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Abstract:We have tried to give a self-consistent explanation of isospin mixing and Fermi beta decays for 54 ≤ Z ≤ 68

deformed nuclei. The effect of isospin impurity in nuclear ground states on Fermi beta transitions has been investigated

considering the restoration of symmetry violations stemming from the mean field approximation. The isobar analogue

excitations in neighbor odd-odd nuclei have been obtained by following the proton-neutron quasiparticle random phase

approximation (pnQRPA) procedure. The dependence of isospin admixture probability on the deformation parameter

has been determined for various isotopes of Z = 54–68 nuclei. Then the variations of isobar analogue state energies and

the β decay log(ft) values with deformation parameter have been calculated for the same nuclei. Thus, the influences of

the isospin symmetry violations on Fermi transitions can be clearly understood.
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1. Introduction

It is well known that the isospin symmetry is largely preserved by strong interactions. A small symmetry

violation at the hadronic level is due to the difference in the masses of the up and down quarks [1]. In atomic

nuclei, the main source of isospin symmetry breaking is the electromagnetic interaction [2,3]. The isovector

and isotensor parts of electromagnetic force are much weaker than strong interactions between nucleons, so the

effects of isospin symmetry breaking can be considered in a perturbative way. Hence, the formalism related to

isospin is a very powerful concept in nuclear structure and reactions [4,5].

The investigation of Fermi beta decay is very important in understanding the isospin impurity in nuclear

ground states. The problem of isospin mixing in nuclear ground states is of great importance in the experimental

determination of the vector coupling constant of nucleon β -decay as well as in the description of the isobar

analogue state energies and isospin multiplets [6–9]. The isospin mixing in nuclear ground states was studied in

various models. The two-liquid hydrodynamic model was used to estimate the energies of the collective isovector

monopole excitation with an isospin of T = T0 + 1 [10]. The admixture of this excited state to the ground state

with an isospin of T = T0 , caused by the Coulomb potential, turned out to be small (0.1–0.3) for all stable

nuclei with A > 40. Quantitative estimates performed by using the shell model [11–13] are approximately one

order of magnitude larger than the estimate of Bohr and Mottelson. There are several factors that may cause

such a difference in the mentioned estimates. First, the shell model calculations were performed in the particle-

hole approximation and used a limited number of configurations. Second, the residual isovector interaction
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was either neglected or included in the Tamm–Dankoff approximation. Third, the residual interaction was

not related to the shell model potential in a self-consistent way. The isospin mixing for the proton-rich nuclei

between A = 80 and A = 100 was calculated [14–24]. The Hartree–Fock calculations for these nuclei predicted

the isospin mixing in the order of 0.03–0.05 [17]. The isospin mixing increased by an amount of 0.15–0.20 within

the random phase approximation [14].

As known, the symmetry properties of the total nucleus Hamiltonian are violated in the mean field

approximation. These violations have remarkable effects on the single and double beta decay rates [25–32]. The

observation of Fermi β+ decay in neutron-excess nuclei can be attributed to the isospin symmetry violations

stemming from the electromagnetic interactions. In other words, the total β+ decay probability, which is directly

related to the isospin impurity in the ground state, would be zero if the isospin symmetry was an exact symmetry

of the total nucleus Hamiltonian. However, the symmetry violations in the mean field level of approximation

lead to an increment in the total β+ decay probability. Therefore, the restoration of these symmetry violations

has importance in determining the beta decay properties. The calculation of Fermi transitions with and without

Coulomb interaction may be an efficient way to understand the isospin symmetry breaking effects [25], but a

more realistic approximation should be used to define the transition properties. The isospin symmetry violation

in the mean field approximation should be eliminated in a self-consistent way. The investigation of these

transitions within a self-consistent method that is used to restore the symmetry violations stemming from the

mean field approximation ensures that we can understand the decay properties more clearly. The calculation of

Fermi decays for the systems with different proton numbers helps us to understand isospin symmetry breaking

effects on these decays. The calculation of these decays for different deformation parameters clearly exhibits

the symmetry breaking effects due to the sensitivity of the isospin impurity in nuclear ground states to this

parameter. The isospin violation in the mean field level for neutron-excess nuclei was eliminated within the

nuclear density functional theory [27]. A significant dependence of the magnitude of isospin breaking on the

parametrization of the nuclear interaction term was found by the Warsaw group. Hence, the nucleon-nucleon

residual interaction potential should be included in such a way that the isospin symmetry violation in the mean

field level is restored. Pyatov’s restoration method is an efficient way for such a restoration [26,31–38]. This

method was used to investigate the isospin mixing and isobar analogue states for spherical nuclei [26,37,38]. Here

Pyatov’s method is applied for the investigation of isospin impurities and Fermi beta decays of various deformed

nuclei (54 ≤ Z ≤ 68). There have been no theoretical analyses or experimental data on the isospin mixing ratios

and Fermi transitions for these nuclei. A self-consistent explanation of isospin mixing and Fermi decays for the

nuclei is given in the present work. In this respect, the symmetry violations that originate from the mean field

approximation have been eliminated using Pyatov’s restoration method and the isobar analogue excitations in

neighbor odd-odd nuclei have been described without using any adjustable parameter. The probabilities for

isospin mixing in the ground state of parent nuclei have been determined for the nuclei under consideration.

The variation of the isospin admixture probability with the deformation parameter has been calculated and then

the dependence of isobar analogue state energies and β -decay log(ft) values on the same parameter has been

studied. Thus, the influences of isospin impurity in the ground state of the parent nucleus on Fermi transitions

can be understood. The details of restoration are given in the next section. Section 3 contains the calculated

results for the isospin mixing and Fermi beta transitions for deformed Z = 54–68 nuclei.
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2. Method

The Fermi β -decay operators are described as:

T+ =
A∑
i=1

t+(i) (1)

T− = (T+)
†
.

Let us define a new charge exchange operator as below:

F ρ=
1

2

(
T++ρT−) (ρ = ±). (2)

The single quasiparticle Hamiltonian is defined as follows:

Hsqp=
∑
sσ

εs (τ)α
†
sσ (τ)αsσ (τ) (τ = n, p), (3)

where εs (τ) is the single quasiparticle (sqp) energy, and α†
sσ (τ) (αsσ (τ)) is the quasiparticle creation (anni-

hilation) operator. Let us note that the n and p abbreviations are used instead of sn and sp , respectively. The

nuclear part of the total Hamiltonian must commute with the Fermi β -decay operator

[H − VC , F
ρ] = 0, (4)

but this commutativity is broken in the mean field approximation as below:

[Hsqp − VC , F
ρ] ̸= 0, (5)

where V c is the Coulomb term of a deformed Woods–Saxon potential [39].

The isospin invariance of the nuclear part broken in the mean field level of the approximation can be

restored by including an effective interaction potential defined as below:

h =
∑
ρ

1

4γρ
[Hsqp − VC , F

ρ]
† • [Hsqp − VC , F

ρ] . (6)

The effective interaction constant is found from the following condition,

[Hsqp − VC + h, F ρ] = 0, (7)

and taken out to be a free parameter.

γρ = ⟨0 | [[Hsqp − VC + h, F ρ] , F ρ] | 0⟩ . (8)

The pnQRPA Hamiltonian for the investigation of the isobar analogue states is described as follows:

H = Hsqp + h. (9)

The phonon creation operator for the isobar analogue states is described as:

| i⟩ = Q†
i |0⟩ =

∑
np

[ψi
npC

†
np + φi

npCnp] |0⟩ , (10)
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where C†
np (Cnp) is the quasiboson creation (annihilation) operator, and ψi

np and φi
np are the forward and

backward amplitudes, respectively. The following equation is solved to obtain the energies and wave functions

of the isobar analogue excitations: [
Hsqp + h,Q†

i

]
|0⟩ = ωiQ

†
i |0⟩ , (11)

where ωi corresponds to the excitation energies for the isobaric analogue states.

The total βdecay strength for Fermi transitions is given as follows:

S± =
∑
i

∣∣∣M i
β±(0+g.s → 0+i )

∣∣∣2 , (12)

M i
β±(0+g.s → 0+i ) =

⟨
0 |

[
Qi, T

±] | 0⟩ .
These strengths must fulfill the sum rule in the following form:

S− − S+ = N − Z. (13)

The probability of isospin mixing in the ground state of the parent nucleus is calculated by using Eq. (14):

b2 =
1

2(T0 + 1)

∑
i

∣∣∣M i
β+

∣∣∣2 , (14)

T0 =
N − Z

2
.

3. Results and discussion

The isospin admixture probabilities in the ground states of deformed Z = 54–68 nuclei and Fermi β transitions

are calculated by using Pyatov’s restoration method within the framework of pnQRPA formalism. The Nilsson

single particle energies and wave functions are calculated within the deformed Woods–Saxon potential [39,40].

All energy levels up to 8 MeV are considered for neutrons and protons. The proton and neutron pairing gaps

are determined as ∆p=Cp

/√
A and ∆n=Cn

/√
A MeV, respectively [41]. The pairing strength parameters

(Cp and Cn) are chosen so that the experimental pairing gaps are reproduced [42]. The fixed values of pairing

interaction and the corresponding β transition strengths are presented in the Table. The present deformations

in the 2nd column are determined from the single particle energies as shown in [43].

The calculated probabilities for the isospin mixing in nuclear ground states are given in Figure 1. The

upward and downward figures represent the results of the restoration method and a phenomenological formula

[b2 = 3.5× 10−7Z2A2/3(T0 + 1)
−1

] [41], respectively. The curves obtained in both methods almost exhibit the

same behavior as Z and N, but the calculated probabilities within restoration are approximately three times

larger than those obtained with the phenomenological formula. The difference between the present calculations

and the phenomenological formula originates from the variation of β+ transition probability (see Eq. (14))

with proton and neutron number (see Figure 2). As expected, the β+ decay probability usually decreases

with N and increases with Z. The fluctuations in curves can be attributed to the differences in deformation
effects. In order to understand the deformation effects on the isospin impurities, the dependence of the isospin
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Table. The calculated values of β− and β+ decay strengths.

Nuclei β Cn(MeV) Cp(MeV) S− S+ S− - S+ N - Z
124Xe 0.18 10.80 10.69 15.976 0.033 15.943 16
126Xe 0.16 11.24 10.71 17.974 0.030 17.944 18
128Xe 0.15 11.51 10.94 19.862 0.031 19.831 20
130Xe 0.13 12.06 11.50 22.167 0.031 22.136 22
132Xe 0.11 12.72 12.10 24.010 0.027 23.983 24
126Ba 0.20 9.68 11.14 13.920 0.073 13.847 14
128Ba 0.17 10.06 11.20 15.857 0.055 15.802 16
130Ba 0.16 10.64 11.40 19.590 0.060 19.530 18
132Ba 0.14 10.80 11.82 20.020 0.060 19.960 20
134Ba 0.12 10.53 12.70 22.020 0.050 21.970 22
128Ce 0.22 9.49 11.54 10.965 0.181 10.784 12
130Ce 0.18 9.65 11.65 13.980 0.120 13.860 14
132Ce 0.17 9.94 11.93 16.110 0.120 15.990 16
134Ce 0.15 10.20 12.40 18.525 0.098 18.427 18
136Ce 0.12 10.97 12.98 19.981 0.070 19.911 20
130Nd 0.24 9.67 10.28 10.265 0.236 10.029 10
132Nd 0.20 9.81 10.72 12.200 0.255 11.945 12
134Nd 0.18 9.65 12.44 14.197 0.224 13.973 14
136Nd 0.15 9.96 12.83 16.102 0.166 15.936 16
138Nd 0.12 9.95 14.10 17.842 0.115 17.727 18
132Sm 0.21 9.65 10.12 8.247 0.217 8.030 8
134Sm 0.21 9.91 10.23 10.286 0.225 10.061 10
136Sm 0.216 9.61 11.96 12.351 0.246 12.105 12
138Sm 0.16 9.60 12.84 14.270 0.276 13.994 14
140Sm 0.12 9.90 14.41 16.264 0.178 16.086 16
134Gd 0.26 9.57 10.16 6.330 0.301 6.029 6
136Gd 0.22 9.76 10.34 8.033 0.259 7.774 8
138Gd 0.19 9.56 11.18 10.289 0.248 10.041 10
140Gd 0.21 9.37 12.28 12.405 0.283 12.122 12
142Gd 0.10 9.90 14.44 14.201 0.193 14.008 14
136Dy 0.26 9.57 9.42 4.344 0.289 4.055 4
138Dy 0.22 9.69 9.60 6.204 0.267 5.937 6
140Dy 0.21 9.62 9.89 8.261 0.279 7.982 8
142Dy 0.18 9.32 11.31 10.264 0.256 10.008 10
144Dy 0.06 9.96 13.99 12.177 0.146 12.031 12
138Er 0.25 9.64 8.14 2.369 0.270 2.099 2
140Er 0.22 9.60 8.31 4.137 0.267 3.870 4
142Er 0.20 9.65 8.94 6.140 0.278 5.862 6
144Er 0.16 9.24 10.53 8.229 0.252 7.977 8
146Er 0.16 9.97 12.63 10.292 0.242 10.050 10

admixture probability on the deformation parameter should be calculated for each isotope. Thus, the variation

of the isospin mixing with the deformation parameter is presented in Figure 3. The isospin impurity in nuclear

ground states originates from the variable part of Coulomb potential. In other words, the probability for the

isospin mixing would be zero if Coulomb potential was constant in nuclear volume. In a deformed structure,

the variable part of Coulomb potential is proportional to the quadratic part of the deformation parameter.
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Figure 1. The variation of isospin admixture probability with the proton and neutron number.
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Figure 2. The variation of β+ decay probability with the proton and neutron number.
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Figure 3. The dependence of isospin mixing on the deformation parameter.
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ÜNLÜ et al./Turk J Phys

Therefore, each curve in Figure 3 exhibits a quadratic character. The fluctuations in curves can be attributed

to the variations in ground state configurations. Thus, it is well known that a small variation in the deformation

parameter can lead to a sudden exchange of any two single-particle levels and the variation of ground state

configurations. This case is also confirmed by the single-proton and neutron levels of the Nilsson potential [43].

The average energy values of the isobar analogue states in neighbor odd-odd nuclei and the β− decay log(ft)

values for the transitions between the initial ground state and the first isobar analogue state are presented in

Figures 4–6. While the total Fermi decay probability shifts to a higher energy region for heavier isotones due

to the repulsive effect of Coulomb interaction, the energy of the isobar analogue states shows no remarkable

variation with the neutron number. The microscopic log(ft) values exhibit a more sensitive behavior to proton

and neutron number due to the differences in the ground state configurations in comparison with the average

energy values. In particular, the sensitivity of these configurations to the variations in deformation parameter

can lead to a sudden variation of the β decay log(ft) values. Thus, the log(ft) values exhibit fluctuations with

deformation parameter, as shown in Figure 7. However, the macroscopic energy values in Figure 5 show no

important sensitivity to the variations of ground state configurations. It is seen from the figure that these

energies usually exhibit a clear reduction with deformation parameter.
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Figure 4. The variation of isobar analogue state energy with the proton and neutron number.
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Figure 5. The dependence of isobar analogue state energy on the deformation parameter.
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Figure 5. Continued.
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Figure 7. The dependence of log(ft) value on the deformation parameter.
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4. Summary

The inclusion of nucleon-nucleon residual interactions leads to a remarkable quenching in β decay rates. This

naturally affects the isospin mixing probability in nuclear ground states, which is directly proportional to the

total β+ decay probability. The magnitude of isospin symmetry violation shows an important dependence on

the parametrization of nuclear interaction potential. Hence, the strength parameter of the effective interaction

potential should be obtained from the isobaric invariance property of nuclear Hamiltonian (see Eq. (7)). Thus,

it is possible to make a self-consistent explanation of isospin mixing ratios and isobar analogue states. The

following conclusions can be drawn from the present calculations:

• Isospin mixing probabilities in the ground state of various deformed nuclei and Fermi β decays are

calculated without using any adjustable parameter.

• There is not enough theoretical calculation and experimental data for the isospin impurity and β tran-

sitions of heavy deformed nuclei. The present calculations provide useful information about the isospin

mixing and beta decay properties of 54 ≤ Z ≤ 68 and 70 ≤ N ≤ 78 nuclei.
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