
Turk J Phys

(2017) 41: 133 – 142

c⃝ TÜBİTAK
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Abstract: The properties of low-lying magnetic dipole (M 1) excitations in 153Eu were studied within a rotational

invariant quasiparticle phonon model that takes into account the symmetry-restoring as well as spin–spin residual forces.

The calculations show that there are purely collective M 1 excitations lying at 2–4 MeV fragmented over orbital 1+

states of the 152Sm core nucleus. The results were compared to the experimentally known M 1 excitations at 2–3 MeV.

A reasonably good agreement in the total transition strength, the centroid energy, and the resonance width was obtained.
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1. Introduction

The low-lying magnetic dipole (M1) strength in atomic nuclei is almost completely constituted by the scissors

mode. From a geometrical point of view, scissors mode is described as an oscillation of the deformed neutron

system against the deformed proton system [1]. The scissors mode has been investigated intensively by both

experimentalists and theoreticians since the first experimental discovery of it in 156Gd in 1984 [2]. These

extensive studies have provided us a large body of information on the systematics of this mode particularly in

even–even nuclei over a wide mass range from light to actinide region (for a review see [1,3]).

The mode in odd-mass nuclei was first observed in 163Dy (in 1993) where the observed dipole strength

was fit into the systematics of the scissors mode in the neighboring even–even 164,162,160Dy isotopes [4]. After

this discovery, a large number of both experimental and theoretical works were stimulated [1, and the references

therein]. From the theoretical point of view, the scissors mode in odd-mass nuclei has been analyzed with

several models. Some examples are the interacting boson fermion model (IBFM), generalized coherent-state

model, sum rule approaches, and group theory approaches [1,3]. However, these models do not reproduce the

fragmentation of the M 1 strength, which is of crucial importance in odd-mass nuclei. The fragmentation of

M 1 strength in odd-mass nuclei can be explained using microscopic models such as quasiparticle random phase

approximation (QRPA) or the more general quasiparticle phonon nuclear model (QPNM). However, in these

models the rotational symmetry of the single particle Hamiltonian simultaneously is violated by the Hartree–

Fock–Bogoliubov (HFB) approaches in the mean field [5–7]. The violation of the rotational invariance results in

admixtures (spurious states) connected with rotational degree of freedom in Kπ = 1+ excitation states of even–

even core [7,8]. One has to remove these spurious contributions to determine exactly the energies of excitation
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states and the M 1 strength distribution in odd-mass nuclei. It has been recently shown that for odd mass nuclei

it is possible to obtain the precise restoration of the rotational symmetry of the QPNM Hamiltonian in the

framework of the separable isoscalar and isovector residual interaction [9,10]. The method originally proposed

by Kuliev et al. for the elimination of the spurious states in deformed even–even nuclei [7] successfully described

the low-lying magnetic dipole excitations in even–even rare-earth [11], gamma-soft [12], and actinide nuclei [13].

In the present paper, the low-lying M 1 transitions, so-called scissors mode, are theoretically investigated

in deformed odd-mass 153Eu nucleus in the framework of the rotational invariant (RI-) QPNM for the first

time. The study of the scissors mode in the 153Eu nucleus deserves special attention since the dipole strength

distributions in its core 152Sm were investigated by both experimentalists [14] and theorists [7].

2. Theory

The general form of the QPM Hamiltonian is

H ≈ Hsqp +Hcoll. +Hint., (1)

where

Hsqp =
∑
s,τ

εsα
+
sραsρ (2)

Hcoll. =
1

2

∑
ττ ′

χττ ′

∑
ss′

σ
(µ)
ss′ Lss′g

i
ss′

[
Q+

iµ(τ) +Qiµ(τ)
]
× ×

∑
tt′

σ
(µ)
tt′ Ltt′g

i
tt′

[
Q+

iµ(τ
′) +Qiµ(τ

′)
]
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2

∑
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∑
tt′

∑
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σ
(µ)
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} (4)

Here Hsqp describes the motion of quasiparticles and includes pairing correlations, Hcoll. represents the

collective motion of nucleons, and Hint. describes connection [9,10].

In Eqs. (3) and (4), ; giss′(τ) = ψi
ss′(τ) + ϕiss′(τ), ss

′(tt′) represents the single-particle states of the

axially symmetric Woods–Saxon potential for neutrons (protons). Mss′ = usus′+vsvs′ and Lss′ = usvs′−us′vs ,
where us and vs are the Bogoliubov transformation coefficients and εs(τ) are the energies of one-quasiparticle

states. α+
sρ(τ) and Q+

iµ are creation operators of quasiparticles and phonons, respectively. The quantities

σ
(µ)
ss′ = ⟨s|σµ |⟩ and Dτ

ss′ are the matrix elements of the Pauli spin operator and the two-quasiparticle operators,

respectively. The coupling constants of spin–spin residual force are χnn = χpp = χ and χnp = qχ for the

neutron–neutron, proton–proton, and neutron–proton interactions. The coupling constant can be described in

terms of interaction strength (κ), i.e. χ = κ
A MeV [9,10].

The wave function for an odd-mass nucleus describing the nonrotational states with a fixed value of

Kπ can be written as follows:

ψj
K(τ) =

∑
q

N j
ςq (τ)α

+
ςq (τ) +

∑
iµ

∑
ν

Giµν
j α+

ν (τ)Q
+
iµ

 |ψ0⟩ µ = 0,±1 (5)

134



TABAR/Turk J Phys

with the normalization condition

⟨ψj
K(τ)|ψj

K(τ)⟩ =
∑
q

(
N j

ςq

)2

+
∑
iµ

∑
ν

(
Giµν

j

)2

= 1, (6)

where ψ0 is the wave function of the ground-state of even–even core, i.e. phonon vacuum. The integer

j = 1, 2, 3, .... is the number of the state, and ς and v denote the quantum numbers of a one-quasiparticle

state. The quantities N j
ςq and Giµν

j define the contribution of the one-quasiparticle and quasiparticle⊗phonon

component to the normalization condition [9,10].

Because of the axially symmetric isoscalar and isovector terms of the mean field potential, the rotational

invariance of Hsqp is simultaneously broken. The broken rotational symmetry can be restored by including the

effective isoscalar (h0) and isovector (h1) forces in the following form:

h0 = − 1

2γ0

∑
µ=±

[Hsqp − V1, Jµ]
+[Hsqp − V1, Jµ] (7)

h1 = − 1

2γ1

∑
µ=±

[V1, Jµ]
+[V1, Jµ] (8)

In Eqs. (7) and (8), Jµ total angular momentum operator can be written as the summation of two terms

Jµ = Jqp
µ + Jbos.

µ , where in the quasiparticle-phonon representation

Jqp
µ =

∑
ss′

j
(µ)
ss′ Mss′Dss′ (9)

Jbos.
µ =

∑
ss′

j
(µ)
ss′ Lss′

(
Q+

iµ +Qiµ

)
(10)

If Eqs. (9) and (10) are written in Eqs. (7) and (8), one can see that Eqs. (7) and (8) separate into quasiparticle

(qp), boson (bos.), and interaction (int.) terms. The quasiparticle term causes a small energy shift of one-

quasiparticle spectra and does not affect the M 1 distributions. Therefore, only boson and interaction terms

are taken into account in the calculation of M 1 strength in odd-mass nuclei. Therefore, the violated rotational

symmetry of QPNM Hamiltonian of odd-mass nuclei can be restored using the separable residual interaction in

the following form [9,10]:

hbos.0 = −1
2γ0

∑
µ=±1

[
Hsqp − V1, J

bos.
µ

]+ [
Hsqp − V1, J

bos.
µ

]
hint.0 = −1

2γ0

∑
µ=±1

{[
Hsqp − V1, J

qp
µ

]+ [
Hsqp − V1, J
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V1, J

bos.
µ
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} (12)

135



TABAR/Turk J Phys

Here V1 is the isovector potential [7] and Jµ (µ = ±1) is angular momentum operator. h.c. means hermitic

conjugate. In Eqs. (11) and (12) the coupling constants γ0 and γ1 are determined self-consistently by the

mean-field parameters [9,10]

γ(µ=±) = ⟨ψK0 |
[
J+
µ , [Hsqp, Jµ]

]
|ψK0⟩

γ
(µ=±)
1 = ⟨ψK0 |

[
J+
µ , [V1, Jµ]

]
|ψK0|⟩

(13)

where

γ(−1) = γ(+1) = γ ; γ
(−1)
1 = γ

(+1)
1 = γ1

γ0 = γ − γ1 ; γ = γn + γp ; γ1 = γn1 − γp1

(14)

In Eq. (9) |ψK0
⟩ = α+

ς0 |ψ0⟩ is the ground-state wave function of an odd-mass nucleus, where ψ0 corresponds

to a phonon vacuum. The energies of the nonrotational states in odd-mass nuclei are determined by means of

the variational principle, i.e.

δ

{
⟨ψj

K(τ)|Hinv.|ψj
K(τ)⟩ − ⟨ψj

K(τ)|Hinv.|ψK0(τ)⟩ − ηjK
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+
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]}
= 0 (15)

After performing a variational procedure and some transformations, we obtain the following secular determinant

[9,10]:

det



(ες1 − ηK)− Fτ (ς1, ς1) −Fτ (ς1, ς2) ...... −Fτ (ς1, ςm)
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...... ...... ...... ......

−Fτ (ςm, ς1) −Fτ (ςm, ς2) ...... (εςm − ηK)− Fτ (ςm, ςm)


= 0 (16)

where

Hinv. = Hsqp +Hcoll. +Hint. + hboz.0 + hint.0 + hboz.1 + hint.1 (17)

Fτ (ςq, ςm) =
∑
iν

Λiν (ςq, τ) Λiν (ςm, τ)(
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(J)
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∑
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In Eq. (18), ωi denotes the energy of the collective vibrational state of even–even core. Here ηjK (j= 1, 2, 3,

....) are the roots of the secular equation from which the energies of the nonrotational states in odd-mass nuclei

are determined. q is the number of the average field levels with a given Kπ . Using the normalization condition

and the secular equation, analytical formulae for the functions Giµv
j and N j

ςq amplitudes of the wave function

can be derived [9,10].

The formula for the reduced probabilities of M 1 transitions from the ground states to the excited states

of odd-mass nuclei can be written in the form

B (M1 ↑; I0K0 → IK) = ⟨I0K01µ| IK⟩2
∣∣∣∣∣−Nς0

∑
q
N j

ςqm
(µ)
ςqς0(τ)Mςqς0+ + Nς0

∑
τ

∑
j,iµ

∑
ss′
m

(µ)
ss′ (τ)Lss′g

i
ss′G

vς0
jiµ

∣∣∣∣∣
2

(22)

where m
(µ)
ss′ (τ) =

√
3
4π

[
(gτs − gτ

l ) ⟨s| sτµ |⟩+ gτ
l ⟨s| Jτ

µ |⟩
]
µN are the single particle matrix elements of the M 1

operator [9, 10]. E 1 and M 1 transitions in odd-mass nuclei have not been experimentally distinguished.

Therefore, the magnetic dipole radiation widths have been calculated using

gΓ0 (M1) = 11.547× E3
γ ×B (M1 ↑) [meV ] (23)

gΓred
0 (M1) = 11.547×B (M1 ↑)

[
meV MeV −3

]
(24)

relations, where g = 2J0+1
2J+1 [9,10].

3. Results and discussion

The calculations were performed with the single-particle energies and wave functions of an axially symmetric

Woods–Saxon potential [15] with β2 = 0.3064 (27) quadrupole deformation parameter derived from the exper-

imental quadrupole moment [16]. The single-particle spectrum was taken from the bottom of the potential

well up to +5 MeV. The proton and neutron pairing interaction constants, ∆p = 0.806 and ∆n = 0949, were

chosen based on the single-particle levels. The strength of the spin–spin interaction (κ= 45 MeV) was deter-

mined by comparison of the theoretical and the experimental values of ground-state intrinsic magnetic moments

(gK). In order to compute the M l strengths, the effective gyromagnetic factor
(
geffs = 0.55gτs

)
derived by the

ground-state calculation of the 153Eu nucleus was used. The normalization of the gτs factor was due to the spin

polarization of the doubly even core.

The ground-state spin and parity of 153Eu was experimentally found to be Iπ0 = 5/2+ [17]. Therefore, the

states with Iπf = 3/2+ and Iπf = 7/2+ can be excited by magnetic dipole transitions. Accordingly, the reduced

transition probabilities, i.e. B(M 1) values from the ground-state (I0K0) to all excited states in 153Eu with

IfKf were calculated in RI-QPNM. In the calculations phonon basis was constructed by IπK = 1+1 RI-QRPA

phonons of doubly even core. In order to obtain a good description of the low-lying M1 spectra in odd-mass

nuclei, the M1 strength distributions in the corresponding even–even core should be studied accurately. The

success of the RI-QRPA in the description of the low-lying M 1 distribution in 152Sm used to construct the

phonon basis of 153Eu is demonstrated in Table 1 by the comparison of RI-QRPA results with two-rotor model

(TRM) [18] and projected Hartree–Fock–Bogoliubov (PHFB) [19] calculations, and with the experimental data

[20].
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Table 1. Comparison of RI-QRPA results for summed M 1 strength and energy centroid of M 1 resonance in 152Sm

with experimental data [12] and with other theoretical studies.

Theory
Experiment [14]

RI-QRPA TRM PHFB

2–3 MeV 2–4 MeV 2–4 MeV 2–4 MeV 2–4 MeV∑
If
B(M1 ↑)[µ2

N ] 1.25 2.37 2.35 2.53 2.35 ± 0.11

E [MeV ] 2.91 3.24 3.05 3.29 2.98

Figure 1 shows the theoretical and experimental M 1 strength distribution for 153Eu. In the lower and

upper parts of Figure 1 the experimental data are compared to RI-QPNM and nonrotational invariant (NRI-)

QPNM results, respectively.
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Figure 1. M 1 spectrum obtained from RI-QPNM and NRI-QPNM calculations compared to experiment [18].

As seen from Figure 1, because of the coupling properties of the M 1 operator, the states with Kf = K0−
1 are more fragmented than the states with Kf = K0 + 1. The distribution of the experimental B(M 1) values

can satisfactorily be described within the RI-QPNM taking into account isoscalar and isovector symmetry

restoring interactions simultaneously. The inclusion of the symmetry restoring interactions leads, in comparison

with the results of NRI-QPNM, to a more than two order of magnitude decrease in the calculated B(M 1)

values. The summed QPNM strength in the energy range 2–3 MeV is
∑

If
B (M1 ↑) = 1.168µ2

N whereas the
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summed NRI-QPNM strength in this interval is
∑

If
B (M1 ↑) = 3.90µ2

N . This case is due to the elimination of

spurious states arising from broken rotational symmetry of the single quasiparticle Hamiltonian in RI-QPNM.

In addition, the calculated M 1 strength in RI-QPNM is more fragmented in comparison with the NRI-QPNM

results. The orbital-spin ratios ( l/s) ranging from 2.1 to 34.7 for RI-QPNM M 1 states indicate that the low-

energy M 1 states (2–4 MeV) are exclusively orbital excitations. This result is in agreement with the conclusion

[1,3] about the orbital character of the low-lying M 1 excitations, so-called scissors mode, in deformed doubly

even-mass nuclei.

For a more quantitative evaluation of theoretical results, the predictions of RI-QPNM for gross features

of M 1 transitions in 153Eu are compared in Table 2 with experimental data [20].

Table 2. Comparison of the predictions of RI-QPNM for gross features of M 1 transitions in 153Eu with experimental

data [12].

Kπ

Theory Experiment [20]∑
If

B(M1 ↑)
∑

If
Γ0(M1)

∑
If

Γred
0 (M1) E

∑
B(M1 ↑)

∑
Γ0(M1)

∑
Γred
0 (M1) E

[µ2
N ] [meV ] [meV MeV −3] [MeV ] [µ2

N ] [meV ] [meV MeV −3] [MeV ]

3/2+ 0.606 106.25 7.009 2.457 - - - -

7/2+ 0.562 98.30 6.504 2.457 - - - -

All 1.168 204.55 13.513 2.456 0.338 ± 0.06 54.08 ± 8.5 3.91 ± 0.64 2.263

The experimental centroid energy of 2.263 MeV is quite well reproduced by RI-QPNM
(
E = 2.456MeV

)
while the summed transition strength calculated in RI-QPNM is almost 3 times larger than the experimental

one. On the other hand, as seen from Table 1, the summed M 1 strength predicted by RI-QPNM in odd-mass
153Eu in 2–3 MeV energy interval should be nearly equal to that calculated using RI-QRPA for the core nucleus,

i.e. 152Sm. However, the degree of fragmentation increased going from even–even mass 152Sm to odd-mass
153Eu.

The transition strength in odd-mass nuclei becomes highly fragmented owing to the high level densities.

Therefore, a large part of the strength remains unresolved in the background of the NRF spectra of the deformed

odd-mass nuclei. With the available experimental techniques the detection of these weak transition strengths

is impossible [20,21]. It was shown that the missing strength can be extracted from the background by means

of a statistical fluctuation analysis method [22]. However, this method has not been applied to the proton-odd

nucleus 153Eu so far. Fluctuation analysis for 153Eu would give us a better opportunity to compare the QPNM

results.

It is of special interest to discuss in more detail the sources of M 1 transition strength predicted by

the RI-QPM. Therefore, the microscopic structure of low-lying M 1 states with
∑

If
B(M1 ↑) ≥ 0.1 µ2

N in

153Eu is presented in Table 3. Here, one-quasiparticle components as well as the quasiparticle⊗one-phonon

ones whose contribution to the normalization condition of the wave function is more than 1% are shown. It
should be emphasized that in states above 1.5 MeV the quasiparticle⊗one-phonon components are dominant.

As seen from Table 3, the contributions of the one-quasiparticle components to normalization of wave function

are smaller than 1%. As a result, the dominant component in the region of 2–3 MeV is [413] ↓ ⊗Qi . This

indicates that the low-lying M 1 states (2–3 MeV) in odd-mass 153Eu are collective.
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Table 3. The structure of low-lying M 1 states with
∑

If
B(M1 ↑) ≥ 0.1 µ2

N in 153Eu in 2–3 MeV.

E[MeV ]
∑

If
B(M1 ↑)[µ2

N ] Kπ N j
Kςq

G
Kςqυ
ij Structure

2.286 0.195 7/2+ 0.054 0.998 99.6 3% [413] ↓ ⊗Q3

2.310 0.237 3/2+ 0.052 0.999 99.48% [413] ↓ ⊗Q3 + 8.05% [413] ↓ ⊗Q4

2.315 0.102 3/2+ 0.052 0.999 99.48% [413] ↓ ⊗Q3 + 8.05%[413] ↓ ⊗Q4

2.446 0.232 7/2+ 0.060 0.998 99. 53% [413] ↓ ⊗Q4

2.588 0.115 3/2+ 0.140 0.990

2.96% [413] ↓ ⊗Q3 + 59.34% [413] ↓ ⊗Q4

+8.86% [413] ↓ ⊗Q5 + 15.11% [413] ↓ ⊗Q6

+7.96% [413] ↓ ⊗Q7 + 1.03% [413] ↓ ⊗Q17

From the systematic analyses of M 1 strength distribution in deformed even-mass nuclei it is well known

that two different classes of magnetic excitations exist [1]. The states from 2 MeV up to about 4 MeV have

large orbital contributions, whereas the higher excitations are predominantly of the spin-flip type. Our interest

is now in orbital and spin M 1 strength distributions in odd-mass 153Eu. The result of the QPNM calculation

of the total, orbital, and spin M 1 strengths in the energy range 1.5–13 MeV is presented in Figure 2.

Figure 2 shows that spin–spin interactions shift the spin strength from low to higher energies and

increase the orbital character of the low-lying M 1 excitations and spin M 1 states between 10 and 13 MeV.

As also seen from Figure 2, spin M 1 strength is highly fragmented. The summed transition strength is
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Figure 2. The M 1 spectrum of the obtained RI-QPNM solutions for 153Eu together with orbital and spin M 1 strengths

in 1.5–13 MeV.
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∑
If
B(M1 ↑) = 3.389µ2

N in 10–13 MeV. The centroid of this spin resonance is located at 11.8 MeV. There

has been no experimental indication of the corresponding spin M 1 strength in deformed odd-mass nuclei yet.

However, it is well known that there are spin-flip resonances in even–even deformed nuclei above 7–8 MeV. Here

the first theoretical predictions for spin M 1 excitations in the odd-mass 153Eu nucleus are given and it may be

of interest for experimentalists.

4. Conclusion

Within a microscopic approach (RI-QPNM) that includes effective restoration forces as well as spin–spin residual

interaction low-lying M 1 excitations were investigated in the well-deformed 153Eu nucleus. In order to judge the

quality of RI-QPNM’s predictions the results of another theoretical approach (NRI-QPNM) and the comparisons

of these two approaches with the experimental data were also given. For RI-QPNM, good agreement with

experiment results in the centroid energy and the distribution of M 1 strength was obtained. However, RI-

QPNM results for transition strength and width were three times higher than those observed in the experiment.

This discrepancy is due to the hidden strength in background of the NRF spectra and so fluctuation analysis is

needed for an exact comparison of RI-QPNM results for 153Eu.

RI-QPNM calculations predict strong and pure spin M 1 excitations around 10–13 MeV. In this context,

an experimental search for high-lying M 1 strengths would be very interesting.

On the basis of this investigation, it is possible to conclude that introduction of effective restoration forces

in QPNM is sufficient to explain the experimentally observed fragmentation in M 1 spectra of 153Eu.

Acknowledgments

I express my gratitude to Dr H Yakut and Prof AA Kuliev for their valuable contributions and stimulating

discussions. The financial support from the Scientific and Technological Research Council of Turkey (TÜBİTAK)
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