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Abstract: We calculate the magnetization and susceptibility of two interacting electrons confined in a quantum dot

presented in a magnetic field by solving the Hamiltonian using the exact diagonalization method. We investigate the

dependence of the magnetization and susceptibility on temperature, magnetic field, and confining frequency. The singlet-

triplet transitions in the ground state of the quantum dot spectra and the corresponding jumps in the magnetization

curves are shown. The comparisons show that our results are in very good agreement with reported works.
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1. Introduction

Quantum dots (QDs), or artificial atoms, are a subject of research interest due to their physical properties

and great potential device applications such as quantum dot lasers, solar cells, single-electron transistors, and

quantum computers [1–5]. The application of a magnetic field perpendicular to the dot plane will introduce an

additional structure on the energy levels and correlation effects of the interacting electrons that are confined in

a quantum dot.

Different approaches were used to solve the two-electrons QD Hamiltonian, including the effect of an

applied magnetic field, to obtain the eigenenergies and eigenstates of the QD system. Wagner et al. [6] studied

this interesting QD system and predicted the oscillations between spin-singlet (S) and spin-triplet (T) ground

states.

Taut [7] managed to obtain the exact analytical results for the energy spectrum of two interacting

electrons through Coulomb potential, confined in a QD, just for particular values of the magnetic field strength.

In references [8,9] the authors solved the QD Hamiltonian by variational method and obtained the ground-state

energies for various values of magnetic field (ωc) and confined frequency (ω0). In addition, they performed exact

numerical diagonalization for the helium QD-Hamiltonian and obtained the energy spectra for zero and finite

values of magnetic field strength. Kandemir [10,11] found the closed-form solution for this QD Hamiltonian and

the corresponding eigenstates for particular values of the magnetic field strength and confinement frequencies.

Elsaid [12–16] solved the QD Hamiltonian by the dimensional expansion technique, obtained the energies of the

two interacting electrons for any arbitrary ratio of Coulomb to confinement energies, and gave an explanation

for the level crossings.

Maksym and Chakraborty [17] used the diagonalization method to obtain the eigenenergies of interacting
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electrons in a magnetic field and show the transitions in the angular momentum of the ground states. They

calculated the heat capacity curve for both interacting and noninteracting confined electrons in the QD presented

in a magnetic field. The interacting model showed very different behavior from noninteracting electrons, and

the oscillations in these magnetic and thermodynamic quantities like magnetization (M) and heat capacity

(Cv) were attributed to the spin singlet-triplet transitions in the ground state spectra of the quantum dot. De

Groote et al. [18] also calculated the magnetization, susceptibility, and heat capacity of helium-like confined

QDs and obtained the additional structure in magnetization. In a detailed study, Nguyen and Peeters [19]

considered the QD in the presence of a single magnetic ion and applied magnetic field taking into account the

electron-electron correlation in many-electron quantum dots. They displayed the dependence of these thermal

and magnetic quantities, Cv, M, andχ, on the strength of the magnetic field, confinement frequency, magnetic

ion position, and temperature. They observed that the cusps in the energy levels show up as peaks in the heat

capacity and magnetization. In reference [20], the authors used static fluctuation approximation to study the

thermodynamic properties of two-dimensional GaAs/AlGaAs parabolic QDs in a magnetic field.

Boyacioglu and Chatterjee [21] studied the magnetic properties of a single quantum dot confined with

a Gaussian potential model. They observed that the magnetization curve showed peaks structure at low

temperatures. Helle et al. [22] computed the magnetization of a rectangular QD in a high magnetic field

and the results showed the oscillation and smooth behavior in the magnetization curve for both interacting and

noninteracting confined electrons.

In an experimental work [23], the magnetization of electrons in a GaAs/AlGaAs semiconductor QD as a

function of an applied magnetic field at the low temperature of 0.3 K was measured. Oscillations were observed

in the magnetization. To reproduce the experimental results of the magnetization, the authors found that

electron-electron interaction should be taken into account in the theoretical model of the QD magnetization.

Furthermore, the density functional theory method was used to investigate the magnetization of a

rectangular QD in an applied external magnetic field [24].

Climente et al. [25] studied the effect of Coulomb interaction on the magnetization of quantum dots with

one and two interacting electrons.

In this work, we calculated the magnetization and magnetic susceptibility as magnetic quantities for a

quantum dot helium atom in which both the magnetic field and the electron-electron interaction were fully taken

into account. Since the eigenvalues of the electrons in the QD are the starting point to calculate the physical

properties of the QD system, we initially applied the exact diagonalization method to solve the QD Hamiltonian

and obtained the eigenenergies. After that we used the computed eigenenergy spectra to theoretically display

the behavior of magnetization and magnetic susceptibility of the QD as a function of magnetic field strength,

confining frequency and temperature.

The rest of this paper is organized as follows: Section 2 presents the Hamiltonian theory and computation

diagonalization technique of the interacting quantum helium atom. In Section 3, we show the calculation of the

magnetization and susceptibility from the mean energy expression. We devote the final section to numerical

results and conclusions.

2. Theory

In this section we describe in detail the main three parts of the theory, namely the QD Hamiltonian, the exact

diagonalization method, and the magnetization and magnetic susceptibility.
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2.1. Quantum dot Hamiltonian

The effective mass Hamiltonian for two interacting electrons confined in a QD by a parabolic potential in a

uniform magnetic field of strength B, applied along the z direction, is given by:

Ĥ =
2∑

j=1

{
1

2m∗

[
p (rj)+

e

c
A (rj)

]2
+
1

2
m∗ω2

0r
2
j

}
+

e2

ϵ |r1−r2|
, (1)

where ω0 and ϵ are defined as the confining frequency and the dielectric constant for the GaAs medium,

respectively. r1and r2 describe the positions of the first and second electron in the xy plane. ωc is the

cyclotron frequency and A = 1
2B × r is the vector potential. By expressing the Hamiltonian explicitly in terms

of coordinates and momenta, Eq. (1) becomes the following:
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We decoupled the QD Hamiltonian into center of mass (R) and relative (r) parts using the standard coordinate

transformations:
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2
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Ĥ =

(
eA[− r

2+R]
c pr+

PR

2

)2

2m
+

(
eA[ r2+R]

c +pr+
PR

2

)2

2m
+
1

2
m

(
−r

2
+R

)2

ω2
o

+
1

2
m

(r
2
+R

)2

ω2
o+

e2

ϵr
. (7)

The confining parabolic potential terms are written as:
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Using the linear property of the vector potential, we separated the kinetic energy terms into center of mass and

relative parts.
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The full QD Hamiltonian in ( R, r ) coordinates takes the following form:

Ĥ =

(
eA[r]
2c +pr

)2

m
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2eA[R]

c +PR

)2

4m
+
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4
mr2ω2
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. (10)

Finally, we separated the complete two-electron QD Hamiltonian into center of mass Hamiltonian HCM and

relative Hamiltonian part Hr as shown below:

H =HCM+Hr, (11)

HCM=
1
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[
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c
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where M is the total mass = 2m, Q is the total charge= 2e , µ is reduced mass = m
2 , and q is the reduced

charge = e
2 .

The corresponding energy of this Hamiltonian in Eq. (11) is:

Etotal=ECM+Er. (14)

The center of mass Hamiltonian given by Eq. (12) is a harmonic oscillator type with well-known eigenenergies:

ECM = Encm,mcm
=(2ncm+ |mcm|+1) ℏ

√
ω2
c

4
+ω2

o+mcm
ℏωc

2
, (15)

where ncm mcm are the radial and angular quantum numbers, respectively.

However, the relative motion Hamiltonian part (Hr), given by Eq. (13), does not have an analytical

solution for all ranges of ω0 and ωc . In this work, we apply the exact diagonalization method to solve the

relative part of the Hamiltonian and obtain the corresponding eigenenergies Er.

2.2. Exact diagonalization method

For the noninteracting case the relative Hamiltonian in Eq. (13) is a single particle problem with eigenstates

|nrmr > known as Fock–Darwin states [26,27]:

|nrmr ⟩=Nnrmr

eimrϕ

√
2π

(αr)
|mr| e−α2r2/2L|mr|

nr

(
α2r2

)
, (16)

where the functions L
|mr|
nr

(
α2r2

)
are the standard associated Laguerre polynomials. We calculated the normal-

ization constant Nnrmr from the normalization condition of the basis, ⟨nrmr|nrmr⟩ = 1, which resulted in:

Nnrmr
=

√
2nr!α2

(nr+ |mr|) !
. (17)
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We used α as a constant, which has the dimensionality of an inverse length.

α =

√
mωo

h
(18)

The eigenenergies of the QD Hamiltonian given by Eq. (14) consist of the sum of the energies for the center

of mass Hamiltonian (Ecm) and the eigenenergies (Er), which are obtained by direct diagonalization to the

relative Hamiltonian part. For the interacting case, we applied the exact diagonalization method to solve Eq.

(13) and find the corresponding exact eigenenergies for arbitrary values of ωc and ω0 .

We can write the matrix element of the relative Hamiltonian part using the basis |nrmr > as:
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The corresponding relative dimensionless energies are:
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where γ = ωc
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are dimensionless parameters while ω2 = ω2
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c
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frequency. By changing the coordinate transformation to t-variable by direct substitution to r =
√
t
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the integrationInn′ = I
nrn

|
r
, we can express the Coulomb energy matrix element in the integral form:
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We evaluated the above Coulomb energy matrix element in a closed form by using the following Laguerre

relation [28]:

∞∫
0

tα−1 e−ptLλ
m (at)Lβ

n (bt) dt =

Γ (α) (λ+ 1)m (β + 1)n p
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b

p

)k

. (22)

This closed-form result of the Coulomb energy greatly reduces the computation time needed in the diagonal-

ization process.

In our calculation, we used the basis |nrmr > defined by Eq. (16) to diagonalize the relative QD

Hamiltonian and obtained its corresponding eigenenergies, Er
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2.3. Magnetization and susceptibility

We evaluated the magnetization of the QD system as the magnetic field derivative of the mean energy of the

QD.

M (T,B,ω0)=
−∂⟨E(T,B, ω0)⟩

∂B
(23)

The magnetic susceptibility is calculated from M directly as:

χ =
∂M

∂B
, (24)

where we computed the statistical average energy as:

⟨E(T,B, ω0)⟩=

N∑
α=1

Eαe
−Eα/kBT

N∑
α=1

e−Eα/kBT

. (25)

The index α in the sum is taken to be over the energy levels of the QD.

We displayed the dependence of the computed magnetization and susceptibility on the magnetic field ωc ,

confining frequency ω0 and temperature (T).

3. Results and conclusions

We present the results for two interacting electrons in a QD made from GaAs material (effective Rydberg

R*= 5.825meV ) in Figures 1–5. Figure 1 shows our computed results for energy, magnetization, and magnetic

susceptibility as a function of the strength of the magnetic field for confining frequency ω0=
2
3 R*. The

comparison of the energies with Reference [29] clearly shows excellent agreement.

Figure 1a shows the transition in the angular momentum of the ground state of the QD system as the

magnetic field increases. The origin of these transitions is due to the effect of Coulomb interaction energy in

the QD Hamiltonian. These transitions in the angular momentum of the QD system correspond to the (S-

T) transitions manifesting themselves as cusps in the magnetization curve of the QD. In Figure 1b, we show

the dependence of the magnetization on the magnetic field strength for the same fixed values of the confining

frequency and temperature. The magnetization shows a peak structure, which is a result of the transition in

the angular momentum of the ground state energy as shown and discussed previously. For example, the first

peak corresponds to the transition in the angular momentum of the ground state from mr= 0 to mr= 1.

Similar to the magnetization, we display in Figure 1c the behavior of the magnetic susceptibility as a

function of the magnetic field strength, and we observed that the magnetic susceptibility has a sharp peak due

to the transition of the ground-state angular momentum and that this peak decreases as the magnetic field
sweeps.

In all steps of the calculations, convergence is achieved. In Figure 2, we plot the ground state energy

against the number of basis (sp) for λ = 3. The figure clearly shows the numerical stability of the ground-

state energy as the number of the basis increases. For example, the ground-state energies were converged to

Er =4.324, 4.320, 4.319, and 4.319 meV for basis numbers sp= 5, 20, 40, and 50, respectively.
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Figure 1. The computed results of two interacting electron QD against the strength of the magnetic field for ω0=
2
3

R*. a) The eigenenergy spectra in R*. b) Magnetization (M) in unit of µ∗
B = eℏ

2m∗ (µB = 0.87meV/T for GaAs) at T

= 0.01 K. c) Magnetic susceptibility (x) at T = 0.01 K.

To support our magnetization behavior, we plot in Figure 3 the magnetization against the magnetic field

for ω0=
1
2 and T = 0.01 K, for both interacting and noninteracting electrons in a QD. The noninteracting curve
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(solid line) shows a smooth behavior while the interacting curve (dashed line) shows a saw-tooth behavior. The

oscillating behavior of the magnetization is caused by Coulomb interaction between the two electrons.

Figure 2. The computed ground state energy of a two-electron QD in zero magnetic field for λ = 3 , where the

dimensionless parameter is λ = e2α
ℏω0

, against the number of the basis (sp ) taken in the diagonalization process.

Figure 3. The magnetization (M/µB
) of two-electron quantum dot for noninteracting (solid line) and interacting

(dashed) cases at T = 0.01 K and confinement frequency (ω0 = 0.5 R*).

In Figure 4, we show the behavior of the magnetization against the magnetic field strength at fixed

temperature T = 0.01K . For various confining frequencies, the peaks in the magnetization curve were shifted

to a higher magnetic field as the confining frequency increased. This behavior of the magnetization is in

agreement with the results of References [21,25]. In addition, we found that the magnetic susceptibility also

had a similar behavior.
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Figure 4. The magnetization (M/µB
) of two interacting electrons QD as a function of magnetic field strength at T =

0.01 K and various confinement frequencies ω0 : ω0 = 0.3, solid; ω0 = 0.5, dashed, and ω0 = 0.7, dotted.

In Figure 5, we show the effect of temperature on the magnetization curve for a fixed confining frequency.

The curve clearly shows the gradual disappearance of the magnetization jumps as the temperature increases.

This behavior is also in agreement with the results of Reference [19]. We also investigated the behavior of the

susceptibility and found that the peaks became wider and less sharp.

Figure 5. The behavior of the magnetization (M/µB
) of the two interacting electrons QD as a function of magnetic

field strength for fixed value of confining frequency (ω0 = 1
2

R*) and various T: T = 0.01 K, solid; T = 0.1 K, dashed;

and T = 1 K, dotted.

In conclusion, the exact diagonalization method was applied as a theoretical approach to solve the

Hamiltonian for two interacting electrons that are confined parabolically in a QD presented in a magnetic

field. We also studied the dependence of both the magnetization and susceptibility on the magnetic field,

confining the frequency and temperature of the system. Moreover, we used the Fock–Darwin states as a basis

to evaluate the Coulomb matrix element and to give the result in a closed form. The investigations showed
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that the oscillations in magnetization and susceptibility are due to the role of electron-electron interactions, as

reported in previous works.
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