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Abstract:We extend the Majumdar–Papapetrou solution of the Einstein–Maxwell equations, which are implied generally

for static electric charge in nonrotating metrics, to encompass equally well magnetic charges. In the absence of Higgs and

non-Abelian gauge fields, ’dyonic’ is to be understood in this simpler sense. Cosmologically this may have far-reaching

consequences, to the extent that existence of multimagnetic monopole black holes may become a reality in our universe.

Infalling charged particle geodesics may reveal, through particular integrals, their inner secrets, which are screened from

our observation.
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1. Introduction

A relatively simple, yet interesting class of Einstein–Maxwell (EM) solution was given long ago by Majumdar

[1] and Papapetrou [2], which attracted attention in various contexts including that of multiblack holes. The

isotropic form of the line element with all inclusive metric function, which determines also the static electric

potential makes this solution unique among EM solutions known to date. The metric function that generates

the space time satisfies the Laplace equation. The linearity of this latter equation leads automatically to

the multicenter solutions at equal ease. Each centre satisfies all the requirements necessary for black holes

and as a matter of fact the multicentre solution can be interpreted as a multiblack hole solution, which is

otherwise extremely difficult to obtain analytically. For this accomplishment we are indebted to the Majumdar–

Papapetrou (MP) form of the metric [3]. A significant extension of the MP solution was to include time

dependence through a cosmological constant [4]. This latter form of the metric paved the way toward black

hole / brane collisions in higher dimensions [5, 6].

In this paper we wish to contribute to the MP solution by adding magnetic charge alongside with the

electric charge. To our knowledge, MP space time has been considered so far only with a static electric field

described by the potential Aµ = δtµA , in a diagonal metric. It is known that inclusion of rotation creates

natural magnetic fields from the static electric charges [7]. Yet, by remaining in the static, nonrotating metric

and adding a magnetic charge to the electric charge, i.e. a dyon, seems to have escaped researchers’ attention.

Let us note that this should not be confused with solutions such as Reissner–Nordström (RN) in which magnetic

and electric charges are treated on equal footing. Our magnetic charge lacks spherical symmetry since one of

the axis (i.e. the z−axis) is singled out, which is more apt for multiple axial superposition. The dyonic black

holes consist of both electric and magnetic charges coupled together. Radial geodesic analysis of electrically
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charged particles infalling such black holes will exhibit different behaviours to aid in detection of such magnetic

black holes. Under the light of such magnetic objects the natural question arises: Do such black holes serve as

the storage of magnetic monopoles, which are elusive in our observable universe?

Although it is a matter of formality to extend our results to an arbitrary number of black holes and to

higher dimensions, we shall restrict ourselves to 4−dimensions and consider the example of a 2−centre black

hole as an example. The problem of horizon smoothness for multiblack holes, and the issue of stability are two

of the problems that we shall not address in this paper.

The organization of the paper is as follows. In Section 2 we present the solution of EM equations with

both electric and magnetic charges. Geodesic analysis follows for particular boundary /initial conditions in

Section 3. We extend our discussion, through perturbation, to the case of 2−black holes located along the

z−axis also in Section 3. We complete the paper with Conclusion in Section 4.

2. Integration of the Einstein–Maxwell equations

We start with the MP line element in 4−dimensions [1, 2] given by

ds2 = − 1

Ω2
dt2 +Ω2

(
dx2 + dy2 + dz2

)
(2.1)

in which Ω is a function of x, y, z and t. Our electromagnetic multicentre potential ansatz is

A =
ϵ

Ω
dt+

∑
i

Pi (z − zi) [(x− xi) dy − (y − yi) dx]

ri

[
(x− xi)

2
+ (y − yi)

2
] (2.2)

where

ri =

√
(x− xi)

2
+ (y − yi)

2
+ (z − zi)

2
,

ϵ is a constant such that 0 ≤ ϵ ≤ 1 and Pi stands for the magnetic charge of the ith black hole. The electric

charge Qi of the ith black hole will be defined below (Eq. 2.17). The electromagnetic field two-form is given

by

F = ϵ

(
Ωx

Ω2
dtdx+

Ωy

Ω2
dtdy +

Ωz

Ω2
dtdz

)
+
∑
i

Pi

r3i
[(x− xi) dydz + (y − yi) dzdx+ (z − zi) dxdy] (2.3)

with its dual ⋆F in which Ωxi denotes partial derivative and dxidxj implies wedge product. It can be checked

that (2.3) derives from pure electrostatic field through a duality rotation, Fµν → cos θ Fµν + sin θ ⋆Fµν , with

ϵ = cos θ. Concerning Maxwell’s equations, we have

d (⋆F) = 0 (2.4)

leading to

∇2Ω = 0, (2.5)

and ∑
i

2Pi [(y − yi)Ωz − (z − zi)Ωy]

r3i
= ϵΩxt, (2.6)
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in which Ωxt = ∂2Ω
∂x∂t and two similar equations as the latter are found by cyclic permutation of the space

coordinates. Eq. (2.5) is the usual Laplace equation whose simplest solution can be written as

Ω = ω (t) +
∑
i

Ci

ri
(2.7)

in which ω (t) is a function of time and Ci are constants to be identified. A substitution into the rest of

Maxwell’s equations implies

Ωx∑
i
Pi

r3i
(z − zi)

=
Ωy∑

i
Pi

r3i
(y − yi)

=
Ωz∑

i
Pi

r3i
(z − zi)

, (2.8)

which is easily satisfied, providing Ci = λPi for a constant λ . The energy momentum-tensor is given by

T ν
µ = 2FµλF

νλ − 1

2
Fδνµ (2.9)

in which F = FµνF
µν and Fµλ are given in (2.3). The nonzero components of T ν

µ and Gν
µ are tabulated in

Appendix 1a and 1b, respectively. A solution to the Maxwell’s Equations (2.6) follows once we set (2.8) to a

constant λ , one finds ∑
i

Pi (x− xi)

r3i
=

Ωx

λ
, (2.10)

and similarly for y and z. Consequently, the field tensor components become

Fxy =
Ωz

λ
, Fxz = −Ωy

λ
, Fyz =

Ωx

λ
, (2.11)

Ftx = ϵ
Ωx

Ω2
, Fty = ϵ

Ωy

Ω2
, Ftz = ϵ

Ωz

Ω2

and as a result the energy-momentum components take the form given in Appendix 1c.

One may also substitute (from the Appendix) into the tt component of the Einstein’s equation with the

cosmological constant Λ to obtain

(∇Ω)
2

Ω4
+ 3Ω2

t − Λ =

(
ϵ2 + 1

λ2

) (
Ω2

x +Ω2
y +Ω2

z

)
Ω4

. (2.12)

This is satisfied if we make the choices

ϵ2 +
1

λ2
= 1 (2.13)

and

3Ω2
t = Λ. (2.14)

The latter equation implies (from (2.7)) that

ω (t) = ±
√

Λ

3
t+ C0 (2.15)
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with an integration constant C0 that is disposable with the choice of origin of time. The rest of the Einstein’s

equations turn out to be satisfied all, by virtue of (2.13) and (2.14). In conclusion, we obtain the solution as

Ω = ±
√

Λ

3
t+ C0 +

∑
i

Piλ

|r− ri|
(2.16)

which clearly for r = ri we have the location of the ith black hole with effective charge and mass equal to

|Piλ| . With reference to our potential ansatz (2.2), we observe that for ϵ = 0 we have the pure magnetic charge

Pi = mi (mass). To define the electric charge Qi we integrate the Maxwell equation in accordance with∮
E⃗i.dA⃗i = 4πQi (2.17)

over the ith sphere to get Qi =
ϵ√

1−ϵ2
Pi . It is clear from this definition that for ϵ = 1 we must take Pi → 0

to have a meaningful electric charge; this is indeed the case as given in the sequel. For a single black hole it is

just the extremal Reissner–Nordström (RN) black hole solution, as expected. A similar integral to (2.17) for

the magnetic field reveals also that Pi stands for the magnetic charges. From the balancing gravitational and

electromagnetic force, the electric / magnetic charge is proportional to the mass in accordance with

Qi = miϵ, Pi = mi

√
1− ϵ2, (2.18)

so that

Q2
i + P 2

i = m2
i . (2.19)

3. Geodesic equation of an electrically charged test particle

In this section we seek for a solution to the geodesic equations of a test charge inside the field of a single static

black hole located at the origin, and for simplicity we shall assume Λ = 0, C0 = 1. The line element is given

by

ds2 = − 1

Ω2
dt2 +Ω2

(
dr2 + r2

(
dθ2 + sin2 θ dϕ2

))
, (3.1)

where

Ω = 1 +
m

r
(3.2)

and m = λP = Q/ϵ . The Lagrangian for a test particle with electric charge q and unit mass is

L = − ṫ2

2Ω2
+

Ω2

2

[
ṙ2 + r2

(
θ̇2 + sin2 θ ϕ̇2

)]
+

qϵ

Ω
ṫ+ qP cos θ ϕ̇, (3.3)

in which a ’dot’ stands for derivative with respect to the proper time τ. This Lagrangian implies the following

equations, and first integrals

− ṫ

Ω2
+

qϵ

Ω
= α0, (3.4)

Ω2r2 sin2 θ ϕ̇+ qP cos θ = β0, (3.5)
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r̈ +
Ω′

Ω
ṙ2 = −α0Ω

′

Ω2
(qϵ− α0Ω) +

r

Ω
θ̇2 +

(qP )
2
(β − cos θ)

2

r3Ω5 sin2 θ
, (3.6)

and

d

dτ

(
r2Ω2θ̇

)
=

(qP )
2
(β − cos θ) (β cos θ − 1)

r2Ω2 sin3 θ
(3.7)

where Ω′ = dΩ
dr , α0 and β0 are two integration constants related to energy and angular momentum respectively,

and the constant β is defined by β = β0

qP .

We start with the θ equation, by setting θ = θ0 . This leads to two different cases:

3.1. β = cos θ0, (0 < θ0 < π
2 )

By taking β = cos θ0 and θ = θ0 one easily finds θ equation is satisfied and ϕ equation requires either θ0 = 0

or ϕ̇ = 0. Here we exclude the case of θ0 = 0 and accept ϕ̇ = 0. The r equation reduces to

r̈ +
Ω′

Ω
ṙ2 = −α0Ω

′

Ω2
(qϵ− α0Ω) . (3.8)

Here to go farther, we consider three different cases of this nonlinear differential equation as follows.

3.1.1. Case of α0 = 0

A specific analytical solution can be found by setting α0 = 0. This choice leads to

r̈ +
Ω′

Ω
ṙ2 = 0 (3.9)

which reveals

r (τ) = m Lam.W
(
eAτ+B) (3.10)

in terms of the Lam.W (.) function [8]. The constants A and B can be fixed so that r (τ) = 0 is reached in a

finite proper time. The ordinary time t is also expressed in terms of the τ by

t (τ) = C +
qϵ

A

(
Ψ− 1

Ψ
+ 2 ln |Ψ|

)
(3.11)

in which Ψ =Lam.W
(
eAτ+B) and C is an integration constant. In terms of the coordinate time t , x(t)

satisfies the differential equation

x (1 + x)
d2x

dt2
− 2

(
dx

dt

)2

= 0 (3.12)

which can be studied numerically.
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3.1.2. Case of α0 ̸= 0

For the general case of α0 ̸= 0, we introduce the new parameters

r = mx, qϵ = m (B +A) , α0 = mA, (3.13)

into the Eq. (3.11) to get

ẍ− (x+ 1) ẋ2

x (x+ 1)
2 =

A (Bx−A)

x (x+ 1)
2 . (3.14)

With particular boundary conditions we plot x (τ) in Figure 1 directly from this differential equation. Now,

in order to obtain a particular solution we introduce the ansatz (from the analogy of a velocity dependent

potential)

ẋ2 =

∞∑
k=0

akx
k (3.15)

with which, after a time derivative of both sides and canceling ẋ , one finds

ẍ =
∞∑
k=1

1

2
kakx

k−1. (3.16)

By substitution into (3.14) we get

a0 = A2, a1 = −2A (A+ B) , (3.17)

ak = − (2ak−1 + ak−2) = (−1)
k+1

[(k − 1) a0 + ka1] , (3.18)

which imply

ẋ2 =

∞∑
k=0

(−1)
k+1

[(k − 1) a0 + ka1]x
k =

[(1 + 2x) a0 + xa1]

(1 + x)
2 . (3.19)

This easily gives

ẋ =
±1

(1 + x)

√
A (A− 2Bx) (3.20)

and therefore

τ + C1 =
±1

3AB2 (A+ B (3 + x))
√
A (A− 2Bx)

in which C1 is an integration constant. This yields the relation between the proper time and the position of

particle for any value of α0. Next, by using the t component of the geodesic equation we find

d2r

dt2
+

(2qϵ− 3α0Ω)Ω
′

(qϵ− α0Ω)Ω

(
dr

dt

)2

=
−α0Ω

′

Ω4 (qϵ− α0Ω)
(3.21)

where Ω is still given by (3.2). Here also we rescale our variables as

r = mx, qϵ = m (B +A) , α0 = mA, t = mt̃ (3.22)
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to obtain in place of Eq. (3.22) the following

d2x

dt̃2
− ((2B −A)x− 3A)

x (1 + x) (Bx−A)

(
dx

dt̃

)2

=
Ax3

(1 + x)
4
(Bx−A)

. (3.23)

This has the exact solution

±t̃+ C2 =

√
1− 2Bx

A
(
3
x − 6− x+ 2A

B
)

3
+ 2 ln

∣∣∣∣∣∣
1 +

√
1− 2Bx

A

1−
√
1− 2Bx

A

∣∣∣∣∣∣ , (3.24)

in which 2Bx < A ≠ 0 and C2 =constant. We can easily observe that for x → 0, t̃ → ∞ as expected for a

distant observer; Figure 2 reveals this fact.

Figure 1. Freely falling charged particle into the dyonic

black hole as a function of proper time. In a finite proper

time the particle reaches the horizon, as expected. With

the magnetic charge on the black hole, the test particle

plunges into the black hole in a shorter proper time. The

infall gets delayed for a weaker magnetic charge.

Figure 2. The free fall motion of a test charge is observed

from a far distance. It takes an infinite coordinate time to

reach the horizon and the magnetic charge has little effect

in the process.

3.1.3. The case of pure magnetic charge

The case of pure magnetic charge can be obtained by setting ϵ = 0, or equivalently B = −A. This leads to

a0 = A2, a1 = 0, (3.25)

and therefore

ẋ =
± |A|
1 + x

√
1 + 2x, (3.26)

which consequently leads to

τ + C3 =
∓1

3 |A|
(2 + x)

√
1 + 2x (3.27)
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with C3 as an integration constant. From the latter equation one finds

x (τ) = −1

2

(
3

√
3σ +

√
1 + 9σ − 1

3
√

3σ +
√
1 + 9σ

)
(3.28)

where
σ = ± |A| τ + C3. (3.29)

Eq. (3.24) becomes now

d2x

dt̃2
− 3

x (1 + x)

(
dx

dt̃

)2

= − x3

(1 + x)
5 (3.30)

with exact solution

±t̃+ C4 =

√
1 + 2x

(
3
x − x− 8

)
3

+ 2 ln

∣∣∣∣√1 + 2x+ 1√
1 + 2x− 1

∣∣∣∣ , (3.31)

in which C4 is an integration constant.

3.1.4. The case of pure electrically charged black hole

By choosing ϵ = 1, P = 0 in the Lagrangian (3.3) we obtain a reduced set of geodesics equations. The θ̇ = 0

case implies automatically that θ = π
2 and ϕ̇ = 0 = β0 . This is nothing but same as (3.8) with the additional

condition of ϵ = 1, and the resulting geodesics motion obtained above. Thus, in class-A geodesics, P = 0 case

doesn’t show a significant difference from the P ̸= 0 case.

3.2. β = 1/ cos θ0, (0 < θ0 < π
2 )

After setting θ = θ0, in order to solve θ equation, one can also choose β = 1/ cos θ0. This choice, in ϕ equation,

leads to

ϕ̇ =
qP

cos θ0

1

Ω2r2
, (3.32)

and r (= mx) equation leads to

r̈ +
Ω′

Ω
ṙ2 = −α0 (qϵ− α0Ω)Ω

′

Ω2
+

(qP )
2
tan2 θ0

r3Ω5
. (3.33)

This choice does not change the t equation. Now we use the same change of variables (3.13) together with

q = mq̃, P = mP̃ ,
(
q̃P̃
)2

tan2 θ0 = C2 (3.34)

under which the r equation takes the form

ẍ+
Ω′

Ω
ẋ2 = −Ω′

Ω2
A (B −AΩ) +

C2

x3Ω5
(3.35)

where Ω = 1+ 1
x , and Ω′ = ∂xΩ. It is observed that the last term on the right hand side is a direct contribution

of the magnetic charge with marked distinction from the pure electrically charged black hole case. We note that
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by some manipulation on the ϕ equation, one gets

ϕ̇ =
q̃P̃

cos θ0

1

Ω2x2
=

D
Ω2x2

(3.36)

where D = q̃P̃
cos θ0

. By transforming the independent variable from the proper time τ to the azimuthal angle ϕ

the orbit equation takes the form

x′′ − (1 + 2x)

x2Ω
x′2 =

x2A (B −AΩ)

D2
+

C2x

D2Ω
, (3.37)

or equivalently

d2x (ϕ)

dϕ2
− (1 + 2x)

x (1 + x)

(
dx (ϕ)

dϕ

)2

=
x2A (Bx−A (1 + x))

(1 + x)D2
+

C2x2

D2 (1 + x)
. (3.38)

Figure 3 gives a numerical plot of x (ϕ) , under the boundary conditions x (ϕ)|ϕ=0 = 1 and dx(ϕ)
dϕ

∣∣∣
ϕ=0

= 0.

Figure 3. The oscillatory motion of a test charge around a dyonic black hole. x (ϕ)(= r (ϕ)) is plotted versus the

azimuthal angle. Our boundary conditions are such that x (ϕ = 0) = 1 and dx
dϕ

∣∣∣
ϕ=0

= 0, the rest is determined by the

differential equation of orbit. An exact solution, which is not at our disposal, should definitely reveal much more than

our numerical analysis. The effect of the magnetic charge on the behaviour of the test particle is evidently visible.

3.3. Generalization to two-centre black holes

In this section we try to extend the results found for single black hole to double-black hole system. To do so we

consider two identical black holes at (0, 0, h) and (0, 0,−h) , and the test particle is placed at a distance, far

from the black holes such that one can write the metric function, up to the third order, as

Ω = 1 +
2m

r
+

mh2
(
3 cos2 θ − 1

)
r3

+O
(
h

r

)4

. (3.39)

It is easily seen that for h → 0 the metric goes to the extremal RN black hole with both electric and magnetic

charges and total mass 2m, as it should. The Lagrangian of the system, up to the same order of approximation,
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from the potential (2.2) can be written as

L = − ṫ2

2Ω2
+

Ω2

2

[
ṙ2 + r2

(
θ̇2 + sin2 θ ϕ̇2

)]
+

qϵ

Ω
ṫ+ qP

[
cos θ

(
2− 3h2 sin2 θ

r2

)
+O

(
h

r

)4
]

ϕ̇. (3.40)

This leads to the following geodesic equations (with integration constant α0 and β0 )

ṫ = (qϵ− α0Ω)Ω, (3.41)

Ω2r2 sin2 θ ϕ̇+ qP

[
cos θ

(
2− 3h2 sin2 θ

r2

)
+O

(
h

r

)4
]
= β0, (3.42)

(
r̈ + 2

Ωr

Ω
ṙ2
)

= − (qϵ− α0Ω)
Ωrα0

Ω2
+

Ωr

Ω

[
ṙ2 + r2

(
θ̇2 + sin2 θ ϕ̇2

)]
+ r

(
θ̇2 + sin2 θ ϕ̇2

)
+

qP

Ω2

[
cos θ

(
6h2 sin2 θ

r3

)
+O

(
h4

r5

)]
ϕ̇, (3.43)

and

d

dτ

(
r2Ω2θ̇

)
=

ṫ2Ωθ

Ω2
+ΩΩθ

[
ṙ2 + r2

(
θ̇2 + sin2 θ ϕ̇2

)]
+Ω2r2

(
cos θ sin θ ϕ̇2

)
− qϵΩθ

Ω2
ṫ+ qP

[
− sin θ

(
2 +

3h2

r2
(
3 cos2 θ − 1

))
+O

(
h

r

)4
]

ϕ̇ (3.44)

in which

Ωθ = −6
mh2 sin θ cos θ

r3
+O

(
h

r

)4

(3.45)

and

Ωr = −2m

r2
−

3mh2
(
3 cos2 θ − 1

)
r4

+O
(
h4

r5

)
(3.46)

so that the latter expressions satisfy the integrability condition, Ωθr = Ωrθ within the range of approximation.

From (3.40-3.44) it follows that

ϕ̇=̃
(β0 − 2qP cos θ)

Ω2r2 sin2 θ
+O

(√
h

r

)4

, (3.47)

and

d

dτ

(
r2Ω2θ̇

)
=̃Ωθ

[
qϵ− α0Ω− qϵ

Ω

]
(qϵ− α0Ω)× ΩθΩ

[
ṙ2 + r2

(
θ̇2 + sin2 θ ϕ̇2

)]
+

(qP )
2

Ω2r2 sin3 θ

(
β cos θ − 2− 3h2 sin2 θ cos 2θ

r2

)
×
(
β − 2 cos θ +

3h2 cos θ sin2 θ

r2

)
. (3.48)
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We choose now, similar to the first case of single black hole case, the particular angles

θ =
π

2
, ϕ = ϕ0, (3.49)

which give

Ωθ ≃ 0, Ωr ≃ −2m

r2
+

3mh2

r4
(3.50)

and consequently

Ω ≃ 1 +
2m

r
− mh2

r3
. (3.51)

We see that the ϕ and θ parts of the equations are trivially satisfied (by considering the approximation up

to the third order) and the two remaining equations, i.e. r and t parts reduce to the same set of differential

equations which were solved in the previous section, i.e.

− ṫ

Ω2
+

qϵ

Ω
≃ α0,

β0 ≃ 0 (3.52)(
r̈ +

Ωr

Ω
ṙ2
)

≃ − (qϵ− α0Ω)
Ωrα0

Ω2
.

It should be noted also that here the problem yields a different solution, because the metric function is different.

Another special choice of interest to be considered here is given by

θ = 0, ϕ̇ = 0, (3.53)

which implies

Ωθ ≃ 0, Ωr ≃ −2m

r2
− 6mh2

r4
(3.54)

and consequently

Ω ≃ 1 +
2m

r
+

2mh2

r3
. (3.55)

Also

− ṫ

Ω2
+

qϵ

Ω
= α0, 2qP = β0, (3.56)

and (
r̈ +

Ωr

Ω
ṙ2
)

= − (qϵ− α0Ω)
Ωrα0

Ω2
. (3.57)

These equations also make almost the same set of equations as before. Let us add that generalization to the

multicoaxial black hole case (say, along the z−axis) can be treated more appropriately in the cylindrical polar

coordinates. In these coordinates the electromagnetic potential ansatz takes the form

A =
ϵ

Ω
dt+

∑
i

Pi (z − zi)√
ρ2 + (z − zi)

2
dϕ (3.58)
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with

Ω = 1 +
∑
i

mi√
ρ2 + (z − zi)

2
(3.59)

and the constraint reads as before, namely ϵ2 + 1
λ2 = 1 and mi = |λPi| = Qi

ϵ . This describes an infinite array

of MP black holes, each at z = zi , with coupled electric and magnetic charges, and the line element is given by

(2.1).

4. Conclusion

We extend the electrically charged MP black holes to the dyonic case, which possesses both electric (Qi ) and

magnetic (Pi ) charges. The superposition principle provides us with multiblack holes where the mass (mi )

of each black hole satisfies P 2
i + Q2

i = m2
i . The charges are scaled by a parameter ϵ (0 ≤ ϵ ≤ 1) which

regulates the effective charges of both types. Under such restriction only we were able to obtain such dyonic

solutions. Let us note that in rotating solutions such as Kerr-Newman there is automatically magnetic fields

whose source is rotation. Furthermore, unlike the MP form, there is no superposition rule in the Kerr-Newman

case and our interest is in the static case to investigate genuine magnetic monopole charges. In order to find

the interior charge content of the black hole, we provide a detailed analysis of geodesics. Exact particular

integrals are available in some cases, but for the general treatment we resort to the numerical integration and

two-dimensional plots. By a detailed analysis it seems possible that we may identify the charge constituent of a

MP black hole. In a more heuristic argument a magnetically charged black hole may be identified as a magnetic

monopole, which so far has not been detected in our observable universe. As a final remark, we wish to add

that with the inclusion of time in the metric, the a’ la [4] collision problem of magnetic MP black holes can be

investigated.
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Appendix

Regarding the MP line element, the nonzero energy momentum tensor and Einstein’s tensor components
are:

T t
t = −

(
F 2
tx + F 2

ty + F 2
tz

)
−
(
F 2
xy + F 2

xz + F 2
yz

)
Ω4

, (1a)

T x
x =

(
−F 2

tx + F 2
ty + F 2

tz

)
+

(
F 2
xy + F 2

xz − F 2
yz

)
Ω4

,

T y
y =

(
F 2
tx − F 2

ty + F 2
tz

)
+

(
F 2
xy − F 2

xz + F 2
yz

)
Ω4

,

T z
z =

(
F 2
tx + F 2

ty − F 2
tz

)
+

(
−F 2

xy + F 2
xz + F 2

yz

)
Ω4

,

T y
x = T x

y = −2FtxFty +
2

Ω4
(FxzFyz) ,

T z
x = T x

z = −2FtxFtz +
2

Ω4
(FxyFzy) ,

T z
y = T y

z = −2FtyFtz +
2

Ω4
(FyxFzx) .

Gt
t =

1

Ω4

(
2Ω∇2Ω− (∇Ω)

2 − 3Ω4Ω2
t

)
, (1b)

Gx
x =

Ω2
y +Ω2

z − Ω2
x − 2Ω5Ωtt

Ω4
,

Gy
y =

Ω2
x +Ω2

z − Ω2
y − 2Ω5Ωtt

Ω4
,

Gz
z =

Ω2
x +Ω2

y − Ω2
z − 2Ω5Ωtt

Ω4
,

Gy
x = Gx

y = −2
ΩxΩy

Ω4
,

Gz
x = Gx

z = −2
ΩxΩz

Ω4
,

Gz
y = Gy

z = −2
ΩyΩz

Ω4
,

Gi
t = −2

Ωit

Ω3
, Gt

i = 2ΩΩit

1
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T t
t = −

(
ϵ2 +

1

λ2

) (
Ω2

x +Ω2
y +Ω2

z

)
Ω4

, (1c)

T x
x =

(
ϵ2 +

1

λ2

) (−Ω2
x +Ω2

y +Ω2
z

)
Ω4

,

T y
y =

(
ϵ2 +

1

λ2

) (
Ω2

x − Ω2
y +Ω2

z

)
Ω4

,

T z
z =

(
ϵ2 +

1

λ2

) (
Ω2

x +Ω2
y − Ω2

z

)
Ω4

,

T y
x = T x

y = −
(
ϵ2 +

1

λ2

)
2ΩxΩy

Ω4
,

T z
x = T x

z = −
(
ϵ2 +

1

λ2

)
2ΩxΩz

Ω4
,

T z
y = T y

z = −
(
ϵ2 +

1

λ2

)
2ΩyΩz

Ω4
,

2


	Introduction
	Integration of the Einstein–Maxwell equations
	Geodesic equation of an electrically charged test particle
	=cos0, (0<0<2)
	Case of 0=0
	Case of 0=0
	The case of pure magnetic charge
	The case of pure electrically charged black hole

	=1/cos0, (0<0<2)
	Generalization to two-centre black holes

	Conclusion

