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Birsel CAN ÖMÜR∗, Ahmet ALTINDAL

Department of Physics, Faculty of Arts and Sciences, Yıldız Technical University, İstanbul, Turkey
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Abstract:A novel coumarin-substituted manganese phthalocyanine (5) was successfully synthesized and used as sensing

element for benzene and acetone vapor detection. The effects of water vapor on the benzene and acetone vapor-sensing

properties and adsorption isotherms on thin film of 5 were also studied. Our preliminary results indicated that the

presence of humidity modifies the baseline frequency but not the sensitivity of the sensor toward benzene and acetone

vapors. Two isotherm models, Langmuir and Jovanovic isotherms, were selected to describe the adsorption process.

Linear regression analysis, which is the most basic and commonly used predictive analysis method, was used to estimate

the suitability of the selected isotherm models. The Jovanovic model was found to be adequate for describing benzene

and acetone adsorption onto compound 5.
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1. Introduction

Phthalocyanines (Pcs) have triggered wide research interest in recent years due to their unique physical and

chemical properties. On the basis of their thermal and chemical stabilities and high absorption spectra in the

visible region, Pcs have been used as dyes in dye-sensitized solar cells [1] and gas sensors for emissions such as

NO, NO2 , SO2 , and volatile organic compound vapors [2–5]. The gas-sensing application of Pc is based on the

change in the material resistance when exposed to different atmospheres; hence the adsorption and diffusion

behaviors of guest molecules in Pcs are important in terms of sensing performance. Of the various volatile organic

compounds, benzene and acetone are very common in our daily life as cleaning agents and starting material

in making other chemicals such as rubbers and detergents. Benzene is also a well-known human carcinogen.

Studies in both people and lab animals show that benzene evaporates quickly and causes cancer. According

to WHO guidelines for indoor air quality [6], the permitted concentration limit of benzene is 16 µg m−3 and

such concentration can be found in living areas. Therefore, a considerable number of works have been focused

on the development of organic-based sensors for the detection of benzene and acetone vapors. In this respect,

quartz crystal microbalance-based sensors suffer many advantages over chemoresistive and optical sensors such

as high sensitivity, short response and recovery times, portability, and simple instrumentation [7,8]. Responses

of the quartz crystal microbalance (QCM) sensors vary in direct proportion to the extent of vapor sorption,

which is typically rapid, reversible, and a linear function of vapor concentration [9]. Therefore, QCM sensors

coated with a sensing layer have a number of useful attributes for the analysis of volatile organic compounds.
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The present work focused on applications of manganese (III) phthalocyanines bearing 7-oxy-4-(4-methoxyphenyl)-

8-methylcoumarin functionalized QCM sensor for sensing of benzene and acetone vapors. The effect of increasing

concentration of solvent vapors on the resonance frequency of QCM was studied. This study also highlighted

the isotherm of benzene and acetone adsorption and the influence of humidity on it. The adsorption isotherms

evaluated include Langmuir and Jovanovic isotherm models.

2. Experimental

2.1. Sensitive layer deposition

The sample under investigation was spray-deposited coumarin-substituted manganese phthalocyanine (Pc)

thin film. The synthesis details of this novel 1 (4), 8 (11), 15 (18), 22 (25)-tetra (4-(4-methoxyphenyl)-8-

methylcoumarin-7-yloxy) manganese (III) phthalocyanine (5), shown in Figure 1, were reported elsewhere [10].

In order to study the interaction of benzene and acetone vapors with this layer, thin film of compound 5 was

formed on a QCM by spraying of 3 × 10−3 M chloroform solution of 5. Before the spray deposition of the Pc

solution, the quartz crystals were cleaned in piranha solution (3:6 mixture of 30% H2O2 and H2SO4) at room

temperature for 4 min.

Figure 1. Structural formula for 1 (4), 8 (11), 15 (18), 22 (25)-tetra (4-(4-methoxyphenyl)-8-methylcoumarin-7-yloxy)

manganese (III) phthalocyanine.

2.2. Benzene and acetone sensing measurements

Liquid benzene and acetone was purchased from Sigma Aldrich in analytical reagent grade and used as received.

Bubblers were used to generate gaseous benzene and acetone from liquids, with nitrogen flowing inside the

bubbler. Benzene and acetone were then diluted with a secondary nitrogen flow. The benzene- and acetone-

sensing properties of the coating material were tested in a cylindrical chamber of Teflon, 8 cm long and 4 cm in

diameter, through which a gas could be passed. Before the exposure to analyte vapors, the sensor was purged

with reference gas (N2) until a stable baseline was established. After the 5-based sensor in the chamber was

stable, it was exposed to eight different concentrations of the benzene and acetone vapor. In order to see the

influence of relative humidity (RH) on the adsorption isotherm and sensitivity of the sensor, response/recovery

characteristics of the sensor were measured in different RH conditions. The desired level of humidity was created

by bubbling the nitrogen gas through deionized water. The humidity-sensing experiments were conducted at

relatively low RH levels to observe the adsorption process rather than condensation. For this reason, the relative

humidity was varied between 0% and 40% RH and controlled with a commercially available humidity meter
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CAN ÖMÜR and ALTINDAL/Turk J Phys

during the sensing experiments. Due to the weak temperature dependence of resonance frequency, AT-cut QCM

of 10 MHz fundamental frequency was used as transducer. The sensing layer, phthalocyanine in our case, was

deposited onto the Au electrode surface of the QCM by spray coating. The frequency shifts due to adsorption of

benzene and acetone vapors were recorded vs. time using a programmable frequency counter (Keithley Model

776). All the experimental setup was controlled using an IEEE 488 data acquisition system incorporated into

a personal computer.

3. Results and discussion

3.1. QCM measurements

The working principle of the QCM gas sensors is based on a shift in the fundamental resonance frequency of

the quartz crystal resonator due to the mass accumulation on its surface. As shown by Sauerbrey [11], the

deposition of a homogeneous coating promotes a shift in the fundamental resonant frequency of the quartz

crystal, which can be expressed by

∆m = −
√
ρq µq

2 f2
0

A∆f, (1)

where A is the electrode area, f0 is the fundamental resonance frequency (Hz), ρq the quartz density, and µq

its shear modulus.

Figures 2a and 2b depict the comparative sensing performance of the 5-coated QCM sensor towards

various concentrations of benzene and acetone vapor expositions in the condition of different RH between ∼5%

and 40%, respectively. With each injection of benzene and acetone vapor, the adsorption of target molecules onto

the sensing layer resulted in a decrease in the resonance frequency of the quartz crystals. After an adsorption

time of ∼30 min, a frequency shift of 12 Hz was recorded for 5% benzene vapor in dry atmosphere. As can

be seen from the Figure 2, the frequency shift increases with the analytes’ concentration. Figure 2 also shows

that the presence of humidity, acting as interference gas, modifies the baseline frequency but not the sensitivity

of the film toward benzene and acetone vapors. In order to get an idea of the influence of the RH level on

sensor performance, the benzene and acetone sensitivities were calculated from the concentration dependent

response/recovery characteristics of the sensor.

Figure 2. a) Benzene; b) acetone vapor response of 5-coated sensor to indicated concentrations of analyte.
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Figure 3. Variation in the sensitivity with acetone vapor concentration at various RH levels.

As a representative result, the influence of relative humidity (RH) on the acetone sensitivities of the

sensor as a function of acetone vapor concentration is shown in Figure 3. It is clear from the Figure 3 that

humidity level has a negligible effect on the acetone response of the film sample. This suggests the existence of

two kinds of adsorption surface sites on the film surface. Patchwise and random models are frequently used to

describe the adsorption processes on heterogeneous surfaces. In the patchwise model developed by Langmuir

[12], the adsorption sites of equal adsorption energies are assumed to be grouped together into patches. This

model also assumes that the patches are so large that the interactions between two molecules adsorbed onto

different patches can be neglected. In the random model, the adsorption sites of equal adsorption energies are

assumed to be distributed fully at random over a heterogeneous surface [13].

The obtained response/recovery characteristics and the RH level variation in the sensor sensitivities

indicate the existence of a heterogeneous surface and surface energetic heterogeneity in the case of manganese

phthalocyanine.

3.2. Adsorption isotherms

Adsorption is usually described through isotherms, that is, an empirical relationship used to predict how much

adsorbate can be adsorbed by an adsorbent. A quantitative description of this process is essential to model the

adsorbate transport. Distribution of organic vapor between the gas phase and the solid phase can be described

by several isotherm models such as Langmuir, Temkin, and Freundlich. The Langmuir isotherm arises from

assuming that the energy of adsorption of the species is independent of the coverage or the atomic arrangement

of the species on the surface [14]. Once a site is filled, no further sorption can take place at that site. This

indicates that the adsorption is limited to one monolayer and evolution of θ is given by the following equation:

dθ

dt
= kaC(θ0 − θ) − kdθ, (2)

where ka is adsorption kinetic rate, kd is desorption kinetic rate, and θ0 is the total number of free sites on

the surface. In equilibrium, dθ
dt = 0, Eq. (2) becomes

θe =
kaCeθ0

kaCe + kd
(3)
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Eq. (3) can be rearrangement to obtain a linear form:

1

θe
=

1

kCeθ0
+

1

θ0
, (4)

where k = ka

kd
, θ0 is the maximum monolayer adsorption capacity, Ce is unadsorbed gas molecule concentration

in the gas phase, and θe is the amount of adsorbed gas molecule per unit mass of sorbent.

If we assume that the frequency shift in the QCM is proportional to the amount of adsorbed gas molecules,

the plot of 1 / θe as a function of 1 /Ce should give a linear relationship. Figures 4a and 4b show a plot of

the linearized form of the Langmuir model under various humidity conditions for benzene and acetone vapors,

respectively.

Figure 4. Langmuir plots for benzene (a) and acetone (b) vapors on the compound.

The applicability of the Langmuir model to experimental data was quantified by the correlation coefficient

(R2), which was obtained from the slopes of the 1 / θe vs. 1 /Ce plots.

It was found from Figures 4a and 4b that the correlation coefficients are in the range of 0.845–0.903 for

benzene vapor and 0.898–0.925 for acetone vapors. These values of R2 suggest that the Langmuir isotherm is

not appropriate to model the sorption of benzene and acetone vapors onto the Pc film investigated.

The model of an adsorption surface considered by Jovanovic [15] was initially derived for adsorption of

gases, but has also been used to describe adsorption of peptides and proteins on ion-exchange adsorbents

[16]. The Jovanovic isotherm keeps the same assumptions contained in the Langmuir isotherm equation,

only considering, in addition the possibility of some mechanical contacts between the adsorbing and desorbing

molecules when the surface is homogeneous. The Jovanovic model leads to the following relationship:

θe = θmax (1 − eKJCe) (5)

The linearized form of the Jovanovic equation is given as follows:

ln θe = ln θmax − KJCe, (6)

where θmax is the maximum amount of analyte adsorbed per unit mass of sorbent and KJ , the Jovanovic

constant, is related to the energy of adsorption. The applicability of the Jovanovic model can be tested by
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linear fitting of (ln θe) versus Ce plot. Figures 5a and 5b display the variation in (ln θe) with Ce for benzene

and acetone vapors, respectively.

Figure 5. Plot of Jovanovic isotherm model for sorption of benzene (a) and acetone (b) onto compound 5.

Examination of the adsorption data shows that good correlation coefficients (R2) were obtained by fitting

the experimental data to the Jovanovic isotherm. It reveals that the plots of (ln θe) versus Ce plots are linear

for all RH levels, indicating that the adsorption of benzene and acetone vapors onto compound 5 obeys the

Jovanovic adsorption isotherm.

4. Conclusion

A spray-coated film benzene and acetone vapors sensor based on novel 1 (4), 8 (11), 15 (18), 22 (25)-tetra (4-

(4-methoxyphenyl)-8-methylcoumarin-7-yloxy) manganese (III) phthalocyanine was successfully developed. All

the observations demonstrated that benzene and acetone vapors detection can be achieved by the film of 5 even

at room temperature. A comparative study of the applicability of isotherm models of Langmuir and Jovanovic

isotherms to describe the experimental adsorption data of benzene and acetone vapors on Pc compound was

carried out. The investigations indicated that the gas sensing process in Pc film is related to surface reactions

and humidity interference led to modifying of the baseline frequency of the sensor. Comparing the regression

coefficients R2 shows that the adsorption of benzene and acetone vapors onto compound 5 can be successfully

described by the Jovanovic adsorption isotherm.
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[10] Altun, S.; Odabaş, Z.; Altındal, A.; Özkaya, A. R. Dalton T. 2014, 43, 7987-7997.

[11] Sauerbrey, G. Z. Phys. 1959, 155, 206-222.

[12] Langmuir, I. J. Am. Chem. Soc. 1918, 40, 1361-1403.

[13] Hill, T. L. J. Chem. Phys. 1949, 17, 762.

[14] Darken, L. S.; Turkdogan, E. T. Heterogeneous Kinetics at Elevated Temperatures; Belton, G. R.; Worrell, W. L.

eds., Plenum Press, New York, NY, USA, 1970, pp. 25-95.

[15] Jovanovic, D. S. Colloid Polym. Sci. 1969, 235, 1203-1213.
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