be written out explicitly in terms of NP quantities with some straightforward work and further

definitions identifying the components of the differential forms in terms of original NP curvature spinors and

spin coefficients. On the other hand, for the modified gravitational models it is not, in general, possible to

use the field equations of the form Eab = κ2Tab to simply determine the anti-self-dual part of the curvature

expression as in the case of GR in the NP formalism.

As a consequence of the simplicity of the pp-wave metrical ansatz, the Einstein field equations are quite

restrictive in admitting a matter source. The pp-wave metric ansatz above admits only the scalar field ansatz

of the form ϕ = ϕ(u) and thus dϕ = ϕudu . For such a scalar field there is only one nonvanishing component of

the energy-momentum form of the form

∗T 1[ϕ] = −ϕ2u ∗ k. (59)

Moreover, with the assumption ϕ = ϕ(u), the only nonvanishing term among D ∗ (dϕ ∧ θa) is for a = 1 for

which

D ∗ (dϕ ∧ l) = d ∗ (dϕ ∧ l) + ω1
2 ∧ ∗(dϕ ∧m) + ω̄1

2 ∧ ∗(dϕ ∧ m̄). (60)

The second and third terms are complex conjugates of one another, making the left-hand side a real 3-form.

Moreover, one has ω1
2 ∧ ∗(dϕ ∧m) = 0 and consequently

D ∗ (dϕ ∧ l) = −ϕuu ∗ k. (61)

Moreover, the terms involving derivatives of the scalar field can be combined to have

D ∗ (dϕ ∧ l) + ω

ϕ
T 1[ϕ] = d ∗ (dϕ ∧ l) + ω

ϕ
dϕ ∧ ∗(dϕ ∧ l)

=
ϕ−ω

(1 + ω)
d ∗

[
d(ϕ(1+ω)) ∧ l

]
. (62)

By a direct calculation, it is possible to show that the expression on the right-hand side has the nonvanishing

component

D ∗ (dϕ ∧ l) + ω

ϕ
T 1[ϕ] = −

(
ϕuu + ω

ϕ2u
ϕ

)
∗ k (63)

for ϕ = ϕ(u). Eventually, the only nontrivial equation ∗E1 = 0 reduces to

−ϕd ∗ dl + d ∗ (dϕ ∧ l) + ω

ϕ
dϕ ∧ ∗(dϕ ∧ l) + 2|Φ2|2 ∗ k = 0. (64)

Consequently, ∗E1 = 0 can compactly be rewritten as

−ϕd ∗ dl + ϕ−ω

(1 + ω)
d ∗

[
d(ϕ(1+ω)) ∧ l

]
+ 2|Φ2|2 ∗ k = 0. (65)

It is interesting to note that the BD field equations do not fully determine the profile function as in the

GR case. For a profile function with a reasonable dependence on the real null coordinate u , the ω 7→ ∞ limit

yields the GR equations canceling out the second term, provided that one assumes ϕ 7→ ϕ0 = κ−2 in this limit.

For the BD theory, the following pp-wave solutions can be constructed:
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(1) For the vacuum case with Φ2 = 0, there are two subcases depending on the numerical value of the BD

parameter ω , one with ω = −1 and the other with ω+1 ̸= 0. In this case, the first and the second terms

in Eq. (65) are set equal to zero separately: d ∗ dl = −2Hζζ̄ ∗ k = 0 and

d ∗
[
d(ϕ(1+ω)) ∧ l

]
= 0. (66)

Now calculate d ∗ [df(u) ∧ l] for an arbitrary function of f(u) and the basis coframe l . One finds

d ∗ [df(u) ∧ l] = −f ′′ ∗ k − if ′(dm ∧ m̄−m ∧ dm̄) (67)

where a prime denotes an ordinary derivative with respect to the coordinate u . The second term on the

right-hand side vanishes by the definition of the coframe for the pp-wave metric: dm = ddζ ≡ 0. The first

term, on the other hand, vanishes if and only if f ′′ = 0. In other words, d ∗ [df(u) ∧ l] = 0 is satisfied iff

f(u) ∼ u up to a constant. Thus, with the assumption ω ̸= 1, one finds

ϕ(u) = ϕ0u
1/(1+ω). (68)

The case ω = −1 has to be treated separately starting from Eq. (62). For ω = −1, Eq. (62) explicitly

becomes

D ∗ (dϕ ∧ l)− 1

ϕ
∗ T 1[ϕ] = ϕd ∗ [(d lnϕ) ∧ l] (69)

where d lnϕ ≡ ϕ−1dϕ , and thus in this case the right-hand side vanishes identically iff ϕ(u) = ϕ0e
u . These

solutions were reported in [1] and then they were rediscovered in [2] recently, including the electromagnetic

field into the discussion. The flat spacetime requires a vanishing Riemann tensor (or equivalently the

vanishing curvature 2-form) according to the well-known Riemann theorem and that the flat spacetime

be a trivial solution of Gab = 0. The BD field equations Eab = 0 with the pp-wave metric ansatz, on

the other hand, also admit the flat spacetime solution together with a propagating scalar field in the flat

background.

(2) For the electrovacuum case in the BD theory, it is possible to construct the following general expression

H(u, ζ) = h(u, ζ) + h̄(u, ζ̄)− |ζ|2 (ϕ1+ω)uu
2(1 + ω)ϕ1+ω

− 8π

c4ϕ
ff̄ = 0 (70)

for profile function. This particular solution was, somewhat surprisingly, reported in [2] recently. The

electrovacuum solutions of BD in common with the vacuum solutions of GR now follow if

|ζ|2 (ϕω+1)uu
(ω + 1)ϕ(1+ω)

+
16π

c4
ff̄ = 0 (71)

is satisfied separately from the vanishing of the Einstein tensor. Note that, as in the previous case, the

scalar field equation of Eq. (71) is satisfied for the flat spacetime as well. This particular case corresponds

to the propagating Maxwell and scalar fields in the flat background and the fields are referred to as

nongravitating waves in [2] by Robinson.
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In the manner of solving BD field equations with pp-wave metric ansatz as in cases (1) and (2) above, the

scalar field equations satisfy the same field equations irrespective of the assumptions either Hζζ̄ = 0 or H = 0

because the BD field equations in this ansatz can be decoupled into two separate equations, one for the metric

and one for the BD scalar field, together with the energy momentum component coming from the Maxwell field.

Consequently, the BD field equations admit flat spacetime solutions with propagating BD scalar.

Evidently, the source of the nongravitating propagating scalar field can be traced back to the constraint

term, namely the presence of the term D ∗ (dϕ ∧ θa), which arises from the nonminimal coupling of the BD

scalar field to the curvature [63]. In the flat spacetime, the term D ∗ (dϕ ∧ θa) becomes

d ∗ (dϕ ∧ dxa) = (P a
bϕ) ∗ dxb (72)

where ∗ now stands for the Hodge dual for Minkowski spacetime, whereas the second-order differential operator

Pab is explicitly given by

Pab = ∂a∂b − ηab□, (73)

which is a projection operator in Minkowski spacetime with □ ≡ ηab∂a∂b . Pab is also a transverse differential

operator: ∂aPab ≡ 0. Its trace is given by P a
a = −3□ .

By “switching off” the gravitational interaction in the theory, the field equations allow one to have a

propagating scalar solution in the Minkowski background. Explicitly, by introducing a potential term V (ϕ) ∗ 1
into the original BD Lagrangian, the field equations in this case reduce to

Pabϕ+
ω

ϕ
Tab[ϕ] + ηabV (ϕ) = 0. (74)

By requiring the existence of nontrivial solutions to these equations, one determines the form of the self-

interaction potential term and these solutions were studied in [63] recently.

3.2. pp-waves in a metric f(R) gravity

The simplest modification of the general theory of relativity encompassing sufficient generality involves the

modification of the Einstein–Hilbert Lagrangian to a general function of the scalar curvature of the form f(R).

Although the field equations for f(R) models were worked out long time ago in [72], these fourth-order models

are studied intensively by the current motivations arising mainly from the recent cosmological observations.

See, for example, [73, 74] for a thorough review on various aspects of f(R) gravity models.

It is well known that a generic f(R) gravitational model with the Lagrangian

L = 1
2f(R) ∗ 1 (75)

has a dynamically equivalent scalar-tensor model [74, 75]. By introducing an auxiliary Lagrangian,

Laux. = {f(χ) + f ′(χ)(R− χ)} ∗ 1 (76)

in terms an auxiliary field χ with the prime denoting a derivative with respect to χ and assuming that f ′′ ̸= 0,

and by using the field equations δLaux./δχ = 0 that follow from Eq. (76) to eliminate the auxiliary scalar field

χ , one ends up with the equivalent Lagrangian of the form

LST =
ϕ

2
Ωab ∧ ∗θab − 1

2V (ϕ) ∗ 1, (77)
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similar to the original BD Lagrangian of Eq. (43) with the BD parameter ω = 0 while having an additional

potential term for the nonminimally coupled BD-type scalar field. However, the equivalent BD-type scalar-

tensor model has no kinetic term for the scalar field ϕ . The potential term in Eq. (77) is obtained by the

Legendre transform of the function f(R):

V (ϕ) = R(ϕ)f ′(R(ϕ))− f(R(ϕ)) (78)

and consequently, the potential term V (ϕ) with ϕ ≡ f ′(R) = df/dR in the resulting scalar-tensor equivalent

Lagrangian is defined by the Legendre transformation. Eq. (78) also implies dV /dϕ = R and consequently

f(R(ϕ)) = ϕ
dV

dϕ
− V (ϕ). (79)

The contribution of 1
2V (ϕ) ∗ 1 to the metric field equations that follow from Eq. (77) is of the form of a

variable cosmological term 1
2V (ϕ) ∗ θa . However, such a term is incompatible with the pp-wave metric ansatz

of Eq. (10). Thus, it is more convenient to discuss pp-wave solutions by making use of the Lagrangian of Eq.

(75) as has previously been discussed, for example, in [3] recently by Mohseni.

The derivation of the field equations for the f(R) models with minimally coupled matter fields ψ can be

obtained along the lines of the BD equations that are derived in some detail above (see also Ref. [76]) and it is

straightforward to show that the metric field equations that follow from the coframe variation of the Lagrangian

4-form of Eq. (75) are

−f ′ ∗Ga +D ∗ (df ′ ∧ θa) + 1
2 (f −Rf ′) ∗ θa + κ2 ∗ T a[ψ] = 0 (80)

in the form similar to the BD field equations of Eq. (51). Here, T a[ψ] stands for the energy-momentum 1-form

for a matter field ψ . Because the pp-wave metric ansatz is incompatible with a cosmological constant, the form

of a generic function f(R) has to be restricted for the pp-wave ansatz to solve the corresponding field equations

of Eq. (80).

The fourth-order terms can explicitly be written out in the form

D ∗ (df ′ ∧ θa) = f ′′D ∗ (dR ∧ θa) + f ′′′dR ∧ ia ∗ dR (81)

and this term vanishes identically for the pp-wave ansatz for which R = 0 identically. Consequently, for the

ansatz of Eq. (10) the metric field equations boil down to the form

−f ′(0) ∗Ga + 1
2f(0) ∗ θ

a + κ2 ∗ T a[ψ] = 0. (82)

The cosmological-like term for the scalar-tensor equivalent Lagrangian persists in Eq. (82) as well and the only

way for the pp-wave ansatz to satisfy these equations is now transformed to the condition that f(0) = 0. In

this particular case, the f(R) theory field equations reduce to Einstein field equations with a new gravitational

coupling constant κ2/f ′(0). Hence, the electrovacuum solutions to the Einstein field equations with the effective

coupling constant κ2/f ′(0) are also solutions to f(R) models with the function f(R) satisfying the condition

f(0) = 0 and f ′(0) > 0. Explicit forms for some f(R) models relevant to the cosmological applications

satisfying this condition were reported in [3], in a study of Aichelburg–Sexl type solutions in various modified
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gravity models. It is also interesting to note that, introducing a cosmological term Λ ∗ θa to the field equations

of Eq. (80), the compatibility condition f(0) = 0 then becomes f(0) + 2Λ = 0. As a consequence, one can

conclude that in general the f(R) models admit a particular pp-wave solution with a cosmological constant

term.

The linearized field equations of the f(R) model were recently studied in [56] by making use of the

scalar-tensor equivalent models of such theories and it was showed explicitly that there is a massive scalar mode

of gravitational radiation in addition to the transverse modes.

3.3. pp-waves in a nonminimal f(R) gravity

Another popular f(R) model that allows one to discuss pp-waves in a manner in line with the discussion above

is the model that was recently introduced in [77], and it involves two analytical functions f1(R) and f2(R).

The Lagrangian 4-form of the model can be written in the form

Ln.m. =
1

2
f1(R) ∗ 1 + [1 + λf2(R)]Lm (83)

with a new parameter λ giving the strength of the nonminimal coupling of matter to the modified gravitational

Lagrangian function f2(R). As before, the matter Lagrangian 4-form Lm ≡ Lm ∗ 1 is assumed to depend on

the metric tensor but not on the connection 1-forms. One can show that the metric field equations ∗Ea = 0

that follow from δLn.m./δθa ≡ ∗Ea can be written compactly as

− (f ′1 + 2λf ′2Lm) ∗Ga +D ∗ [d (f ′1 + 2λf ′2Lm) ∧ θa]

+ 1
2 [(f1 −Rf ′1)− 2λRf ′2Lm] ∗ θa + (1 + λf2) ∗ T a[ψ] = 0 (84)

in the same way as the f(R) field equations of Eq. (80) by using the constrained first-order formalism [78].

The derivation of the field equations of Eq. (84) proceeds first by extending the Lagrangian 4-form Eq. (83)

by the constraint term Eq. (45), and then solving the connection equations for the Lagrange multiplier and

then subsequently using it to obtain the total variational derivative with respect to the coframe as the metric

field equations of Eq. (84) as in the BD case. The matter energy-momentum 3-form ∗T a[ψ] is defined as the

variational derivative δLm/δθa as in the GR case.

An important feature of the model that follow from the Lagrangian of Eq. (83) can be explained briefly

in the present notation as follows. The Lagrangian 4-form of Eq. (83) is apparently invariant under an arbitrary

coordinate transformation and thus leads to the Noether identity D ∗Ea = 0. (see [79] for general conservation

laws derived from Lagrange–Noether methods for the models with nonminimal couplings). One can show, by a

direct computation of the covariant exterior derivative of the field equations (83), that

D ∗ T a[ψ] =
λf ′2

1 + λf2
dR ∧ (iaLm − ∗T a[ψ]) (85)

as a result of the nonminimal coupling of matter fields. Note that for λ = 0 the above expression reduces to

the previous case and implies the usual covariant expression D ∗ T a[ψ] = 0 for the matter energy-momentum

forms as one should expect on consistency grounds.

The modified covariant expression of Eq. (85) implies that the massive test particles do not follow

geodesic curves, which invalidates the principle of equivalence. It is argued [77] that the term on the right-hand
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side can be interpreted as an extra force arising from the particular nonminimal matter coupling defined by Eq.

(83). Accordingly, as will be exemplified below, such a nonminimal coupling is naturally bound to modify the

matter field equations as well.

Let us consider, for example, the electromagnetic field as the matter Lagrangian present in the above

model. Let us assume further that dF = 0, which can also be imposed to the field equations, by introducing

an appropriate Lagrange multiplier term. Explicitly, for the Maxwell Lagrangian 4-form of the form

Lm = Lm[g, F ] = −1
2F ∧ ∗F, (86)

the electromagnetic field equation given by the variational derivative δLn.m/δF = 0 is modified to the form

[80, 81, 82, 83]

d[(1 + λf2) ∗ F ] = 0. (87)

Note that the modified electromagnetic field equation can also be rewritten in the alternate form

d ∗ F +
λf ′2

1 + λf2
dR ∧ ∗F = 0. (88)

It is possible to show that Eq. (88) can also be derived, in a somewhat indirect manner, by making use of the

general formula of Eq. (85). For the null electromagnetic field ansatz of Eq. (33), the modified field equation

(88) simplifies to the familiar source-free Maxwell equation d ∗ F = 0.

Now returning to discussion of the gravitational waves, by inserting the pp-wave metric ansatz into the

field equations of Eq. (84), and assuming that the only matter Lagrangian present is the electromagnetic

Lagrangian and noting the fact that for the null fields Lm = F ∧ ∗F = 0, Eq. (84) reduces to

−f ′1(0) ∗G1 + 1
2f1(0) ∗ l + (1 + λf2(0)) ∗ T 1[F ] = 0. (89)

As in the previous case, with the further assumption f1(0) = 0, which is now required for the satisfaction of

both the electromagnetic and the metric field equations, one reobtains Einstein field equations in the form

− ∗G1 +

(
1 + λf2(0)

f ′1(0)

)
∗ T 1[F ] = 0 (90)

with the gravitational coupling constant κ2 now replaced by the constant factor in parentheses on the right-

hand side. Consequently, one can apply the formula given in the previous section to write down the pp-wave

solutions of the form given in Eq. (37) to the gravitational model with the Lagrangian of Eq. (83).

3.4. pp-waves in a gravitational model with a nonminimal Maxwell coupling

The nonminimal coupling of the general matter Lagrangian studied in the preceding section discussed the

particular nonminimal coupling of type f(R)F ∧ ∗F . On the other hand, one can formulate a more general

nonminimally coupled Einstein–Maxwell system by considering all mathematically admissible coupling terms

involving curvature and the square of the Faraday tensors. In particular, there are many mathematically

admissible interaction terms of the general form RF 2 that one can consider [84]. Such coupling terms can

explicitly be written in the following forms: F ∧ Fab ∗Ωab , F ∧ FabΩ
ab , F a ∧Ra ∧ ∗F , or F a ∧Ra ∧ F [4, 85],

where Ra is the Ricci 1-form Ra = Rabθ
b that can be defined in terms of the contraction Ra ≡ ibΩ

b
a .
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The pp-wave solution to the nonminimal coupling involving the term of the particular form F ∧Fab ∗Ωab

was recently studied in [4] based on the Lagrangian of the form

L =
1

2κ2
Ωab ∧ ∗θab − 1

2
F ∧ ∗F +

γ

2
F ∧ Fab ∗ Ωab, (91)

where γ is a coupling constant and Fab denotes the components of the Faraday 2-form F = 1
2Fabθ

a ∧ θb

relative to an orthonormal coframe. Note that the nonminimal coupling term involving the Riemann tensor can

explicitly be written out in the form

F ∧ Fab ∗ Ωab = 1
2FabR

ab
cdF

cd ∗ 1. (92)

The expression of Eq. (92) has the same form relative to a coordinate basis as well and the nonminimal RF 2

coupling of this particular type was first considered by Prasanna [86] some time ago.

By using the constrained first-order formalism it is possible to obtain the metric field equations that

follow from Eq. (91), which can be written in the form [4]

− 1

κ2
∗Ga + ∗Ta[F ] +Dλa + γFac(ibF ) ∧ ∗Ωbc + γ ∗ Ta[F,Ω] = 0 (93)

by using the auxiliary 3-form definition

∗Ta[F,Ω] ≡ − 1
4Fbc

(
iaF ∧ ∗Ωbc + iaΩ

bc ∧ ∗F − F ∧ ia ∗ Ωbc − Ωbc ∧ ia ∗ F
)
, (94)

and likewise the 3-form ∗Ta[F ] denotes the electromagnetic energy-momentum 3-form defined in Eq. (31)

above. The vector-valued Lagrange multiplier 2-form λa is obtained by solving the connection equations and

it has the explicit expression given by

λa = γibD(F ba ∗ F ) + γ

4
θa ∧ ibicD(F bc ∗ F ). (95)

In addition, the modified field equations for the Faraday 2-form then take the form dF = 0 and

d ∗ (F − γFabΩ
ab) = 0, (96)

which involves the third-order partial derivatives of the metric variable in general.

For the electrovacuum pp-wave metric ansatz of Eqs. (10) and (33) above, the nonminimal interaction

term vanishes identically and consequently the field equations for the Faraday 2-form reduce to Maxwell’s

equations dF = d ∗F = 0. Moreover, another consequence of the vanishing of the nonminimal coupling term is

that ∗Ta[F,Ω] ≡ 0. The term of the form γFac(ibF )∧∗Ωbc vanishes for the electrovacuum pp-waves identically

as well.

For the pp-wave metric ansatz of Eq. (10), the only nontrivial contribution of the nonminimal coupling

terms arises from the Lagrange multiplier 2-forms. Explicitly, the λ1 component can be expressed in the form

λ1 = γ
[
fζζfζ̄ ∗ (k ∧m) + fζ̄ζ̄fζ ∗ (k ∧ m̄)

]
, (97)

whereas one has λ0 = λ2 = 0. Using the result of Eq. (97) in the expression for the covariant exterior derivative

of the Lagrange multiplier 2-form, one finds

Dλ1 = 2γfζζfζ̄ζ̄ ∗ k. (98)
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Now taking all these results into account, the metric equation of Eq. (93) for a = 1 eventually leads to the

following second-order partial differential equation:

Hζζ̄ = κ2fζ f̄ζ̄ − γκ2fζζ f̄ζ̄ζ̄ . (99)

The general solution to Eq. (99) can be written in the form

H(u, ζ, ζ̄) = h(u, ζ) + h̄(u, ζ̄) + κ2ff̄ − γκ2fζ f̄ζ̄ (100)

in terms of the complex functions h(u, ζ) and f(u, ζ) having arbitrary u-dependence that are analytic in the

variable ζ as in the previous cases.

A family of solutions to the field equation of Eq. (99) was reported recently in [4] associated with a

partially massless spin-2 photon and a partially massive spin-2 graviton that were introduced in [87] by Deser

and Waldron previously. For the particular pp-wave solution reported in Eq. (99), the electromagnetic function

f introduced into the electrovacuum ansatz explicitly has the form

f(u, ζ) = f1(u)ζ + f2(u)ζ
2 (101)

corresponding to a superposition of two null electromagnetic fields.

3.5. pp-waves in a general quadratic curvature gravity

Considered as a low-energy limit of some theory of quantum gravity, general relativity is expected to receive

correction terms involving higher powers of curvature tensor to the Einstein–Hilbert action. In particular, the

quadratic curvature terms in the effective action are essential for the power-counting renormalizability [88],

although they are not free from the problem of the ghosts. The quadratic curvature terms also appear in

the low-energy effective action in string theory [89]. More recently, the modified gravity models involving the

quadratic curvature terms following from the Lagrangian f(R,RabR
ab, RabcdRabcd) in a cosmological context

were discussed in [90]. The complicated modified gravitational models of this type are usually discussed to

investigate the effect of terms that gain significance in the case where the spacetime has a small curvature.

The general quadratic curvature gravity leads to a set of fourth-order field equations and, naturally,

there are not as many exact solutions as in the general theory of relativity. The gravitational wave solutions

to the quadratic curvature gravity were studied in [91, 92, 93, 94] and recently in [95, 96] in the more general

setting of metric-affine gravity. The quadratic curvature gravity has a long history [97] initiated shortly after the

introduction of GR. One of the earliest examples of the quadratic curvature gravity is the conformally invariant

gravity following from the square of Weyl’s conformal tensor introduced by Bach [98] in 1921.

The particular quadratic curvature model discussed in this section was introduced as a Yang–Mills type

action in [99, 100, 101, 102] and, following the terminology introduced in [103, 104], the Lagrangian will be

denoted by LSKY below with the acronym “SKY” standing for Stephenson–Kilmister–Yang. The scale invariant

gravitational Lagrangian 4-form, depending on both the metric (owing to the presence of the Hodge dual) and

the connection expressed in terms of curvature 2-form, explicitly reads

LSKY = 1
2Ωab ∧ ∗Ωab. (102)

The vacuum field equations for the pseudo-Riemannian metric that follow from Eq. (102) by using the

constrained coframe variational derivative in the first-order formalism can be written in the form

∗Ea = Dλa + ∗T a[Ω] = 0 (103)
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with the Lagrange multiplier 2-form having the explicit expression

λa = ibD ∗ Ωba + 1
4θ

a ∧ ibicD ∗ Ωbc. (104)

Consequently, Eq. (102) leads to the equations that are fourth-order in the partial derivatives of the metric

components as indicated by the Lagrange multiplier term in Eq. (103). The quadratic curvature term, namely

the ∗T a[Ω] term in Eq. (103), has the explicit form

∗Ta[Ω] ≡ − 1
2

(
iaΩ

bc ∧ ∗Ωbc − Ωbc ∧ ia ∗ Ωbc
)
, (105)

which arises from commuting the variational derivative with the Hodge dual operator. The energy-momentum-

like 3-form term of Eq. (105) can be obtained in a way similar to a matter energy-momentum 3-form calculated

by a coframe variation.

As in the previous cases, the pp-wave metric ansatz of Eq. (33) simplifies the metric equations of Eq.

(103) considerably. It is straightforward to show that all the components of ∗Ta[Ω] vanishes identically in this

case. The only nonvanishing contribution of the Lagrange multiplier term then arises from the covariant exterior

derivative D ∗ Ω1
2 and its complex conjugate D ∗ Ω1

3 . By using the general expression

D ∗ Ωab = d ∗ Ωab + ωa
c ∧ ∗Ωcb + ωb

c ∧ ∗Ωac (106)

for the covariant exterior derivative, it is straightforward to show that

D ∗ Ω1
2 = −2Hζζζ̄ ∗ k (107)

and, consequently, using the fact that dk = 0 identically, one can show that the Lagrange multiplier can be

written in the form

λ1 = −4 ∗ d(Hζζ̄k). (108)

Using this result in Eq. (103), and also noting that Dλ1 = dλ1 , one eventually ends up with

∗E1 = −4d ∗ d(Hζζ̄k) = 0. (109)

It is interesting to note that the field equation of Eq. (103) can be rewritten in the following compact forms

∗E1 = −2d ∗ d ∗ d ∗ dl = −4Hζζζ̄ζ̄ ∗ k = 0 (110)

for the profile function.

A comparison of the form of the quadratic curvature field equation of Eq. (110) to those of GR given in

Eq. (29) suggests, among other things, that the linearized form of the metric field equations for the quadratic

curvature theory [105, 106, 107, 108] formally has a structure similar to those of GR.

Another observation related to the expression of Eq. (110) is that it is probably the simplest subcase

of a remarkable theorem due to Gürses et al. [109]. The theorem allows one to find the exact solution to

a wide class of modified gravitational models governed by the Lagrangian depending on a function of the

Riemann tensor f(Rab
cd). For the Kundt class of Petrov type N metrics with all the scalar invariants being

constant, the theorem states that any symmetric, second-rank tensor constructed from the Riemann tensor and
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its covariant derivatives can be expressed as a linear combination of the metric components, the traceless Ricci

tensor components, and the higher covariant derivatives of the traceless Ricci tensor components.

Now consider the quadratic curvature gravity model obtained by adding the Einstein–Maxwell Lagrangian

LE−M =
1

2κ2
Ωab ∧ ∗θab − 1

2
F ∧ ∗F (111)

to the quadratic curvature Lagrangian of Eq. (102). One can show that the field equation following from the

total Lagrangian can be written in the form

d ∗ d(ℓ2 + ∗d ∗ d)l = 2κ2fζ f̄ζ̄ ∗ k (112)

for the pp-wave metric ansatz. In Eq. (111), ℓ2 stands for an appropriate coupling constant for the quadratic

curvature terms in the total Lagrangian. The fourth-order equation of Eq. (112) for 3-forms can be written as

a second-order equation in the form

d ∗ dσ = 2κ2fζ f̄ζ̄ ∗ k (113)

in terms of the 1-form σ as an equation analogous to Eq. (36) by defining the auxiliary 1-form σ as

σ ≡ (∗d ∗ d+ ℓ2)l. (114)

Now for a given electromagnetic potential f(ζ, ζ̄), Eq. (113) is to be solved for 1-form σ and subsequently the

resulting expression for it is to be used to solve Eq. (114) for the 1-form l = dv + Hdu , or equivalently the

profile function H to obtain a solution.

In four spacetime dimensions, the general quadratic curvature gravity Lagrangian can be written in a

preliminary form as

L = γΩab ∧ ∗Ωab + αRa ∧ ∗Ra + βR2 ∗ 1 (115)

involving the quadratic curvature terms built out of the contractions of the curvature 2-form, namely the

Ricci-squared and scalar curvature-squared terms with respective coupling constants α, β and γ being another

coupling constant.

At this point, it is convenient to recall Lovelock’s theorem [110, 111], stating that the most general

gravitational actions that generalize Einstein–Hilbert action leading to second-order field equations in metric

components involve the Einstein–Hilbert action complemented with a cosmological constant term and terms

with curvature polynomials, the dimensionally continued Euler–Poincaré (EP) forms (these forms are also

commonly known as the Gauss–Bonnet terms and the famous Chinese geometer Chern was the first to use

dimensionally continued Euler–Poincaré forms to generalize the Gauss–Bonnet theorem to higher dimensions

[112]). In four spacetime dimensions, the EP term involving quadratic curvature expression does not contribute

to the gravitational field equations. Thus, one can exploit the EP forms that are quadratic in curvature

components to remove the redundancy in the general Lagrangian of Eq. (115) without loss of generality.

Explicitly, the dimensionally continued Euler–Poincare term

LEP = 1
4Ωab ∧ Ωcd ∗ θabcd (116)

can be expressed in a particular linear combination of quadratic terms as

LEP = 1
2Ωab ∧ ∗Ωab −Ra ∧ ∗Ra + 1

4R
2 ∗ 1 (117)

99



BAYKAL/Turk J Phys

by a straightforward computation in four dimensions. After some tedious computation in exterior algebra

starting from the expression in Eq. (116), it is possible to show that the LEP term can be written as an exact

form as

LEP = d
(
ωab ∧ Ωcd − 1

3ωae ∧ ωe
b ∧ ωcd

)
ϵabcd (118)

in a form remarkably similar to the gravitational Chern–Simons term arising from another topological term, the

Pontryagin form, namely the 4-form Ωab ∧ Ωba [103, 104], cf. Eq. (136) below. Consequently, because LEP is

an exact form that will not contribute to the field equations in four dimensions, one can add LEP to the general

quadratic curvature action of Eq. (115) to eliminate one of the terms in Eq. (115) in favor of the remaining

two. Following this custom, one can write the most general quadratic curvature Lagrangian in the form

L = αRa ∧ ∗Ra + βR2 ∗ 1 (119)

in four spacetime dimensions. The pp-wave solutions to the model that follows from Eq. (119) have been

previously been studied in, for example in [113, 114]. With the coupling constant satisfying the relation

α = −3β , the most general Lagrangian of Eq. (119) corresponds to the conformally invariant quadratic

curvature model introduced by Bach mentioned above and the corresponding field equations is expressed in

terms of the so-called Bach tensor [115].

In the present notation, the general form of the field equations that follow from Eq. (119) were reported

in [116] and they explicitly read

∗Ea = D ∗D
{
2βRa +

(
2α+ 1

2β
)
Rθa

}
+ ∗T a[α, β] = 0 (120)

where the quadratic term ∗Ta[α, β] has the explicit form

∗Ta[α, β] ≡ Ωbc ∧ ia ∗Xbc − 1
2 ia(Ωbc ∧ ∗Xbc) (121)

and the auxiliary tensor-valued 2-form Xab standing for

Xab = α(θa ∧Rb − θb ∧Ra) + 2βRθab. (122)

With these formulas at hand, it is now straightforward to show by inspection that the most general quadratic

curvature vacuum equations of Eq. (120) reduce to d ∗ dR1 = 0, leading to the result given in Eq. (110).

The result is also in harmony with the results previously reported, for example in [113], by using the tensorial

methods.

One of the novel effects arising from the quadratic curvature model is that there is now additional

transverse massive scalar and the massive spin-2 (ghost) modes. See, for example, [58, 117] for further details

on this issue.

3.6. pp-waves in a tensor-tensor gravity with a torsion

The quadratic curvature gravity model studied in this section involves a symmetric second-rank tensor Φ =

Φabθ
a ⊗ θb [5]. The Lagrangian of such a tensor-tensor model involves an interaction term of the form

ΦabΩac ∧ ∗Ωc
b and the particularly interesting feature of this model is that the field equations yield the Bell

tensor [118, 119, 120, 121].
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Following closely the definition given in [5], the fourth-rank Bell tensor B can be written in the form

B ≡ Tabc ⊗ θa ⊗ θb ⊗ θc (123)

where three-indexed 1-form Tabc can be defined in terms of the following expressions of the curvature 2-forms

∗Tabc ≡ 1
2

(
iaΩbd ∧ ∗Ωd

c − Ωbd ∧ ia ∗ Ωd
c

)
(124)

in the current notation. For the curvature 2-forms corresponding to a Levi-Civita connection, the Bell tensor

defined by Eq. (124) has some mathematical properties in common with the energy-momentum 3-form ∗T a[F ]

of the Maxwell field defined in Eq. (31) above. Remarkably, for the null coframe defined by Eq. (12), the

nonvanishing component of the Bell tensor is

∗T 1
00 = −2

(
Hζζ̄Hζζ̄ +HζζHζ̄ζ̄

)
∗ k. (125)

The Lagrangian 4-form introduced by Dereli and Tucker [5] can explicitly be written in the form

L =
1

2κ2
Ωab ∧ ∗θab + 1

2ΦabΩ
a
c ∧ ∗Ωcb + 1

2DΦab ∧ ∗DΦab − 1
2F ∧ ∗F (126)

with the help of a symmetrical second rank tensor Φab coupling to a particular quadratic curvature term. The

issue of energy and momentum carried by a gravitational wave was also discussed in [92] in the context of

teleparallel gravity by making use of the Bell tensor.

Assuming that the connection and the coframe 1-forms are independent gravitational variables, the field

equations that follow from the total variational derivative of the Lagrangian 4-form of Eq. (126) yield the

gravitational field equations [5]

− 1

κ2
∗Ga + ∗T a[F ] + λ ∗ T a[DΦ] + Φbc ∗ T a

bc = 0 (127)

for the coframe 1-forms where the energy-momentum 3-forms ∗T a[DΦ] is defined as

∗T a[DΦ] = 1
2

(
iaDΦbc ∧ ∗DΦbc +DΦbc ∧ ia ∗DΦbc

)
. (128)

The equations of motion for the independent connection are

− 1

2κ2
Θc ∧ ∗θabc + 1

2D
(
Φa

c ∗ Ωcb − Φb
c ∗ Ωca

)
+ λ

(
Φa

cD ∗ Φcb − Φb
c ∗DΦca

)
= 0. (129)

The above gravitational field equations are defined in a Riemann–Cartan spacetime in general. The

Ricci tensor in this case is defined as in the pseudo-Riemannian case, and likewise the Einstein 3-form is

constructed from the curvature 2-form of a general connection with a nonvanishing torsion as in the pseudo-

Riemannian case. However, the Einstein tensor is not symmetrical in general in the non-Riemannian case with

a nonvanishing torsion. Accordingly, the covariant exterior derivative is defined with a more general connection

with a nonvanishing torsion as well.

These equations are to be supplemented with the equations

λD ∗DΦab − 1
2Ω

a
c ∧ ∗Ωcb = 0 (130)
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for the tensor field Φab and Maxwell’s equations d ∗ F = dF = 0. In contrast to the pseudo-Riemannian case,

the field equations are obtained by constraining the independent connection to be a Levi-Civita connection and

are more complicated then the field equations above in the non-Riemann geometry with torsion.

Keeping in mind that the only contribution of the Bell tensor to the coframe equations is of the

form given in Eq. (125), it is natural to assume that a compatible ansatz for the tensor Φ is of the form

Φ = Φabθ
a ⊗ θb = Φ11l ⊗ l with the only nonvanishing components Φ11 and the choice Φ11 = const. renders

Φ a covariantly constant tensor. (To avoid confusion, the nonvanishing constant component is denoted by Φc

below.) As a consequence of the judicious choice for Φab , all ∗T a[DΦ] vanish identically as well. Furthermore,

one also obtains that Θa = 0 from the independent connection equation and Eq. (130) are satisfied identically.

Eventually, it is consistent to write the coframe equations of Eq. (127) in terms of the pseudo-Riemannian

quantities. Fot the pp-wave ansatz of Eq. (33), this then yields a nonlinear partial differential equation of the

form

−Hζζ̄ + κ2Φc

(
Hζζ̄Hζζ̄ +HζζHζ̄ζ̄

)
+ κ2fζ f̄ζ̄ = 0. (131)

A particularly simple solution to Eq. (131) can be constructed with a homogeneous profile function of the form

H(u, ζ, ζ̄) = h1(u)ζ
2 + h1(u)ζ̄

2 + h2(u)ζζ̄ (132)

with f(u, ζ) = α(u)ζ corresponding to the electromagnetic part of the ansatz. h1(u), h2(u), and α(u) are real

functions of the variable u satisfying

h2 = κ2Φc(h
2
2 + h21) + κ2α2. (133)

As one can observe from Eq. (125) that, for a positive Φc , the solution of the form of Eq. (132) then leads to

a positive definite expression for T000 [5] admitting finite values only.

3.7. pp-waves in the Chern–Simons modified GR

Chern–Simons modified gravity is a parity violating extension of GR introduced by Jackiw and Pi [122]. It

is also motivated by string theory [123]. In this modified gravity model, the three-dimensional CS-topological

current is embedded into four spacetime dimensions. It has subsequently found diverse applications, for example

in the context of inflationary models and in the study of primordial gravitational waves, as well as in many

other topics in cosmology.

The Lagrangian 4-form for the CS-modified GR employs the Pontryagin topological term in addition to the

familiar Einstein–Hilbert term. In particular, the CS term is favored by string theory predicting the Pontryagin

topological correction term in the low-energy limit. A derivation of the CS-modified GR field equations from

a truncation of a low-energy effective heterotic string theory models involving the Kalb–Ramond field and a

dilaton field was recently given in [124], and a similar derivation was also presented in [125] at around the same

time.

The field equations for the CS-modified GR model follow from the Lagrangian 4-form

LCS = 1
2Ωab ∧ ∗θab − 1

8θ(x)Ωab ∧ Ωba, (134)

where the first term is the familiar Einstein–Hilbert Lagrangian 4-form and the second term, which is known

as the Pontryagin term, is an exact form

Ωab ∧ Ωba = dK (135)
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with the Chern–Simons 3-form K defined as

K = ωab ∧ Ωba − 1
3ω

a
b ∧ ωb

c ∧ ωc
a, (136)

and therefore the term in Eq. (135) does not contribute to the field equations for a constant θ . Written in this

form, the Pontryagin term depends on the connection 1-form and it contributes to the coframe equations only

through the Lagrange multiplier term LC of the form of Eq. (45) introduced to impose the vanishing torsion

constraint for the independent connection in the first-order formalism.

The total variational derivative of the extended action Lext. = LCS + LC with respect to the variables

can be found in a straightforward manner as

δLext. = δθa ∧ (− ∗Ga +Dλa)− δθ 1
8Ωab ∧ Ωba + δλa ∧Θa

+ δωab ∧
{

1
2D ∗ θab − 1

4D(θΩab)− 1
2

(
θa ∧ λb − θb ∧ λa

) }
(137)

up to an omitted exact form. Because the contribution of the topological terms to the coframe equations

results from the Lagrange multiplier term, as before, one first solves the independent connection equations

δLext./δωab = 0 for the Lagrange multiplier 2-form.

The connection equations, which explicitly read

D ∗ θab − 1
2D(θΩab)−

(
θa ∧ λb − θb ∧ λa

)
= 0, (138)

can be solved for the Lagrange multiplier 2-form to have

λa = −ib(Ωba ∧ dθ)− 1
4θ

a ∧ ibic(Ωbc ∧ dθ) (139)

as the unique solution. At this point, it is convenient to define auxiliary vector-valued 2-form P a as

P a ≡ ib(Ω
ba ∧ dθ) (140)

and its contraction P ≡ iaP
a . In terms of the vector-valued auxiliary form P a and its contraction, the Lagrange

multiplier 2-form can be written conveniently as

λa = −(P a − 1
4θ

a ∧ P ), (141)

formally resembling the expression for the Schouten 1-form defined in 2+1 dimensions in the context of

topologically massive gravity [126]. In 2+1 dimensions, the Cotton 2-form is derived from the Schouten 1-

form [115], La = Ra − 1
4Rθ

a . In general, the Cotton tensor is defined in any spacetime dimension D ≥ 3, but

the definition depends explicitly on the spacetime dimensions.

In the present geometrical framework, it is convenient to define the vector-valued 3-form Ca = 1
6C

a
bcθ

abc

by

Ca ≡ Dλa = D(P a − 1
4θ

a ∧ P ) (142)

as well. Note that Ca defined in this way can be expressed in terms of a symmetric traceless tensor Cab by

using the relation

Cab = − 1
2 ∗ (θa ∧ Cb + θb ∧ Ca), (143)
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where the tensor Cab represents the orthonormal components of the tensor, which is often called the C-tensor

in the literature. See, for example, the review article by Alexander and Yunes [123] and the references therein

for an extensive discussion. The relation of Eq. (143) can be used to derive a more familiar expression for the

C-tensor relative to a coordinate expression. In the presentation below, the vector-valued 3-form Ca will be

called “C-form”.

Eventually, after taking the matter energy-momentum forms ∗Ta[ψ] ≡ δLm/δθ
a coming from the matter

Lagrangian Lm[g, ψ] into account, the coframe equations for the CS-modified gravity then take the form

∗Ga + Ca = κ2 ∗ T a[ψ] (144)

with κ2 denoting the coupling constant in GR. As in the previous cases, only the vacuum and the electrovacuum

solutions to these field equations will be discussed in this subsection.

The variational derivative of the extended Lagrangian with respect to the CS scalar field, which can be

considered as a Lagrange multiplier 0-form for the model, leads to the constraint

Ωab ∧ Ωba = 0. (145)

Eqs. (144) and (145) constitute the field equations for the CS-modified gravity model expressed in terms of the

exterior forms relative to a null coframe.

It is worth noting at this point that the use of NP formalism in a study of CS-modified gravity is also

favored by the constraint of Eq. (145) because Eq. (145) can be rewritten in terms of Weyl 2-forms in the form

Cab ∧ Cba = 0 (146)

by making use of the expansion of Eq. (8) and the first Bianchi identity satisfied by the curvature 2-form.

Consequently, because Eq. (146) involves only the Weyl spinor scalars Ψk , the Pontryagin constraint can be

considered as a constraint on the Petrov type. It is possible to show that Eq. (146) explicitly reads

1
8Cab ∧ Cba = i

{
3(Ψ2

2 − Ψ̄2
2)− 4(Ψ1Ψ3 − Ψ̄1Ψ̄3) + Ψ0Ψ4 − Ψ̄0Ψ̄4

}
∗ 1 (147)

by using Eq. (9) after some straightforward algebra. The constraint of Eq. (145), or equivalently Eq. (146),

imposing the vanishing of the Pontryagin term, is essential to have the diffeomorphism invariance of the model.

Note that the Pontryagin constraint of Eq. (145) is satisfied identically for the ansatz of Eq. (33) because the

only nonvanishing Weyl spinor scalar is Ψ4 . Hence, it suffices to consider the CS-modified equations of Eq.

(144) for a type N metric in general.

As a consequence of the constraint of Eq. (145), the C-form is covariantly constant and therefore the

matter coupling to the CS-modified gravity requires a covariantly constant matter energy-momentum tensor as

in the GR. Explicitly, by making use of the first Bianchi identity satisfied by the curvature 2-form, it is possible

to show that

DCa = −1
4 (i

adθ)Ωbc ∧ Ωcb. (148)

The C-form is a traceless vector-valued 3-form by definition and it is covariantly constant provided that

the Pontryagin constraint is satisfied. It is important to note that these properties are in common with the

Cotton 2-form in 2+1 dimensions. However, the C-form has some other properties that are not in common with

those of the Cotton 2-form defined in three dimensions.
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In order to construct the solutions to the CS-modified gravity, one has to make additional assumptions

for the CS scalar field θ along with the metric ansatz of Eq. (33). It is convenient to start with a general CS

scalar such that θ = θ(u, v, ζ, ζ̄) and then subsequently restrict it to a convenient form as one proceeds.

By making use of curvature expressions of Eq. (17) for the pp-wave metric ansatz of Eq. (10), one finds

the following expressions

P 1 = −2θvHζζ̄k ∧ l +
(
θζ̄Hζζ − θζHζζ̄

)
k ∧m+

(
θζHζ̄ζ̄ − θζ̄Hζζ̄

)
k ∧ m̄,

P 2 = −θvHζ̄ζ̄k ∧ m̄− θvHζζ̄k ∧m,
(149)

for the nonvanishing components of the auxiliary form P a , and also note that P 3 can be obtained by the complex

conjugation relation P 3 = P̄ 2 . Moreover, using the expressions of Eq. (149), one can find the contraction of

the 2-form P a as
P = 4θvHζζ̄k. (150)

By combining the above results, the nonvanishing Lagrange multiplier 2-forms can then be expressed in

the form

λ1 = −θvHζζ̄k ∧ l +
(
θζ̄Hζζ − θζHζζ̄

)
k ∧m+

(
θζHζ̄ζ̄ − θζ̄Hζζ̄

)
k ∧ m̄,

λ2 = +θvHζζ̄k ∧m− θvHζ̄ζ̄k ∧ m̄− θvHζζ̄k ∧m,
(151)

where λ3 = λ̄2 . Finally, by using the fact that the C-tensor is given by the covariant exterior derivative as

Ca = Dλa, one ends up with the following nonvanishing components of the C-form:

C1 = −i
(
θζ̄ζ̄Hζζ − θζζHζ̄ζ̄ − 2θζHζζ̄ζ̄ + 2θζ̄Hζζζ̄

)
∗ k

− i (θvHζζ)ζ̄ ∗m+ i
(
θvHζ̄ζ̄

)
ζ
∗ m̄, (152)

C2 = −i
(
θvHζ̄ζ̄

)
ζ
∗ k − iθvvHζ̄ζ̄ ∗ m̄, (153)

where C3 = C̄2 by definition.

An immediate observation about the general equations of motion for the CS-modified gravity equations

is that one of the vacuum equations, namely θvvHζζ = 0, decouples from the rest of the field equations.

Moreover, because this equation involves the only nonvanishing Weyl component Ψ4 = Hζζ , one has to assume

that θvv = 0 in order to maintain the Petrov type of the metric.

A classification scheme of the solutions to the CS-modified GR was introduced in [6], and it is convenient

to discuss the pp-waves solution in this regard as well. It is possible to construct P Class and CS Class solutions

to the CS-modified GR as follows.

(1) P Class solutions (GR solutions lifted to the CS-modified GR): The solutions in this class satisfy

∗Ga = κ2 ∗ T a[F ] and also by demanding Ca = 0 separately. For the P Class solutions for the pp-

wave ansatz, the field equations reduce to the following third-order coupled partial differential equations:

Hζζ̄ = κ2fζ f̄ζ̄ , (154)

θζ̄ζ̄Hζζ − θζζHζ̄ζ̄ − 2θζHζζ̄ζ̄ + 2θζ̄Hζζζ̄ = 0, (155)

(θvHζζ)ζ̄ = 0, θvvHζ̄ζ̄ = 0. (156)
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First note that the last of the above equations implies that θvv = 0 for a nonvanishing Ψ4 . For the

vacuum case, these equations simplify considerably and take the form

Hζζ̄ = 0, (157)

θζ̄ζ̄Hζζ − θζζHζ̄ζ̄ = 0, (158)

θvζ̄Hζζ = 0. (159)

Furthermore, the equations in Eq. (159) imply that θvζ = θvζ̄ = 0. As a consequence, these relations

involving only the partial derivative of the CS scalar field, one can conclude that the CS scalar must be

of the form

θ(u, v, ζ, ζ̄) = vA(u) +B(u, ζ, ζ̄) (160)

with two undetermined functions A = A(u) and B = B(u, ζ, ζ̄). After determining the general solution

Eq. (157), the function B then can be determined by the equations

Bζ̄ζ̄Hζζ −BζζHζ̄ζ̄ = 0 (161)

by using Eq. (158). The CS scalar field of the form given in Eq. (160) with the function B(u, ζ, ζ̄)

satisfying Eq. (161) then leads to the most general vacuum pp-wave solution that the CS-modified GR

model has in common with the GR solutions.

For the vacuum solutions of the Einstein field equations of the form H(u, ζ, ζ̄) = h(u, ζ) + h̄(u, ζ̄) where

the function h is an analytical function of ζ with arbitrary u-dependence, Eq. (161) is solved by the

function B having the same form as H and thus one has

B(u, ζ, ζ̄) = h(u, ζ) + h̄(u, ζ̄). (162)

It is also possible to construct another P -class solution by considering the Aichelburg–Sexl solution [6].

For the Aichelburg–Sexl solution with h(u, ζ) ∼ δ(u) ln ζ , which requires a null particle source term in

the Einstein field equations, Eq. (161) now becomes

ζ2Bζζ − ζ̄2Bζ̄ζ̄ = 0 (163)

and the resulting equation implies that B is an arbitrary function of the real variable |ζ|4 leaving the u

dependence undetermined.

(2) CS Class solutions (non-GR solutions): This class of solutions can be found by solving the general

equations of Eq. (144). They are, in general, third-order partial differential equations in the metric

components, and for the pp-wave ansatz, they can explicitly be written as

(θvHζζ)ζ̄ = 0, (164)

2Hζζ̄ − i
(
θζ̄ζ̄Hζζ − θζζHζ̄ζ̄ − 2θζHζζ̄ζ̄ + 2θζ̄Hζζζ̄

)
= 2κ2fζ f̄ζ̄ . (165)

In addition, it is also assumed in this case that the CS scalar satisfies the equation θvv = 0 as before.

With the further simplifying assumption θv = 0, the field equations of Eq. (164) are satisfied identically
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and one is left with Eq. (165) with the expression in Eq. (160) reducing to θ = θ(u, ζ, ζ̄). In this case,

the functions θ = θ(u, ζ, ζ̄) and H = H(u, ζ, ζ̄) are to be determined from Eq. (165) alone.

The vacuum solution presented in [6] by Grumiller and Yunes is constructed under the additional assump-

tion that θζζ = 0. The CS scalar then simplifies to the linear form in the complex coordinates ζ and ζ̄ ,

which can be written as

θ = a(u)ζ + ā(u)ζ̄ + b(u) (166)

with a a complex function of the real null coordinate u , whereas b = b(u) is a real function. Consequently,

Eq. (165) reduces to

Hζζ̄ + i
(
θζHζζ̄ζ̄ − θζ̄Hζζζ̄

)
= 0. (167)

In order to put this equation into the form of a Poisson equation, it is convenient to introduce [6] the

following field redefinition:

Hζζ̄ ≡ q(u, ζ, ζ̄). (168)

In terms of the new function q , Eq. (167) can now be rewritten as a first-order partial differential equation

of the form
q − i(aqζ̄ − āqζ) = 0. (169)

One can verify that this equation has the general solution of the form

q(u, ζ, ζ̄) = e(ζ+ζ̄)/i(ā−a)ϕ(āζ + aζ̄ + b) (170)

with ϕ being an arbitrary function of the argument āζ+aζ̄+b . Subsequently, this solution can be inserted

back into the Eq. (168) to construct a CS -class solution by solving the resulting Poisson equation [6], for

example, by the method of Green’s functions by introducing some appropriate boundary conditions on

the transverse planes spanned by the complex coordinates for different values of the coordinate u .

4. Concluding comments

Although there is convincing but indirect evidence [127, 128] for the gravitational waves confirming the accuracy

of the theoretical prediction obtained from the linearized Einstein field equations, there are ongoing efforts

in various projects [129, 130, 131, 132] to observe them directly. In the near future, the advances on the

observational front will be a powerful tool for testing the viable theoretical models of gravity [133] and some

popular modified gravity models will certainly be ruled out by the prospective observations. Furthermore,

considering the puzzling observational data evidencing a current accelerated expansion phase of the universe

contrary to the former expectations, the direct detection of gravitational waves will probably have an impact

on the theoretical efforts as well.

Contrary to the remarks in [1], implying that the use of the Newman–Penrose null tetrad formalism is

somewhat cumbersome in deriving the pp-wave type solutions to the BD theory, the NP formalism provides

probably the most convenient and efficient mathematical framework in any topic involving the gravitational

radiation and it is also certainly well suited to the discussions of these issues in the context of a variety of

modified gravity models. In particular, with some further appropriate development of the technical presentation

[134], the discussion of the exact solutions above can be extended to more complicated family of metrics, at the

same time also taking the algebraic character of such solutions into account.
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It is well known that the family of pp-wave metrics belongs to a more general family of metrics, known

as the Kundt waves [18, 19, 20]. The family of Kundt waves is also described by a null geodesic with vanishing

optical scalars; however, the assumption that the null vector is covariantly constant is dropped. Consequently,

for the gravitational waves metrics in this family, the transverse planes are not flat. In addition, the metrics

in the Kundt family can have Petrov types II, D, III, and N [10]. The discussion of such algebraically special

solutions of the modified gravity models will be work for the future research.
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Appendix

As an alternative to the set of basis coframe 1-forms of Eq. (12), it is also possible to adopt the null coframe

k = Hdu+ dv, l = du, m = dζ̄ (171)

for the pp-wave ansatz of Eq. (10). The set of coframes of Eq. (171) is related to the set of coframes of

Eq. (12) by the interchanges k ↔ l and m ↔ m̄ . Under these interchanges of the basis 1-forms, the Cartan

structure equations, Eqs. (4) and (7), are mapped onto themselves. This symmetry, originally called the prime

symmetry, is a computationally useful symmetry in the NP formalism. The tensorial objects or scalars related

by prime symmetry are said to be prime companions. In terms of the null coframe indices, the prime symmetry

corresponds to symmetry of the structure equations under the interchanges 0 ↔ 1 and 2 ↔ 3.

The connection and the curvature forms belonging to the null coframe of Eq. (171), which are the prime

companions to those of Eq. (12), are given by

ω0
3 = Hζ̄ l, (172)

Ω0
3 = dω0

3 = −Hζ̄ζ̄ l ∧ m̄−Hζζ̄ l ∧m, (173)

respectively. It follows from Eq. (173) that ∗G0 = −2Hζζ̄ ∗ l and the corresponding curvature scalars are

Φ00 = Hζζ̄ , and Ψ0 = Hζ̄ζ̄ .
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