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Abstract: In this paper, we analyze the geodesics of the 4-dimensional linear dilaton black hole (LDBH) spacetime,

which is an exact solution to the Einstein–Maxwell–dilaton theory. LDBHs have nonasymptotically flat geometry, and

their Hawking radiation is an isothermal process. The geodesics motions of the test particles are studied via the standard

Lagrangian method. After obtaining the Euler–Lagrange equations, we show that exact analytical solutions to the radial

and angular geodesic equations can be obtained. In particular, it is shown that one of the possible solutions for the radial

trajectories can be given in terms of the Weierstrass P-function (℘ -function), which is an elliptic-type special function.
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1. Introduction

The motion of test particles (both massive and massless) provides the only experimentally feasible way to study

the gravitational fields of objects such as black holes (BHs). Predictions about their observable effects (light

deflection, the perihelion shift, gravitational time-delay, etc.) can be made and can also compared with the

observations [1]. For this reason, the subject of geodesics in the BH spacetimes have always attracted much

attention. Today, there are numerous studies about the geodesics of various BHs in the literature (for instance,

one may see [2] and references therein). Recently, studies on the general solution to the geodesic equation in

four-dimensional (4D) spacetimes have considerably increased [3–6].

In this paper, our main motivation is to study the geodesic structure of the linear dilaton BH (LDBH)

[7,8], whose asymptotic behavior is nonasymptotically flat (NAF). This BH arises as an exact solution to the

Einstein–Maxwell–dilaton (EMD) theory [7–9]. One of the most intriguing features of those BHs is that their

Hawking radiation (HR) is governed by isothermal processes, which occur at a constant temperature. Namely,

while a LDBH radiates, the energy transferring out of the BH happens at such a slow rate that the thermal

equilibrium is always maintained. The studies on the LDBHs, which are subject to quantum gravity theory

(including thermodynamics), can be seen in [10–18].

In the present study, we study the geodesic motion of a generic test particle (time-like, space-like, and null

geodesics) on the LDBH background. To that end, we follow the standard Lagrangian procedure with the Mino

proper time [19]. We give analytical expressions for the radial and angular geodesic equations. Particularly, the

radial ones are found in terms of both hyperbolic functions and the ℘-function [20].
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The paper is organized as follows. In Section 2, we review the LDBH spacetime and present some of

its physical properties. Section 3 is devoted to the exact analytical solutions of the geodesic equations in the

LDBH background. We draw our conclusions in Section 4.

2. LDBH spacetime

In general, the metric of a static and spherically symmetric BH in 4 dimensions is given by:

ds2 = −fdt2 + f−1dr2 +R2dΩ2, (1)

where

dΩ2 = dθ2 + sinθ2dϕ2. (2)

Eq. (2) is the line-element of the unit 2-sphere. When the metric functions of the line-element in Eq. (1) are

written in the following forms:

f =
1

r0
(r − b) , (3)

R2 = r0r, (4)

the spacetime of Eq. (refeq1) is called the LDBH [7,8]. Here, the physical constant parameter r0 is related with

the conserved charge of the LDBH: r0 =
√
2Q , in which the charge Q is a nonzero positive definite physical

parameter [7,8]. However, these BHs have no zero charge limit due to the associated field equations coming

from the EMD theory. More details about the features of the LDBH can be found in the papers written by

Clément et al. [7,8].

It is obvious from Eq. (3) that a LDBH possesses NAF geometry, and its event horizon is rh = b . For

b ̸= 0, the horizon transparently shields the null singularity at r = 0. On the other hand, if one applies the

quasilocal mass (M) definition of Brown and York [21] to the metric of Eq. (1) with the metric functions of

Eqs. (3) and (4), we obtain

b = 4M. (5)

In general, the definition of the Hawking temperature TH [22,23] is expressed in terms of the surface gravity κ

[24]:

κ =

√[
−1

4
lim
r→rh

(gttgijgtt,igtt,j)

]
, (6)

as

TH =
κ

2π
. (7)

Using Eq. (6), one can compute the surface gravity κ = 1
2r0

. Thus, the TH -value of the LDBH becomes:

TH =
1

4πr0
. (8)

It is obvious from the above expression that the obtained temperature is constant; thus, ∆T = 0, and so the

HR of the LDBH is made by the series of the isothermal processes.
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One can also compute that the geometric scalars (Ricci scalar (ℜ), full contradiction of the Ricci tensor

(ℜαβℜαβ), and Kretschmann scalar (ℵ)) of the spacetime [25]:

ℜ =
1

2r0

(
1

r
− b

r2

)
, (9)

ℜαβℜαβ =
1

4r20

(
b2

r4
+

3

r2

)
, (10)

ℵ = ℜαβµνℜαβµν =
1

4r20

(
3b2

r4
+

6b

r3
+

11

r2

)
, (11)

which represents that the curvature singularity is located at r = 0.

3. Analytic solution to the geodesic equations of the LDBH geometry

In this section, for studying the geodesics of the test particles in the LDBH background, we shall employ the

standard Lagrangian method. The corresponding Lagrangian (L) of a test particle in the LDBH geometry is

given by

2L = −f ṫ2 +
ṙ2

f
+ r0r(θ̇

2 + sin2 θϕ̇2), (12)

where the dot over a quantity denotes the derivative with respect to the affine parameter σ . The metric

condition is in general defined by

L =
ε

2
. (13)

Here ε = (0,−1, 1) stands for the (null, time-like, space-like) geodesics. Now we reconsider the Lagrangian of

Eq. (12) by using the Mino proper time (γ) [19], which is governed by the following differential expression for

the LDBH:

dσ =
√
rr0dγ. (14)

Thus, the modified Lagrangian becomes

L = −1

2

f

rro

(
dt

dγ

)2

+
1

2rrof

(
dr

dγ

)2

+
1

2

(
dθ

dγ

)2

+
1

2
sin2θ

(
dϕ

dγ

)2

. (15)

After applying the Euler–Lagrange (EL) method, we obtain

d

dγ

(
− f

rr0

dt

dγ

)
= 0 ⇒ dt

dγ
=

r2r0
Λ

α, (16)

d

dγ

(
sin2θ

dϕ

dγ

)
= 0 ⇒ dϕ

dγ
=

β

sin2θ
, (17)

in which Λ = rf . Besides, α and β are the real integration constants. In addition to Eqs. (16) and (17), we

have

d2θ

dγ2
= sinθ cos θ

(
dϕ

dγ

)2

, (18)

141



HAMO and SAKALLI/Turk J Phys

which is equivalent to (
dθ

dγ

)2

= K −
(

β

sinθ

)2

(19)

where K is another integration constant. Finally, with the aid of the metric condition of Eq. (13), one can

derive the radial equation as follows:

−1
2

f
rr0

(
r4r20
Λ2 α2

)
+ 1

2rr0f
ṙ2 + 1

2

(
K − β2

sin2 θ

)
+ 1

2 sin
2 θ β2

sin4 θ
= ε

2 ,

⇒ − r2r0
Λ α2 + 1

λr0
ṙ2 = ε−K,

⇒ ṙ2 = (ε−K)Λr0 + (αrr0)
2.

(20)

Following the method whose details are given in [26,27], we can make a transformation for the r -coordinate as

r =
s

x
+ z, (21)

where s = ±1 (i.e. s2 = 1) and z satisfies the following condition:

(ε−K) Λr0 + (αrr0)
2
∣∣∣
r=z

= 0. (22)

Recalling that Λ = rf , one can easily verify that Eq. (22) admits

z =
Ξ

Υ
, (23)

where
Ξ = b (ε−K) , (24)

Υ = α2r20 + ε−K. (25)

Then Eq. (20) becomes (
dx

dγ

)2

= b3x
3 + b2x

2. (26)

Here

b2 =
α2r20b

b− z
= Υ, (27)

b3 =
z

s
b2 ≡ szb2 = sΞ. (28)

Eq. (26) has two solutions. One of them is

x1 = −s

z
, (29)

which yields r = 0, so that it is a trivial solution. Another solution can be found in terms of the hyperbolic

functions as follows:

x2 = − s

z cosh2
[√

b2
2 (γ − c)

] , (30)
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where c is an integration constant. Meanwhile it is worth noting that Eq. (26) can be converted to a ℘-equation

[20] by the following transformation:

x =
12U − b2

3b3
=

s (12U − b2)

3zb2
, (31)

where U = U (γ).Then Eq. (26) transforms to the ℘-equation [28,29]:(
dU

dγ

)2

= 4U3 − b22
12

U +
b32
216

. (32)

This admits two solutions:

U1 = −b2
6
, (33)

U2 =
1

6
℘

(
γ√
6
+ δ, 3b22,−b32

)
, (34)

where δ is an integration constant. Thus, the exact solution for the radial geodesics of the LDBH results in

r =
s

x
+ z = −z sinh2

[√
b2
2

(γ − c)

]
; (z ≤ 0) , (35)

or

r =
s

x
+ z = z

(
3b2

12U2 − b2
+ 1

)
. (36)

The significant cases about this solution are summarized below.

(i) If Ξ = 0, which means that K = ε or z = 0 =⇒ r (γ) = 0.

(ii) If Υ = 0, which means that K = α2r2o + ε or z → −∞ =⇒ r (γ) → ∞.

On the other hand, one can easily integrate the θ -equation of Eq. (19) to obtain the following analytical

solution:

θ = θ(γ) = π ± cos−1 ζ, (37)

by which

ζ =

√
K − β2

K
cos

[√
K(γ − γ0)

]
, (38)

where γ0 is yet another integration constant, and the condition K ≥ β2 is imposed in order to have a

nonimaginary solution for θ(γ). After substituting the above solution into the ϕ-equation of Eq. (17), we

find out

ϕ = ϕ(γ) = ϕ0 + tan−1


√
K tan

[√
K (γ − γ0)

]
β

 , (39)

where ϕ0 is also an integration constant. For the completeness of the geodesic equations, one should also

investigate the solution for the t-equation of Eq. (16). If we substitute Eq. (35) into Eq. (16) and apply the

transformation given below,

v =
√
b2
4 (γ − c),

(40)
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we obtain the following differential equation:

dt

dv
=

4r20αz sinh
2(2v)

√
b2

[
b+ z sinh2(2v)

] . (41)

With the aid of [28], the t-solution of Eq. (41) is obtained as

t = t(v) =
2r20α√

b2

[
ln

(
tanh v + 1

tanh v − 1

)
+ b

Θ− z

HΘ

(
tan−1 G− tanh−1 G

)]
, (42)

where

Θ =
√
z(z − b),

H =
√

b (Θ + 2z − b),

G = b tanh v
H .

(43)

4. Conclusion

In this paper, we have considered the geodesic structure of the LDBH, which is a solution to the EMD theory.

Using the conventional Lagrangian procedure, the radial and angular EL equations for generic test particles

have been obtained. The exact analytical solutions of the general radial geodesics with the Mino proper time

have been given in terms of hyperbolic function of Eq. (35) and the ℘-function of Eq. (36). We have also

represented the angular and time solutions as a function of the Mino proper time.

As a final remark, it would be interesting to extend our work to the geodesics of the rotating LDBHs

[7,17,18]. In this way, we plan to investigate the effect of the rotation parameter on the geodesics of the LDBH.

This is going to be our next study in the near future.
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