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Abstract: The microscopic cluster model approach has been performed to study the nuclear structure of the lightest

and heaviest two-neutron halo nuclei, 6He and 22C, respectively. The matter radius and binding energy for the 6He and
22C nuclei are calculated and the effect of the core deformation (20C) on the properties of 22C nuclei is also discussed.

Calculations have shown that the microscopic cluster model provides a good description of binding energy as well as

matter radius in comparison to experimental data. The fittings of some parameters such as central potential depth

(Vo) , empirical constant (ro) , and surface diffuseness value (a) are discussed to find agreement in the results with the

available experimental data. The exotic properties of two-neutron halo nuclides 6He and 22C such as weak binding

energy, abnormal large matter radius, and Borromean system have been confirmed in the present work.
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1. Introduction

The progress in radioactive nuclear-beam facilities helps to discover new phenomena in nuclear physics such

as halo nuclei, where the core nucleus is surrounded by a halo of orbiting protons or neutrons. The halo

phenomenon make the nucleus radius abnormally larger than that predicted by the liquid drop models, but

with weak binding energy. The known two-neutron halo nuclides currently are 6He, 11Li, 14Be, 17B, 19B, and
22C. The lightest one is 6He while the heaviest one is 22C; these are investigated in this work.

The attractive case of the unusual 22C nucleus was lately formulated as a two-neutron halo with a 20C

core within the renormalized zero-range model [1,2]. This investigation allowed us to put some constraints on

the separation energy of two-neutron S2n as well as the 21C virtual state energy using the recently extracted

matter radius of 5.4 ± 0.9 fm [1,3]. The quoted value of S
(exp)
2n is 0.42 ± 0.94 MeV [1,3].

The radius of 6He was first derived by Tanihata et al. [4,5] to be rm= 2 .73(3) fm. Consecutively,

Tostevin and Al-Khalili [6] arrived at a value of rm = 2 .54(3) fm. Later Alkhazov et al. [7] and Neumaier et

al. [7–9] found another result for 6He, rm= 2 .45(8) fm. The two valence neutrons are found to be bound by a

little less than 1 MeV (0.97 MeV) [10].

2. Theoretical aspect

The three-body system is described in terms of the core with valence neutrons.
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The distances between each couple of particles r⃗jk and the distance between the mass center of the pair

and a third particle are described in the Jacobian coordinates ( x⃗, y⃗)

where x =
√
Ajkr⃗jk =

√
AjAk

Aj +Ak
r⃗jk and yi =

√
A(jk)ir⃗(jk)i =

√
(AjAk)Ai

Ai +Aj +Ak
r⃗(jk)i.

The Hamiltonian of the core determines eigenvalues εcore and eigenstates φcore

with ĥcore(ξcore)φcore(ξcore) = εcoreφcore(ξcore). (1)

The total wave function is

ΨJM (x, y, ξ⃗) = φcore(ξcore)ψ(x, y). (2)

Ψ(x, y) contains the spin, radial, and angular of the remaining two bodies relative to the core. The hyper-

spherical is used to convert a two-dimensional differential equation into coupled one-dimensional equations. The

Jacobi coordinates (x, y)are converted into the coordinates of the hyperspherical (hyperangle θ and hyperradius

ρ) defined as

ρ2 = x2 + y2 and θ = arctan(xy ).

The hyperspherical expansion “radial and angular wave functions” is

Rn(ρ) =
ρ
5/2

ρ3o

√
n!

(n+ 5)!
L5
nlag(z) exp(

−z
2

), (3)

where z = ρ/ρo .

ψ
lxly
k (θ) = N

lxly
k (sin θ)lx(cos θ)

ly
P

lx+
1
2 ,ly+

1
2

n (cos 2θ) (4)

The valence neutrons wave function is

ψ
lxly
n,k (ρ, θ) = Rn(ρ)ψ

lxly
k (θ), (5)

so ψ(x, y)in Eq. (2) is

ψ(x, y) = ψ
lxly
n,k (ρ, θ)

where L5
nlag(z) is associated Laguerre polynomials for the order nlag = 0, 1, 2, ... . P

lx+
1
2 ,ly+

1
2

n (cos 2θ) is the

Jacobi polynomial. Eq. (3) is a function of (ρ) due to the z dependence on (ρ) with z = ρ/ρo . Values of ρ

and ρo are explained later in this section. n = lx + 1 and we assume nlag = n. N
lxly
k is a normalization

coefficient. k is the hyperangular momentum of quantum number k = lx + ly + 2n for (n = 0,1,2,. . . ). The

total wave function comes from the wave function of each body in that system. The internal wave function of

every neutron is found from solving the Schrödinger equation. More details about the hyperspherical harmonics

formalism is presented in [11,12]. The total Hamiltonian, Ĥ , is

Ĥ = T̂ + ĥcore(ξ⃗) + V̂core−n1(rcore−n1, ξ⃗) + V̂core−n2(rcore−n2, ξ⃗) + V̂n−n(rn−n). (6)
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The Hamiltonian includes the kinetic energy T̂ = T̂x+T̂y , the core Hamiltonian ĥcore(ξ⃗) depends on the interior

variables ξ⃗ , and the two-body interactions Vcore−n and Vn−n are for all the pairs of interacting bodies. The

potential is considered as the deformed Wood–Saxon potential in addition to a spin–orbit interaction.

The rotational model is expected for the core structure; therefore, the core has been taken as a deformed

axially symmetric rotor. In the body-fixed structure the radius of this core deformation is expanded in terms

of the spherical harmonic and, for simplicity, the quadruple term has been retained only, as in Eq. (9):

V̂core−n(rcore−n, ξ⃗) =
−V0[

1+exp
(

rcore−n−R(θ,φ)

a

)]
+ −ℏ2

m2c2 (2l.s)
Vs.o

4rcore−n

d
drcore−n

([
1 + exp

(
rcore−n−Rso

aso

)−1
]) , (7)

Vn−n(rn−n) = − ℏ2

m2c2
(2l.s)

Vs.o
4rn−n

d

drn−n

([
1 + exp

(
rn−n −Rso

aso

)−1
])

, (8)

with R = R0 [1 + β2Y20(θ, ϕ)] . (9)

R0 = 1.25A
1/3
core, Rso = R is assumed, l⃗ is the orbital momentum operator between a neutron and a

core, s⃗ is the neutron’s spin operator, m = mπ is the pion mass for practical calculations
(

ℏ
mπ

)2
= 2.0 fm2 ,

β2 is the core’s deformation parameter, and Acore is the core mass number. The position of total mass center

is:

r⃗CM =
1

A

A∑
i=1

r⃗i, (9)

r2m =
1

A

A∑
i=1

(r⃗i − r⃗CM )2. (10)

ri is the i nucleon position , rCM is mass center, and the (rms) matter radius
⟨
r2m
⟩1/2 of the halo nucleus is⟨

r2m
⟩1/2 = 1

A

[
Acore

⟨
r2m(core)

⟩
+
⟨
ρ2
⟩]
. (12)

The total quadruple moment can be written as Q = Qj + Qc , whereQ is the total quadruple moment

composed of Qj because of the loose neutron and Qc for the core. Generally Qc >> Qj [13].

Qc = Q′
[
(3Ω2/2J2)− 1

2

]
(11)

Eq. (11) can be given as

Qc = Q′ J

2J + 3

[
3Ω2

J(J + 1)
− 1

]
, (12)

where J is the total angular momentum, Ω is the projection of j , and Q′ can be taken as Q′ = 4
5δZR

2 .

Here, Z is the atomic number, R is the nucleus radius calculated before, and δ is associated with the

deformation parameter β2 (β2 = 2/3(4π/5)1/2δ) [13].
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Eq.(5) describes the valence neutrons’ wave function, and ? in Eq. (2) is the core wave function, calculated

depending on shell model. Eq. (2) itself defines a whole wave function of the two-neutron halo system.

The Hamiltonian of the three-body system in Eq. (6) is carried out to calculate the energy of the three-

body halo nucleus. The relationship among the three bodies depends on the Wood–Saxon potential as well as

spin–orbit interaction as indicated in Eq. (7). Two configurations, the Y-configuration and T-configuration, are

used in this study by using Jacobi coordinates. The core is suggested to be deformed (the core of 6He is zero)

and is connected with the two neutrons. The bounded states of 6He and 22C, the binding energy of 6He and
22C, the matter rms radius of 6He and 22C, and a deformation of 20C are calculated. In Eq. (3), the values

of ρ and ρo are approximated from the following formulas:

ρo =
√
j(j + 1) where j = lx +

1

2
,

ρ =
√
mj(mj + 1) where mj = −j,−j + 1, ..., j.

The total angular momentum (j) for a halo neutron depends on the core-n radius, and hence using the

approximations, ρand ρo are calculated.

In Eq. (9), Y20(θ, ϕ) is taken as

Y20(θ, φ) =
1

4

√
5

π
(3 cos2(θ)− 1).

The Wood–Saxon potential is dependent on the core’s deformation parameter β2 through the radius R, Eq.

(9). Throughout the present calculation, the spin–orbit interaction was left deformed (with assumption ro =

1.25 fm where Ro = roA
1/3). Radius RSO is assumed equal to R in the whole deformation. The calculations

are carried out for the core deformation parameter range of β2ϵ [–0.7, 0.7].

3. Results

In the present work, the two-neutron halo structure nuclei have been investigated by using a microscopic cluster

model. This approach has been used on other two-neutron halo nuclides such as 17B, 11Li, and 14Be and has

succeeded in describing the three-body system [14,15]. In this work fitting of some parameters to make this

model more suitable for a three-body system or a two-neutron halo nuclide was done to see whether the results

were in agreement with the experimental data.

The 6He and 22C nuclei were considered in this work, since they are considered the lightest and the

heaviest two-neutron halo nuclei. We focused on potential depth (Vo), surface diffuseness value (a), and

empirical constant (ro) parameters and fitted them to provide results.

3.1. 22C nucleus

The radius and binding energy of 22C as a function of deformation are presented in Figure 1 and Figure 2,

respectively. 22C consists of 6 protons and 16 neutrons. The core of 22C is 20C, which consists of 6 protons

and 14 neutrons. According to the shell model, the core (20C) has four protons placed in the filled 1P3/2 level

and six neutrons in the filled 1d5/2 level. If 20C is assumed spherical and inert, the 1s1/2 , 1p1/2 , 1p3/2 , and

1d5/2 states are occupied. When core excitation is included, instead of these four states we have more than 11
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blocked eigenstates coupled with the ground and excited states of the core. The total angular momentum J of

the core is 0+ , regarding that the core must be spherical and the deformation be zero, but the experimental

values have been referred to. However, within this work we want to know if the core has some degree of freedom

or not. The experimental values show the two-body system of 21C unbounded is extracted. The probabilities

of valence neutrons are 1d3/2 , 2s1/2 , and 1f7/2 . To study the properties of the three-body halo nuclei for 22C,

the two-body system of 21C treated as the ground energy state for 22C must be understood. The 21C nucleus

made of a core and halo neutron placed at a 1d3/2 state with energy roughly 50 KeV, 1d5/2 resonant state,

or d-resonance is expected to be about 500 KeV and there is no sure evidence for a d-state; therefore, the

d-resonance has been considered. Figure 3 shows the potential variation with deformation, where the potential

between the core and a neutron has been affected by deformation. The core-n potential decreases as β2 increases

(for β2 > 0) and the core has an oblate shape. Note that the ground energy state of the core 20C is Jπ(20C) =

0+ . The halo neutron may be coupled with the ground energy state of 20C to produce a nuclear energy state

Jπ(21C), and the halo neutron may also be coupled with the excited energy state of the 20C core. We can

imagine two d-resonances be on an inert core [1d5/2⊗ 0+ ]1/2+ and also on the excited core [2s1/2⊗ 2+ ]1/2+ .

From Figure 3 the very weakly bound energy is with the higher deformation (the negative side that means

“oblate shape”) at β2 < –0.4, suggesting that the halo neutron built on the excited core may not be entirely

accurate. However, that is not our goal.

-0.8  -0.6  -0.4  -0.2  0 

β2 

0.2  0.4  0.6  0.8  
2 

4 

6 

8 

10  

12  

14  

16  

ro=1.2  

ro=1.25  

ro=1.3  

ro=1.4  

ro=1.35  

R m
exp

=5.4(±0.9) [fm]  

β2
exp =-0.4___ β2

exp=-0.2 

<
r m

2
>

1
/2

 [f
m

] 

 

Figure 1. The rms matter radius of 22C as a function of deformation.

As seen in Figure 1, the empirical constant ro changes from 1.2 to 1.4 fm, indicating that ro = 1.4 fm

is more suitable to calculate matter radius and corresponds with the experimental core deformation parameter
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and experimental matter radius. This value has been used to calculate the binding energy of 22C with some

changes in values of potential depth, Vo , and surface diffuseness, a. In Figure 2, the potential depth changed

from Vo= 50 to Vo= 90 MeV. Of course there are some exaggerations in values of Vo = 80 and Vo = 90

MeV, but even with the exaggerations the results are still far from the experimental value. However, the surface

diffuseness has also been changed from a value of a = 0.50 to a = 0.80 as seen in Figure 3.
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Figure 2. Binding energy of 22C as a function of deformation.
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Figure 3. Binding energy of 22C as a function of deformation.
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The results in Figures 2 and 3 with all the fittings indicate that the binding energy is less than the

experimental value and changing of those parameters does not makes a big difference in the value of the binding
energy.

3.2. 6He nucleus

6He consists of four neutrons and two protons, meaning that a core in 6He consists of two protons and two

neutrons that occupy the first closed shell and as such the deformation in the core is excluded in this case.

Now we have an alpha particle with two valence neutrons, which probably occupy one of the 1p1/2 , 1d5/2 , and

1d3/2 states. The 1p3/2 state is excluded because if the valence neutrons occupy 1p3/2 , then
6He is not a halo

nucleus and is therefore excluded. The total angular momentum J of 6He equals 0 + . The aim here is to get

a good fitting for the parameters Vo , ro , and a. The value of the empirical constant ro is 1.25 ± 0.2 fm and,

as seen in Figure 4, ro = 1.4 fm gives a good matter radius of 6He (2.584 fm), which is in agreement with the

experimental data. The same value was used to find the binding energy with the value of potential depth Vo

from Figure 5, where ro = 1.4 fm and Vo = 60 MeV, giving us a good binding energy value of about –1.0237.
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Figure 4. The rms matter radius of 6He.

4. Conclusion

The main purpose of the present study is to confirm that the microscopic cluster model is able to describe and

calculate the properties of the three-body system (two-neutron halo nuclides) in both the lightest and heaviest

two-neutron halo nuclei. As a conclusion, the use of the microscopic cluster model is successful in explaining

the properties of the lightest and heaviest two-neutron halo nuclei of 6He and 22C.

The second purpose is the fitting of parameters such as Vo and ro in improving this model for accurate

calculation of those properties. However, we found that reasonably changing the parameter values only makes
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Figure 5. Binding energy of 6He as a function of deformation.

small differences in the results and the values of Vo = 60 MeV, ro = 1.4 fm, and a = 0.5 give good results in

comparison to the experimental data. There were two possibilities, to build the valence neutron (halo neutron)

on the excited core or on the inert core, but the results showed that a neutron built on the excited core is not

totally accurate.

As seen from the figures, the results of 6He are more in agreement with the experimental data than those

of 22C. This may be due to the number of protons, which has an effect on the total potential by Coulomb

repulsion. The core deformation has an effect on the results. The core deformation of 6He is zero, but for 20C

it has a value of about (β2= −0.4−β2= −0.2), which could be considered for further studies.
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