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Abstract: We consider the bosonic sectors of supergravity theories in ten and eleven dimensions corresponding to the

low energy limits of string theories and M-theory. The solutions of supergravity field equations are known as supergravity

backgrounds and the number of preserved supersymmetries in those backgrounds are determined by Killing spinors. We

provide some examples of supergravity backgrounds that preserve different fractions of supersymmetry. An important

invariant for the characterization of supergravity backgrounds is their Killing superalgebras, which are constructed

out of Killing vectors and Killing spinors of the background. After constructing Killing superalgebras of some special

supergravity backgrounds, we discuss the possibilities of the extensions of these superalgebras to include the higher

degree hidden symmetries of the background.
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1. Introduction

The unification of fundamental forces of nature is one of the biggest aims in modern theoretical physics. The

most promising approaches for that aim include the ten-dimensional supersymmetric string theories and their

eleven-dimensional unification called M-theory. There are five different string theories in ten dimensions: type

I, type IIA and IIB, and heterotic E8 × E8 and SO(32) theories. However, some dualities called T-duality,

S-duality, and U-duality between strong coupling and weak coupling limits of these theories can be defined and

these dualities can give rise to one unified M-theory in eleven dimensions [1, 2, 3, 4]. The main common property

of these ten and eleven dimensional theories is that their low energy limits correspond to the supergravity theories

in those dimensions. This is the main reason supergravity theories attract increasing attention in recent research

literature [5, 6]. Understanding supergravity theories is important for knowing the dynamics of massless fields

in string theories and finding the backgrounds that strings can propagate.

Supergravity theories are extensions of general relativity to obtain an action that is invariant under

supersymmetry transformations. For the consistency and invariance of the theory one has to define higher

spin fermionic fields and extra bosonic fields with appropriate supersymmetry transformations. There are

different consistent supergravity theories in different dimensions. The low energy limits of string and M-theories

are described by the bosonic sectors of ten- and eleven-dimensional supergravity theories. Bosonic sectors of

supergravity theories correspond to taking fermionic fields and their variations to be zero in the full theory. The

solutions of bosonic supergravity field equations are called supergravity backgrounds. An important invariant

that is used in the classification of supergravity backgrounds is the number of preserved supersymmetries in those
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backgrounds. The number of supersymmetries are described by Killing spinors of the background corresponding

to the spinors that are solutions of the differential equation results from the variation of the gravitino field [7].

This differential equation also defines the spinor covariant derivative in terms of the extra bosonic fields of the

theory.

The amount of supersymmetry in a supergravity background is the main tool for the classification

of supersymmetric supergravity backgrounds. Constructing the Killing superalgebras of a background is an

important step to achieve this classification. A Killing superalgebra is a Lie superalgebra that consists of the

isometries of the background corresponding to the Killing vectors and the number of preserved supersymmetries

constituting the Killing spinors of the background. These constituents of the superalgebra are even and odd parts

of it, respectively. In the definition of Killing superalgebras, the spinorial Lie derivative and Dirac currents that

are constructed from two Killing spinors and correspond to Killing vectors are used [8, 9]. To have a well-defined

Lie superalgebra structure, the Jacobi identities of odd and even parts of the superalgebra must be satisfied.

The dimension of the Killing superalgebra is related to the homogeneity structure of the background [10, 11]. By

constructing the Killing superalgebras of different supergravity backgrounds, one can obtain the geometric and

supersymmetric properties of those backgrounds. On the other hand, classification of supergravity backgrounds

can be considered in different contexts. Besides the construction of Killing superalgebras, there are also methods

that use G-structures and spinorial geometry to attack the classification problem [12, 13, 14, 15, 16]. However,

we will focus on the method of constructing Killing superalgebras in the rest of the paper.

In this review paper, we consider the current status of the subject and discuss about the possible

extensions of the structures, which can give hints about how to achieve some developments regarding the

problem. The paper is organized as follows. In section 2, we summarize the bosonic sectors of different

supergravity theories in ten and eleven dimensions that are the low energy limits of string theories and M-theory.

In section 3, we provide some examples of solutions of those supergravity theories that are called supersymmetric

supergravity backgrounds. Section 4 contains the construction and properties of Killing superalgebras in general

supergravity backgrounds and some possible extensions of them to higher order forms. In section 5, we provide

a summary and discussion before concluding the paper.

2. Bosonic sectors of supergravity theories

The low energy limits of string theories and M-theory are ten- and eleven-dimensional supergravity theories. To

obtain the solutions that strings can propagate consistently, we consider the bosonic sectors of supergravities.

These correspond to the backgrounds of the theories by taking the fermionic fields to be zero and supersym-

metry variations of fermionic fields give rise to Killing spinor equations whose solutions give the number of

supersymmetries preserved by the background. In general, a supergravity background consists of a Lorentzian

spin manifold M , a metric g , and some other bosonic fields defined on M depending on the type and di-

mension of the supergravity theory. The metric and bosonic fields satisfy some field equations generalizing the

Einstein–Maxwell equations. A supergravity background is called supersymmetric if it admits nonzero Killing

spinors that are solutions of the Killing spinor equation. In this section, we will introduce the bosonic sectors

of supergravity theories in ten and eleven dimensions.

2.1. Eleven-dimensional supergravity

The maximum dimension that a supergravity theory can be consistently constructed is eleven and eleven-

dimensional supergravity is the low energy limit of M-theory [17]. The bosonic sector of eleven-dimensional
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supergravity consists of a Lorentzian metric g and a closed 4-form F , which is the field strength of a 3-form

A , namely F = dA . This theory can be considered a generalization of Einstein–Maxwell theory to eleven

dimensions with a generalized field strength F . The action of the theory is written as follows:

S =
1

12κ211

∫ (
Rab ∧ ∗eab − 1

2
F ∧ ∗F − 1

6
A ∧ F ∧ F

)
, (1)

where κ11 is the eleven-dimensional gravitational coupling constant, Rab are curvature 2-forms, ea are coframe

basis constructed from the metric g with eab = ea∧eb , and ∗ is the Hodge star operation. Note that the second

term in the action is in the form of the Maxwell action and the last term is the topological Chern–Simons term.

Varying with respect to ea and A gives rise to the following field equations:

Ric(X,Y ) ∗ 1 =
1

2
iXF ∧ ∗iY F − 1

6
g(X,Y )F ∧ ∗F (2)

d ∗ F =
1

2
F ∧ F, (3)

where X,Y are vector fields, Ric is the Ricci tensor, ∗1 is the volume form, and iX is the interior derivative or

contraction with respect to X . On the other hand, the spinor covariant derivative is modified by the existence

of the extra bosonic fields in supergravity theories. Variation in the gravitino field gives a spinor equation whose

solutions are Killing spinors

DXϵ = 0, (4)

where ϵ is a spinor and the modified spinor covariant derivative is defined in terms of ordinary spinor covariant

derivative ∇X as

DX = ∇X +
1

6
iXF − 1

12
X̃ ∧ F (5)

and X̃ is the 1-form that corresponds to the metric dual of X . The solutions of the Killing spinor equation

determine the number of preserved supersymmetries in a supergravity background.

2.2. Type IIA and IIB supergravities

By compactifying eleven-dimensional supergravity on S1 with the Kaluza–Klein reduction method, one obtains

the ten-dimensional type IIA supergravity, which is the low energy limit of type IIA string theory [18]. Besides

the fermionic fields gravitino and dilatino, type IIA supergravity includes several bosonic fields that are the

graviton described by the metric g , a real scalar field called dilaton ϕ , a 2-form gauge potential B2 with field

strength H3 = dB2 , and 1-form and 3-form Ramond–Ramond gauge potentials C1 and C3 with field strengths

F2 = dC1 and F4 = dC3 . The bosonic sector of IIA supergravity corresponds to taking the fermionic fields to

be zero.

By defining a new field strength

F̃4 = F4 − C1 ∧H3 (6)

with the property

dF̃4 = −F2 ∧H3 (7)

115



ERTEM/Turk J Phys

the bosonic action of IIA supergravity is written as follows:

S =
1

2κ210

∫
e−2ϕ

(
Rab ∧ ∗eab + 4dϕ ∧ ∗dϕ

)
− 1

4κ210

∫ (
e−2ϕH3 ∧ ∗H3 + F2 ∧ ∗F2 + F̃4 ∧ ∗F̃4

)
− 1

4κ210

∫
B2 ∧ F4 ∧ F4. (8)

The Killing spinors in type IIA supergravity satisfy two equations since there are two fermionic fields in

the theory. The differential condition comes from the variation in the gravitino and the equation corresponds

to the condition of being parallel with respect to the following modified spinor covariant derivative:

DX = ∇X − 1

4
(iXH3)z −

1

8
eϕ(iXF2)z +

1

8
eϕX̃ ∧ F4 (9)

where z is the ten-dimensional volume form. The algebraic condition comes from the variation in the dilatino

and reads as follows: (
−1

3
(dϕ)z +

1

6
H3 −

1

4
eϕF2 +

1

12
eϕF4z

)
ϵ = 0. (10)

There is another ten-dimensional supergravity theory, which is called type IIB supergravity and cannot

be obtained from the eleven-dimensional theory [19]. Fermionic content of IIB theory is the same as in the

IIA case; however, the bosonic sector differs from it. Besides the metric g , dilaton ϕ , and the 2-form B2 with

field strength H3 = dB2 , it also contains 0-form, 2-form, and 4-form Ramond–Ramond gauge potentials C0 ,

C2 , and C4 with field strengths F1 = dC0 , F3 = dC2 , and self-dual F5 = dC4 = ∗F5 . By defining the new

combinations of field strengths

F̃3 = F3 − C0 ∧H3

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3, (11)

the action of the bosonic sector of the type IIB supergravity can be written as

S =
1

2κ210

∫
e−2ϕ

(
Rab ∧ ∗eab + 4dϕ ∧ ∗dϕ

)
− 1

4κ210

∫ (
e−2ϕH3 ∧ ∗H3 + F1 ∧ ∗F1 + F̃3 ∧ ∗F̃3 + F̃5 ∧ ∗F̃5

)
− 1

4κ210

∫
C4 ∧H3 ∧ F3. (12)

In fact, it is only a pseudo-action since only after externally imposing the self-duality condition F5 = ∗F5 can

the field equations of the theory be obtained from it.

The differential Killing spinor equation in type IIB supergravity is written from the following modified

spinor covariant derivative [20]:

DX = ∇X +
1

4
iXH3 ⊗ σ3 −

1

16
eϕX̃ ∧

(
F1 ⊗ iσ2 − F̃3 ⊗ σ1 + F̃5 ⊗ iσ2

)
, (13)
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where σi are Pauli matrices and the algebraic Killing spinor equation is

(
1

2
(dϕ− ieϕdC0) +

1

4
(ieϕF̃3 −H3)

)
ϵ = 0. (14)

2.3. Type I and heterotic supergravities

The low energy limit of type I superstring theory is a ten-dimensional supergravity theory coupled with a

super Yang–Mills theory with gauge group SO(32) in ten dimensions [21]. This low energy limit is called type

I supergravity theory and it contains the metric g , the dilaton ϕ , a Ramond–Ramond 2-form C2 , and the

non-abelian Yang–Mills SO(32) gauge connection A1 as bosonic fields. The field strengths are defined as

F2 = dA1 +A1 ∧A1

F̃3 = dC2 +
1

4
ω3

where ω3 = A1 ∧ dA1 +
2
3A1 ∧A1 ∧A1 is the Chern–Simons form of the gauge connection. The bosonic action

of type I supergravity is defined in terms of these field strengths as follows:

S =

∫ [
e−2ϕ

(
Rab ∧ ∗eab + 4dϕ ∧ ∗dϕ

)
− 1

2
F̃3 ∧ ∗F̃3 − e−ϕF2 ∧ ∗F2

]
. (15)

The variation in the gravitino gives rise to the following spinor covariant derivative used in the definition of the

Killing spinors:

DX = ∇X − 1

8
eϕF̃3X̃. (16)

Besides the gravitino, there are two more fermionic fields, dilatino and gaugino, and hence we have the following

two algebraic Killing spinor equations:

(
dϕ+

1

2
eϕF̃3

)
ϵ = 0

F2ϵ = 0. (17)

The heterotic supergravity differs from type I supergravity in its fermionic sector. Since we consider only

the bosonic sectors of supergravities, we can write the bosonic action of the heteroric supergravity in terms of

the metric g , the dilaton ϕ , a 2-form B2 with field strength H3 = dB2 and 1-form non-abelian SO(32), or

E8 × E8 gauge potential A1 with the field strength F2 as in the type I case:

S =

∫
e−2ϕ

(
Rab ∧ ∗eab + 4dϕ ∧ ∗dϕ− 1

2
H3 ∧ ∗H3 −

1

2
F2 ∧ ∗F2

)
. (18)

The differential Killing spinor equation is determined by the following spin connection:

DX = ∇X − 1

4
iXH3. (19)
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Although the fermionic sector of heterotic and type I supergravities are not the same, the algebraic Killing

spinor equations of heterotic supergravity have similar forms as in the type I case:(
dϕ+

1

2
H3

)
ϵ = 0

F2ϵ = 0. (20)

3. Supergravity backgrounds

There are various special solutions for eleven-dimensional and ten-dimensional supergravity theories. One of the

methods that can give hints about obtaining all solutions is to find a way of classification for them. However, the

complete classification of all supergravity backgrounds has not been achieved yet. On the other hand, for some

special cases such as for backgrounds that have maximal supersymmetry and for symmetric space backgrounds,

the classification problem can be solved. In this section, we consider some special solutions of the supergravity

theories and summarize the classification results for symmetric and maximally supersymmetric backgrounds.

In eleven dimensions, a spinor space is a 32-dimensional real space and hence the space of the solutions

of Killing spinor equation can be at most 32-dimensional. An important invariant for a supersymmetric

supergravity background is the fraction of preserved supersymmetries in that background, which is denoted as

ν = 1
32n , and n is the dimension of the Killing spinor space. There are various numbers of known supergravity

backgrounds that have different fractions of preserved supersymmetries. Indeed, the known solutions correspond

to n = 0, 1, 2, 3, 4, 5, 6, ..., 8, ..., 12, ..., 16, ..., 18, ..., 20, ..., 22, ..., 24, ..., 26, ..., 32 [8]. The numbers that do not

appear in the list correspond to the cases of the fraction of preserved supersymmetries whose exact forms

are not known. Moreover, for n = 30 and 31, it is known that there are no supersymmetric supergravity

backgrounds [22, 23, 24, 25]. It is also proved that for the cases of ν > 1
2 , those supergravity backgrounds are

locally homogeneous [10, 11]. For ν = 1, the solutions are called maximally supersymmetric or BPS solutions

and examples for this case include eleven-dimensional flat Minkowski spacetime and Freund–Rubin backgrounds

such as AdS7×S4 and AdS4×S7 . There are also half-BPS, namely ν = 1
2 , solutions of the eleven-dimensional

supergravity. Examples for this case are M-wave, Kaluza–Klein monopole, and M2- and M5-brane solutions

[26].

3.1. Half-BPS solutions

A gravitational pp-wave is defined as a spacetime with a parallel null vector. A supersymmetric gravitational

pp-wave, which is called the M-wave, is a solution of eleven-dimensional supergravity and its metric is given as

follows [27]:

ds2 = 2dx+dx− + a(dx+)2 + (dx9)2 + gijdx
idxj , (21)

where i, j = 1 to 8, x+, x− are light cone coordinates, a is an arbitrary function with ∂−a = 0, and gij is a

family of metrics dependent on x+ . The holonomy group of the manifold on which gij is defined is contained

in Spin(7) and the following property is satisfied:

∂+Ω = λΩ+Ψ, (22)

where Ω is the self-dual Spin(7)-invariant Cayley 4-form, λ a smooth function of (x+, x−), and Ψ is an anti

self-dual 4-form. The closed 4-form F of eleven-dimensional supergravity vanishes in this solution. The metric
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(21) is a supersymmetric solution of eleven-dimensional supergravity if and only if it is Ricci-flat. By dropping

the x9 coordinate, one can also obtain a solution of ten-dimensional supergravity written in the following form:

ds2 = 2dx+dx− + a(dx+)2 + gijdx
idxj . (23)

There is also a brane solution of eleven-dimensional supergravity with the following metric that describes

a number of parallel M2-branes [28]:

g = H−2/3g2+1 +H1/3g8 (24)

where g2+1 is the metric on the three-dimensional Minkowskian worldvolume E2,1 of the branes and g8 is the

metric on the eight-dimensional Euclidean space E8 transverse to the branes. H is a harmonic function on E8

and can be chosen as

H(r) = 1 +
a6

r6
, (25)

where r is the radial coordinate and a6 = 25π2Nlp
6 . Here N is the number of coincident membranes at r = 0

and lp is the eleven-dimensional Planck length. The harmonic function has the property limr→∞H(r) = 1.

The closed 4-form field in this background corresponds to

F = ±z2+1 ∧ dH−1, (26)

where z2+1 is the volume form of the brane worldvolume. The M2-brane solution preserves half of the

supersymmetries, namely ν = 1
2 . However, it interpolates between two maximally supersymmetric solutions;

near the brane horizon r ≪ a , it corresponds to the maximally supersymmetric Freund–Rubin background

AdS4×S7 and for infinitely far away from the brane r → ∞ , it corresponds to the flat Minkowski space E10,1 .

There is a similar brane solution describing a number of parallel M5-branes with metric and 4-form given

as follows [29]:

g = H−1/3g5+1 +H2/3g5 (27)

F = ±3 ∗5 H, (28)

where g5+1 is the metric on the six-dimensional Minkowskian worldvolume E5,1 of the branes, g5 , and ∗5 is

the metric and Hodge dual on the five-dimensional Euclidean space E5 transverse to the branes. The harmonic

function H is defined as

H(r) = 1 +
a3

r3
(29)

where a3 = πNlp
3 , N is the number of coincident fivebranes at r = 0, and limr→∞H(r) = 1. The M5-brane

preserves half of the supersymmetries and it interpolates between the maximally supersymmetric Freund–Rubin

background AdS7 × S4 and flat Minkowski space E10,1 .

The ten-dimensional type IIB supergravity also has a brane solution, which is called D3-brane, with the

metric given by [30]

g = H−1/2g3+1 +H1/2g6, (30)

where g3+1 is the metric on the worldvolume E3,1 of the brane and g6 is the Euclidean metric on the transverse

space E6 to the brane. The self-dual 5-form F5 is defined on S5 ⊂ E6 and has quantized flux and the dilaton
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ϕ is constant. The harmonic function H is defined as

H(r) = 1 +
a4

r4
(31)

with a4 = 4πgNls
4 and g is the string coupling constant and ls is the string length. N is the number of

parallel D3-branes at r = 0. This solution interpolates between flat Minkowski space at infinity and AdS5×S5

at the near horizon limit.

3.2. Maximally supersymmetric backgrounds

The solutions of supergravity theories that have maximum number of Killing vector fields and maximum number

of Killing spinors are called maximally supersymmetric supergravity backgrounds. In this case the dimension

of the space of Killing spinors is 32 and we have ν = 1.

In eleven dimensions, there are four classes of solutions that have maximal supersymmetry. The first one is

the flat Minkowski spacetime M1,10 with F = 0. Two of the other nontrivial classes include the Freund–Rubin

backgrounds of which we have a four-dimensional and seven-dimensional split of spacetime M =M4×M7 and

the total metric is written as the sum of the metrics of the split spacetimes:

ds2 = ds4
2 + ds7

2. (32)

One of the split spacetimes has positive and the other one has negative constant curvatures. The first case of

this type of solution corresponds to the following background:

AdS7(−7R)× S4(8R)

F =
√
6RzS4 , (33)

where the numbers in parentheses correspond to the constant scalar curvatures of the relevant backgrounds

with R > 0 and zS4 is the volume form of S4 . The second case is the following spacetime:

AdS4(8R)× S7(−7R)

F =
√
−6RzAdS4 (34)

with R < 0 and zAdS4 is the volume form of AdS4 . The fourth class of maximally supersymmetric solutions

is a one-parameter family of symmetric plane waves with the metric and the 4-form

g = 2dx+dx− − 1

36
µ2

(
4

3∑
i=1

(xi)2 +
9∑
i=4

(xi)2

)
(dx−)2 +

9∑
i=1

(dxi)2

F = µdx− ∧ dx1 ∧ dx2 ∧ dx3 (35)

where µ is a real number.

In ten dimensions, the only maximally supersymmetric solution of type I, heterotic, and IIA supergravities

is the flat Minkowski spacetime. However, in the type IIB case we have two nontrivial classes. The first one is

the Freund–Rubin background

AdS5(−R)× S5(R)

F5 =

√
4R

5
(zAdS5 − zS5) , (36)
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where F5 is the self-dual 5-form and R > 0. The second one is a family of symmetric plane waves with the

following metric and self-dual 5-form F5 :

g = 2dx+dx− − 1

4
µ2

8∑
i=1

(xi)2(dx−)2 +
8∑
i=1

(dxi)2

F5 =
1

2
µdx− ∧

(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8

)
. (37)

The classification of all supergravity backgrounds is one of the main goals of the study of supergravity

theories. The homogeneity theorem for supergravity backgrounds says that a supergravity background that

preserves more than half of the supersymmetries must be homogeneous [10, 11]. A homogeneous spacetime

can be characterized as a spacetime of which the tangent space at any point is spanned by Killing vectors

that are constructed by squaring the Killing spinors of the background. If a homogeneous background also

corresponds to a symmetric space, then we call it a symmetric supergravity background. The classification of

symmetric supergravity backgrounds in eleven-dimensional and ten-dimensional type IIB cases are achieved in

[31]. However, the full classification of all supergravity backgrounds is still an open problem.

4. Killing superalgebras

An important invariant that characterizes the supersymmetric supergravity backgrounds is the Killing super-

algebra of that background [8, 32]. A Killing superalgebra g has a Lie superalgebra structure that consists of

a Z2 -graded algebra that is a direct sum of two components g = g0 ⊕ g1 . The first component g0 of the Lie

superalgebra is called the even part and has a Lie algebra structure; the second one g1 is called the odd part and

corresponds to a module of g0 . A Lie bracket [, ] on a Lie superalgebra is defined as a bilinear multiplication

[, ] : gi × gj −→ gi+j (38)

where i, j = 0, 1 and satisfies the following skew-supersymmetry, and super-Jacobi identities for a, b, c are

elements of g , and |a| denotes the degree of a , which corresponds to 0 or 1 depending on that a is in g0 or

g1 , respectively

[a, b] = −(−1)|a||b|[b, a]

[a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]]. (39)

For a Killing superalgebra, the even and odd parts of it are defined as bosonic and fermionic parts of the

superalgebra. The bosonic part of the Killing superalgebras of supergravity backgrounds corresponds to the

Lie algebra of Killing vector fields generated by Killing spinors. A Killing vector field K is an isometry of the

background, which means that the Lie derivative of the metric g with respect to K is zero

LKg = 0. (40)

Killing vector fields in the Killing superalgebra also preserve the other bosonic fields in the corresponding

supergravity background. The fermionic part of the Killing superalgebra consists of the Killing spinors of

the background. The supersymmetric properties of a supergravity background can be found from the Killing

superalgebra, which consists of the supersymmetry generators and isometries of the background.
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Three operations corresponding to the Lie brackets in the superalgebra can be defined for the even

(bosonic) and odd (fermionic) parts of a Killing superalgebra. Since the even part corresponds to the algebra

of Killing vector fields, the Lie bracket defined on it is the ordinary Lie bracket for vector fields

[ , ] : g0 × g0 −→ g0. (41)

The action of the even part to the odd part is defined as the Lie derivative of spinor fields with respect to a

Killing vector:

L : g0 × g1 −→ g1. (42)

The Lie derivative of a Killing spinor will again be a Killing spinor. The spinor Lie derivative is defined only

with respect to Killing vectors and it is induced from the Lie derivative on differential forms as sections of the

Clifford bundle of the manifold [33, 34]. It is written in terms of the spinor covariant derivative and a 2-form

constructed from a Killing 1-form as follows:

LKψ = ∇Kψ +
1

4
(dK̃)ψ, (43)

where K̃ is the Killing 1-form that is the metric dual of the Killing vector K . The third operation, which takes

two odd elements to obtain an even element, is described by the squaring map of spinors

g1 × g1 −→ g0. (44)

This map is defined in terms of the spin invariant inner product on spinors [35]. The Clifford product of a

spinor ψ with a dual spinor ϕ̄ can be written as a sum of differential forms by using the spinor inner product

(, ). This decomposition is known as the Fierz identity:

ψϕ̄ = (ψ, ϕ) + (ψ, eaϕ)e
a + (ψ, ea2a1ϕ)e

a1a2 + ...+ (−1)⌊
n
2 ⌋(ψ, zϕ)z (45)

where ⌊⌋ is the floor function and z is the volume form. The squaring map corresponds to the projecting the

Fierz identity onto the 1-form component. If ψ and ϕ are Killing spinors, then the dual of the resulting 1-form

is a Killing vector and for ψ = ϕ it is called the Dirac current Vψ of ψ .

In this way, all the needed brackets are defined for the Killing superalgebra. However, to obtain a Lie

superalgebra structure, the Jacobi identities of the algebra must be satisfied. There are four Jacobi identities

corresponding to the [g0, g0, g0] , [g0, g0, g1] , [g0, g1, g1] , and [g1, g1, g1] components. The first one is the ordinary

Jacobi identity for the Lie algebra of Killing vector fields. The second and third ones are equivalent to the

following properties of the spinor Lie derivative defined on spinors:

[LK1 ,LK2 ]ψ = L[K1,K2]ψ (46)

LK(ψϕ̄) = (LKψ)ϕ̄+ ψLKϕ. (47)

The fourth Jacobi identity is the vanishing of the Lie derivative of a spinor with respect to the Dirac current of

itself:
LVψψ = 0. (48)

This is not a trivial result and it has been proved for different cases in [8, 9].
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To construct the Killing superalgebra of a supergravity background, one needs to know the isometry

algebra of the background, which consists of the Killing vectors on that background and the algebra consisting

of the space of Killing spinors. However, by using the cone construction [36], which states that there is a one

to one correspondence between the Killing spinors of a background and the parallel spinors of a background

corresponding to the metric cone over the first one, one can also construct the Killing superalgebra without

knowing the exact form of Killing spinors. For some special examples such as Freund–Rubin backgrounds in

eleven dimensions, this kind of construction can be achieved. For the AdS4×S7 spacetime, the isometry algebra

consists of the direct product of isometry algebras of the component spaces. The isometry algebra of AdS4 is

so(3, 2) and of S7 is so(8), and so the isometry algebra of AdS4 ×S7 is so(3, 2)× so(8) and by using the cone

construction procedures the Killing spinor space can also be obtained [32]. As a result, the Killing superalgebra

of this background is the following orthosymplectic Lie superalgebra:

osp(8|4). (49)

As another example, the isometry algebra of AdS7 × S4 is so(6, 2)× so(5) and the Killing superalgebra is

osp(6, 2|4). (50)

In an eleven-dimensional Minkowski background, the isometries generated by Killing spinors are translational

Killing vector fields and the Killing superalgebra correspond to the supertranslation ideal of the Poincare

superalgebra. However, one can also consider all isometries of the background that also contain rotational Killing

vector fields and extend the Killing superalgebra to a symmetry superalgebra corresponding to the Poincare

superalgebra. The Killing superalgebras of the fourth class of eleven-dimensional maximally supersymmetric

backgrounds denoted in (35) can be obtained by taking contractions of the Killing superalgebras of Freund–

Rubin backgrounds.

Killing superalgebras play an important role in the classification of supergravity backgrounds. Maximally

supersymmetric backgrounds that have ν = 1 and the minimally supersymmetric ones can be classified com-

pletely. However, the classification of less than maximal and more than minimal supersymmetric backgrounds

is related to the Killing superalgebras of them. In eleven dimensions, the backgrounds preserving the ν > 1
2

fraction of supersymmetry are locally homogeneous and this result is achieved by first constructing the Killing

superalgebras and then obtaining the dimension of the translational component of the squaring map from Killing

spinors to Killing vectors. In ten dimensions, local homogeneity is guaranteed for 1
2 ≤ ν ≤ 3

4 and this can be

proved from the construction of the Killing superalgebras [9].

4.1. Extension to higher order superalgebras

Isometries of a background that are generated by Killing spinors constitute the even part of the Killing

superalgebras. If one considers all isometries of the background (not necessarily generated by Killing spinors),

then one can define more general symmetry superalgebras of the background. Besides this fact, the squaring

map of spinors can be extended to define higher order spinor bilinears. Although there are some attempts to

include these higher order objects in the symmetry superalgebras, the construction of the so-called maximal

superalgebras is still an open problem [37, 38]. It is known that the Killing vector fields have higher order

antisymmetric generalizations to hidden symmetries and these hidden symmetries are called Killing–Yano (KY)
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forms. A KY p -form ω is defined as the solution of the following equation:

∇Xω =
1

p+ 1
iXdω. (51)

Moreover, one can also define the generalizations of Dirac currents to higher-degree forms. From Fierz identity

(45), one can define projection operators ℘p that project onto the p -form component of the Clifford product

of a spinor with its dual. The generalized currents are called p-form Dirac currents and defined as follows:

℘p(ψψ̄) = (ψ, eap...a2a1ψ)e
a1a2...ap . (52)

It is shown in [39] that these p -form Dirac currents of twistor spinors correspond to conformal KY forms and for

the Killing spinors case they correspond to the KY forms. It is also known that KY forms satisfy a graded Lie

algebra structure in constant curvature spacetimes [40]. The following Schouten–Nijenhuis bracket is defined

for a p -form α and a q -form β :

[α, β]SN = iXaα ∧∇Xaβ + (−1)pqiXaβ ∧∇Xaα (53)

and corresponds to a Lie bracket for KY forms in constant curvature spacetimes. This means that the Killing

superalgebras can be extended to include KY forms in some constant curvature supergravity backgrounds. On

the other hand, a generalized Lie derivative on spinor fields with respect to KY forms has to be defined and the

Jacobi identities also have to be satisfied. The spinorial Lie derivatives with respect to Killing vector fields also

correspond to the symmetry operators of the Dirac equation in curved backgrounds. Symmetry operators of the

Dirac equation that contain higher degree forms are also constructed in curved backgrounds by using KY forms

[41, 42, 43, 44]. Hence, these operators are natural candidates for the generalized Lie derivatives of extended

superalgebras. The construction of these extended Killing superalgebras can give rise to new hints about the

classification problem of supergravity backgrounds. As a side remark, KY forms are also used in relation to

G -structures in the supergravity context [45].

5. Discussion

Ten- and eleven-dimensional supergravity backgrounds correspond to the spacetimes that strings can propagate

in a well-defined manner. Therefore, the complete classification of supergravity backgrounds can give hints

about the possible string backgrounds and the unification of string theories. There are many known solutions of

supergravity theories that correspond to the backgrounds that have different fractions of preserved supersym-

metries. Finding the common geometrical properties of these backgrounds and the complete classification of

them according to the preserved supersymmetries is one of the main problems in supergravity and string theory.

In some special cases, the classification problem is generally understood, but in most cases it is not completely

yet. To achieve this aim, finding the invariants of these backgrounds is an important step. One of the main

invariants of supersymmetric supergravity backgrounds is their Killing superalgebras and they are constructed

out of the isometries and Killing spinors of the background.

To construct a Killing superalgebra in a special supergravity background, one needs to know the Lie

algebras of Killing vectors and Killing spinors. However, without knowing the Killing spinors of the background,

one can also find the odd part of the superalgebra by using the cone construction and the knowledge about

the parallel spinors. In this construction, the Lie derivatives of spinor fields and the Dirac currents of spinors

are used and satisfying the Jacobi identities of the superalgebra completes the construction procedure. In this
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way, the Killing superalgebras of some supersymmetric backgrounds are obtained in the literature. Structures

of these Killing superalgebras in different backgrounds and relations between them give a way to classify

these supersymmetric backgrounds. For example, by using the properties of Killing superalgebras, the local

homogeneity of a supergravity background that preserves more than half of supersymmetries is proved [10, 11].

Obtaining more hints about the classification problem may be possible by extending the Killing super-

algebras to higher order geometric objects. Killing vector fields have natural antisymmetric generalizations to

higher-degree forms that correspond to KY forms. Dirac currents also have generalizations to higher-degree

components that are called p -form Dirac currents. The correspondence between the p -form Dirac currents and

KY forms is proved in [39]. Therefore, extending the Killing superalgebras to include KY forms and p -form

Dirac currents with a new definition of the generalized spinor Lie derivative may be possible. The properties of

these extended superalgebras may give new insights into the classification of supergravity backgrounds.
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