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Abstract: The energetic characteristics of cylindrical medium-free time-domain waveguide fields are solved within the

framework of the evolutionary approach to electromagnetics. Solving the boundary-eigenvalue problem for transverse

Laplacian yields a configurational basis in the waveguide cross section. Elements of the basis depend on transverse

coordinates, whereas the modal amplitudes depend on the longitudinal coordinate, z, and time, t . Solving the resulted

Klein–Gordon equation yields a basis for analysis of the modal amplitudes. Exact solutions for the amplitudes of

TE-modes are obtained, and the energetic field characteristics are derived in accordance with the causality principle.

Key words: Time domain, waveguide, electrodynamics, Maxwell’s equations, evolutionary approach, Klein–Gordon
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1. Introduction

There are two goals in this article. One is to obtain the exact solutions for the amplitudes of the TE-modes

in a cylindrical medium-free waveguide within the framework of the evolutionary approach to electromagnetics

(EAE) [1]. The second goal is to derive the energetic field characteristics as the functions of coordinates

and time. These goals need to address the problem in the time-domain directly, without postulating time

dependence of the fields proportionally to exp (iωt).

The background history of time-domain electromagnetics has been discussed in our previous publications:

for a hollow cavity [2] and for a cavity filled with dispersive medium [3]. An elegant time-domain method relying

on wave splitting technique and representing the propagation of transient electromagnetic waves in waveguides

was performed earlier by Kristensson [4]. Presenting the fields as a convolution of a Green function and a

source function, his method yields loss of accuracy when t and z become relatively large. In a later study [5],

excitation of waves in a rectangular waveguide was considered by Geyi in the time domain.

The present study is based on solving Maxwell’s equations in a transverse-longitudinal form convenient

for transient analysis of electromagnetic waves in waveguides. Herein the waveguide fields are considered in

SI units and presentable as the real-valued quantities. Therefore, this approach enables us also to study the

energetic characteristics of electromagnetic fields.

The medium-free waveguide has perfect electric conductor surfaces. Its cross-section domain, S, is regular

along the axis, Oz, and bounded by a closed singly connected contour, L. A right-handed triplet (z, l,n) of

mutually orthogonal unit vectors is used as z× l = n , where n is the outer normal to S, l is tangential to the

L vector, and z is oriented along the axis, Oz. A point of observation within the waveguide is specified by a
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three-component vector, R = r+ z z, where component r varies within S, z is a projection of R on Oz, and

t denotes observation time.

2. Formulation of the problem

We have to solve the system of Maxwell’s equations with time derivative ∂t, that is,

∇× E (R,t) = −µ0∂tH (R,t) (1a)

∇×H (R,t) = ϵ0∂tE (R,t) , (1b)

where E (R,t) and H (R,t) are the electric and magnetic strength vectors with physical dimensions of volt per

meter,
⌊
Vm−1

⌋
, and ampere per meter,

⌊
Am−1

⌋
, respectively, µ0 and ϵ0 are the free-space constants specified

as

µ0 = 4π × 10−7
⌊
NA−2 = kgms−2A−2

⌋
(2)

ϵ0 = 1
µ0c2

⌊
Fm−1 = A2s4kg−1 m−3

⌋
(3)

where N = kgms−2 is the force unit, Newton, F = A2s4kg−1m−2 is the electric capacitance, farad, and c is

the numerical value of the speed of light in a vacuum.

In solving the time-domain waveguide problems, equations (1) should be supplemented with the boundary

conditions over the waveguide surface as

n · H|r∈L = 0, l · E|r∈L = 0, z · E|r∈L = 0. (4)

Since Maxwell’s equations (1) belong to the hyperbolic type of the partial differential equations (PDE), problems

(1)− (4) should be supplemented with appropriate initial conditions given at a fixed instant when needed.

2.1. The TE− time-domain modal fields

Consider the waveguide with the circular cross section where the domain S is describable in polar coordinates,

(r, φ) , as (0≤r≤a, 0≤φ≤2π). The position vector, r, in S is r = r0 r+φ0 φ. The triplet given above, z× l = n,

should be read as z× φ0 = r0. We shall operate with the real-valued functions only.

2.1.1. Configurational basis for the TE− modal fields

Derivation of the TE− modal fields (normalized appropriately) starts via solving the Neumann boundary

eigenvalue problem for transverse Laplacian, ∇2
⊥, namely,

(
∇2

⊥+ν2n
)
Ψn (r, φ) = 0, n0·∇⊥Ψn|r∈L=0

ν2n
S

∫
S

Ψ2
n ds = 1, (5)

where Ψn (r, φ) are the eigenfunctions corresponding to the eigenvalues, ν
2
n , n = 1, 2, 3, . . . . The set {Ψn (r, φ)}∞n=0

is complete. We suppose that potential, Ψn (r, φ) , is dimension-free, physically. The spectrum of the eigenval-

ues, ν2n, is countable (n = 1, 2, . . .) because the domain S is finite. Solving the problem (5) by separation of
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the variables, (r, φ) , yields

ν2n ≡ ν2qp = j 2
qp/a

2 > 0 (6a)

Ψn ≡ Ψqp (r, φ) = NqpJq (jqpr/a) sin (qφ+cq) (6b)

Nn ≡ Nqp = −2

√(
1− q2/j2qp

)
J2
q (jqp) (6c)

where Nn ≡ Nqp is a normalizing constant. As far as the domain S is two-dimensional, the subscript n is

double as n ≡ q, p , where q = 0, 1, 2, . . . , p = 1, 2, . . . . The subscript q specifies the order of the Bessel

function, Jq (∗) , the numbers jqp > 0 are the solutions to equation d
drJq (jqpr/a) |r=a = 0, which yields the

distinct from zero p−th roots of derivative of the Bessel function, and cq in (6b) is an arbitrary real-valued

numerical parameter; the value cq = 0 is available.

Every function from the set {Ψqp (r, φ)} is specified completely by the configuration and size, a, of the

circular contour L. The complete set of the eigensolutions to the Neumann problem suggests introducing a

basis for the field distributions in the waveguide cross section. This basis is defined by a configuration of L,

only. Therefore, we name this basis “configurational” {eqp,hqp,Zqp} , and specify

eqp (r)=∇⊥Ψqp×z, hqp (r)=∇⊥Ψqp, Zqp (r)= z νqpΨqp. (7)

Note that the differential procedure, ∇⊥, and factor νqp =
√
ν2qp in (7) have physical dimension of inverse

meter,
⌊
m−1

⌋
. Therefore, all the basis elements in (7) have just this dimension.

A pair of new empirical constants We propose to introduce a pair of new empirical constants, µ̊0 and ϵ̊0,

via combinations of the force unit, N, and the free-space constants as follows: µ̊0
def.
=

√
N/µ0 and ϵ̊0

def.
=

√
N/ϵ0.

One can verify that µ̊0 has the physical dimension of ampere, ⌊A⌋ , and ϵ̊0 has the dimension of volt, ⌊V⌋ .
Indeed,

µ̊0 = −2
√
π 1.5811× 103 ⌊A⌋ (8a)

ϵ̊0 =
√
π 1.8961× 105

⌊
kgm2A−1s−3≡V

⌋
. (8b)

Identity µ̊0̊ϵ0
def.
= 1 yields the speed of light, c

⌊
m
s

⌋
, as

µ̊0̊ϵ0 = 1 ⇒ 1√
µ0ϵ0

= 2. 997 9×108
⌊
AV
N

⌋
≡ c. (9)

2.1.2. The TE− time-domain modal fields

We can write down the time-domain field vectors, which are generated by the elements of the basis from (7) ,

as follows:

En = An (t, z) en (r) , Ezn (r) = 0 (10a)

Hn = Bn (t, z) hn (r) + hn (t, z) Zn (r) (10b)

where the factors, An (t, z) , Bn (t, z) , and hn (t, z) , have the physical sense of the amplitudes of the field

components. The amplitudes are unknown as yet, but we can already say that they should be obtained as

dimension-free quantities.
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Combining the time-domain field vectors that have the physical dimensions of inverse meter,
⌊
m−1

⌋
,

(10), with the new empirical constants that have the physical dimensions of ampere, ⌊A⌋ , and volt, ⌊V⌋ , (8),
electric and magnetic field strength vectors retain their needed dimensions, volt per meter,

⌊
Vm−1

⌋
, and of

ampere per meter,
⌊
Am−1

⌋
, respectively:

E (R,t) = ϵ̊0 En, H (R,t) = µ̊0 Hn. (11)

2.1.3. Evolutionary equations for the TE− modes

Substituting the field vectors En and Hn into (1) results in the Klein–Gordon equation (KGE) as(
∂2

c2∂t2
− ∂2

∂z2
+ ν2n

)
θn (t, z) = 0, (12)

where the first coefficient, ν2n, is the eigenvalue in the Neumann problem (5) and thereby that carry all

information about contour L of the waveguide cross section. Solution to the KGE generates the modal

amplitude, hn, of the longitudinal component of magnetic field, Hn, in (10b) as

hn (t, z) = θn (t, z) . (13)

In turn, this function, hn (t, z) , specifies the amplitudes of transverse field components in (10a)− (10b) as

An (t, z) = − ∂
νnc∂t

hn (t, z) Bn (t, z) =
∂

νn∂z
hn (t, z) . (14)

The KGE is invariant under the relativistic Lorentz transformations. Taking into account this fact,Miller

investigated the KGE within the framework of group theory [6]. He discovered ten “orbits of symmetry,” which

allow solving the KGE via separation of the variables in various manners dependently on a chosen orbit of

symmetry. The list of these orbits is cited in Appendix A of [7]. Only the lowest, orbit 1, corresponds to

the classical time-harmonic electromagnetics. All the others open very wide possibilities for development of

electrodynamics in the time domain. Herein we consider what the orbit 1 and orbit 2 result in. Miller’s other

orbits open up a new way for analytical studies in time-domain electromagnetics.

3. Solution for evolutionary equations

3.1. Real-valued solutions on orbit 1

Studies of KGE on Miller’s orbit 1 results in time-harmonic solutions in electromagnetics. As opposed to the

classical time-harmonic field concept, where the complex-valued exponential, exp (iωt) , plays the conceptual

role, we obtained the real-valued solution directly as

hn (t, z) = sin (ωt−γnz+Cn) (15a)

An (t, z) = − ∂

νnc∂t
hn (t, z) (15b)

Bn (t, z) =
∂

νn∂z
hn (t, z) , (15c)

where ω is a frequency, γn=

√
(ω/c)

2 −ν2n , and Cn is a real-valued numerical parameter; Cn = 0 is admissible.

The condition γn = 0 yields the cut-off frequencies for the TE−modes as ωte
n = νnc. The modal amplitudes

on Miller’s orbit 1 (15) are exhibited graphically in Figure 1.
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Figure 1. The modal amplitudes of hn (t, z) , An (t, z) , and Bn (t, z) for orbit 1 (15) .

3.2. Real-valued solutions on orbit 2

Operations on Miller’s orbit 2 yield the solutions to KGE (12) as

θmn (t, z) =

(
ct− |z|
ct+ |z|

)m/2

Jm

(
νn

√
c2t2 − z2

)
(16)

where m=0, 1, 2, . . . , which results in

hn (t, z) ≡ hm
n (t, z) = θmn (t, z) . (17)

Consequently, the amplitudes of transverse field components can be calculated by simple formulae as

Am
n = − ∂

νnc∂t
hm
n (t, z) , Bm

n = ∂
νn∂z

hm
n (t, z) . (18)

The modal amplitudes on Miller’s orbit 2 (17), (18) are exhibited graphically in Figure 2.
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Figure 2. The modal amplitudes of hn (t, z) , Am
n (t, z) , and Bm

n (t, z) for orbit 2 (17) , (18) .

4. Energetic functions of the waveguide modes

For convenience of calculations, we replace t and z variables in (13)− (14) by their dimensionless equivalents

as τ=νnct and ξ=νnz . Calculation of the power flow density, Pz n, averaged over the waveguide cross section
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(ξ is fixed) is written in (19a) . Averaged value of the energy density, Wn, in the same cross section is presented

in (19b):

Pz n = z c Sn (τ, ξ) , Sn (τ, ξ) =An (τ, ξ) Bn (τ, ξ) (19a)

Wn =
1

2

[
A2

n (τ, ξ)+B2
n (τ, ξ)+h2

n (τ, ξ)
]

(19b)

The conservation of energy law is used to check the calculations

dWn =
1

2

[
A2

n (τ, ξ)−B2
n (τ, ξ)

]
, wn=

1

2
h2
n (τ, ξ) . (20)

where dWn is the surplus of energy of transverse fields, and wn is the energy density of the longitudinal field

component. The normalized instant velocity of transportation of the modal field energy through any fixed

waveguide cross section is specified as

vn (τ, ξ) = Vn (τ, ξ) /c, Vn (τ, ξ) = Sn/Wn (21)

in accordance with Umov’s theorem [8].

In Figures 3 and 4, graphical examples are exhibited for Miller’s orbit 1, and in Figures 5 and 6 for orbit

2 (19)− (21). Our calculations show that 0 ≤ vn (τ, ξ) ≤ 1 for Miller’s orbit 1. This means that the velocity of

transportation of modal field energy varies from zero up to the light velocity, c . The causality condition from

the Einstein postulates, that the electromagnetic field can not transfer energy more than the speed of the light

in the vacuum [9], is verified via varying the form of the coefficients in the formulae (17) , (18).
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Figure 3. The modal amplitudes of Sn (τ, ξ) , Wn (τ, ξ) , and vn (τ, ξ) for orbit 1.
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Figure 4. The modal amplitudes of dWn (τ, ξ) , wn (τ, ξ) , and vn (τ, ξ) for orbit 1.
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Figure 5. The modal amplitudes of Sn (τ, ξ) , Wn (τ, ξ) , and vn (τ, ξ) for orbit 2.
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Figure 6. The modal amplitudes of d Wn (τ, ξ) , wn (τ, ξ) , and vn (τ, ξ) for orbit 2.

Regarding the negative-valued velocities in Figures 5 and 6, the direction of energy transportation is

opposite to that of waveform propagation. This situation is similar to the phenomenon in backward oscillators

in electronics. For both Miller’s orbits of 1 and 2, the causality condition holds for the transportation of energy

by a wavefront as well, since it is obtained that Vn (τ, ξ) = c at the front of the signals.

5. Conclusion

1) In the standard Maxwell’s equation in SI units, the field vectors, E and H, have the physical dimensions

of volt per meter,
⌊
Vm−1

⌋
, and of ampere per meter,

⌊
Am−1

⌋
, respectively. That is why the free-space

constants, µ0 and ϵ0, have been installed therein empirically. We propose to introduce a pair of new constants

as µ̊0 =
√
N/µ0 and ϵ̊0 =

√
N/ϵ0 , where N is the force unit. Then the first constant, µ̊0, has the dimension

of ampere, ⌊A⌋ , and the second one, ϵ̊0, has the dimension of volt, ⌊V⌋ .
2) Derivation of the energetic field quantities as the real-valued functions of time needs to solve the

waveguide problem in the time domain directly. The postulation that the electromagnetic fields are proportional

to the complex valued exponential exp (iωt) is nonusable. Thereby, the solution is obtained herein within

the framework of the evolutionary approach to electrodynamics (EAE) , which was recognized recently as an

alternative to the classical time-harmonic field method [10].

3) Mathematical aspects of the EAE have been developed in our previous publications. The Klein–

Gordon equation (KGE) plays the central role in the waveguide problem of this approach. Miller discovered

ten orbits of symmetry of the KGE. Herein, we considered the solutions that correspond to Miller’s orbit 1 and

orbit 2. One can find: (i) the derivation of the modal basis for a waveguide in [11] and [12], (ii) the presentation

of the solutions to the KGE corresponding to Miller’s orbit 3 in [13] and orbit 7 in [14].
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