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Abstract:The effective mass Duffin–Kemmer–Petiau equation for spin 0 and spin 1 with a potential well is considered,

and transcendental equations are derived for the energy eigenvalues. Numerical results are reported graphically, and the

variations of the energy of the bound states are computed as a function of the well width and mass.
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1. Introduction

In recent years, many studies have focused on the problem of the mass dependent on the position in relativistic

and nonrelativistic quantum systems. Therefore, position-dependent mass (PDM) formalism has been widely

used in the determination of the physical properties of various microstructures [1–6], and with this approach,

a variety of potentials and mass distributions have been considered by different methods [7–10]. In the

nonrelativistic case, the solutions of the PDM Schrödinger equation have been considered for different potentials

[11–15], and more particularly, configurations such as the step and rectangular barrier of potentials with the

same shape for the masses have been used in the framework of the nonrelativistic Green function [16].

In the relativistic case, in order to explain some associated quantum effects, the Klein–Gordon (KG)

particle with spin 0 and the Dirac particle with spin 1/2 within an effective mass and in different forms of

potential have also been examined [17–26]. For example, the spectrum of the D-dimensional Dirac equation,

where the mass is dependent on the position and within the framework of an exponential for the centrifugal

term, was obtained in [27], and the N-dimensional Pöschl–Teller potential with PDM was also considered in [28],

using the asymptotic iteration method. In [29], the spatially dependent mass Dirac equation for the Coulomb

field plus tensor interaction was solved exactly via Laplace transformation and the effect of this tensor on the

bound states was discussed. In the same way, the relativistic neutral fermions subjected to a PT-symmetric

potential with PDM were investigated in [30], and the influence of this potential on the continuity equation and

on the orthonormalization condition was analyzed. However, in the literature there are only a few papers related

to bosons with spin 1 in comparison with relativistic spin 0 and spin 1/2 particles. Generally, to explore the

relativistic problems of such particles, one has to solve either the Proca or the Duffin–Kemmer–Petiau (DKP)

equations [31–33].

∗Correspondence: lyazidchetouani@gmail.com

183



HAMMOUD and CHETOUANI/Turk J Phys

The DKP equation is a direct generalization of the Dirac equation where one replaces the algebra of the

gamma matrices by beta matrices, but satisfying a more complicated algebra, the so-called DKP algebra [34].

In the case where the mass is constant, some papers have been devoted to the DKP equation with a certain

shape of potentials [35–39]. In the context of quantum chromodynamics, cosmology, and gravity and in many

areas of physics, including particle and nuclear physics [40–44], this equation has also been examined. For the

DKP equation with mass that depends on the position, there is only one paper dealing with this subject [45],

and our motivation in this present work is to examine the problem of boundary conditions when the potential

and the mass are not constant.

In this work, we consider the relativistic spin 0 and spin 1 bosons described by the DKP equation and

subject to a square potential having the form of an asymmetric well, with a mass function m (z) similar to that

used in [11]. Our aim is to obtain the bound states related to this model and to compare the results with the

corresponding constant mass case.

The structure of the paper is as follows: in section 2, we use the formalism of the DKP equation with the

square potential well within the PDM formalism and we analytically determine the solutions. Transcendental

equations determining the energy eigenvalues via a limiting procedure for both cases of spin are obtained.

In section 3, the results are discussed and appropriate plots are presented. Finally, section 4 contains the

conclusions of our work.

2. DKP equation with step mass

The (1+1)-dimensional effective mass DKP equation for the scalar and vector bosons moving in a vector potential

Aµ (in natural units ℏ = c = 1) is:

[iβµ(∂µ + ieAµ)−m(z)]Ψ(z, t) = 0, (1)

where the matrices βµ verify the algebra

βµβνβλ + βλβνβµ = gµνβλ + gλνβµ, (2)

with µ , ν and λ being 0, 1, 2, 3. The tensor metric gµν = diag (1, − 1, − 1, − 1).

If we choose eA0 = V0 (z) and A i = 0, i = 1, 2, 3, Eq. (1) becomes:

[iβ0(∂0 + iV0(z)) + iβ3∂z −m(z)]Ψ(z , t) = 0. (3)

Since the potential does not depend on time, we need to search for the stationary states of this equation. As

usual, a solution of the form Ψ(z, t) = e−iEtΦ(z) reduces Eq. (3) to the following eigenvalue equation:

[β0(E − V0(z)) + iβ3∂z −m(z)]Φ(z) = 0. (4)

Here, V0 (z) and m(z) are chosen with the following form:{
V0(z) =W1θ (−a− z)+W2θ (−a+ z) ,

m(z) = (m1 −m2)[θ(−a− z) + θ(−a+ z)]+m2,
(5)

with θ (z) denoting the Heaviside step function:

θ(z) =

{
1 if z≥0

0 if z < 0
, (6)
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and m1 , m2 , W1 , and W2 being positive constants such that W2 > W1 and m1 ̸= m2 . In what follows, we

examine the problem of bound states (0 <W1 ≤ E < W2).

2.1. Spin 1

In the case of vector bosons, the βµ matrices are:

β0 =


0 0̄ 0̄ 0̄

0̄T 03×3 I3×3 03×3

0̄T I3×3 03×3 03×3

0̄T 03×3 03×3 03×3

 , βi =


0 0̄ ei 0̄

0̄T 03×3 I3×3 −iSi

−eTi 03×3 03×3 03×3

0̄T −iSi 03×3 03×3

 , (7)

with S i matrices being 3 × 3 ones, (Si)jk = –iεijk where εijk is 1, –1, 0 for an even permutation, an odd

permutation, and repeated indices, respectively. e i matrices are 1 × 3, (e i)1j = δij , that is, e1 = (1 0 0), e2=

(0 1 0), e3 = (0 0 1).

The matrices I3×3 and 03×3 represent the unit and null 3 × 3 matrices, respectively, and 0̄s are 1 × 3

ones. The wave function Φ(z) possesses ten components and can be expressed in the following form:

ΦT = (φ
(1)
1 , φ

(2)
1 , φ

(3)
1 , φ

(4)
1 , φ

(5)
1 , φ

(6)
1 , φ

(7)
1 , φ

(8)
1 , φ

(9)
1 , φ

(10)
1 ). (8)

Since the DKP equation, as a relativistic equation, is essentially related to the KG, then we can convert the

form of the problem to that of the KG by partitioning the wave function Φ(z)
T
as follows:

ψT = (φ
(2)
1 φ

(3)
1 φ

(7)
1 ), ϕT = (φ

(5)
1 φ

(6)
1 φ

(4)
1 ),ΘT = (φ

(9)
1 φ

(8)
1 φ

(1)
1 ) and φ

(10)
1 (9)

under these appropriate notations, it is easy to see that only ψ components are independent and obey the

following KG-type equation:

0KGψ = 0. (10)

where the scalar differential operator 0KG is the corresponding KG operator given by:

0KG =
d2

dz2
+ [(E − V0(z))

2 −m2(z)]. (11)

From Eq. (10), we can ensure that the three components satisfy the same differential equation. Indeed, if we

solve this equation with the component φ
(2)
1 , then we can easily deduce the other components, i.e. φ

(3)
1 and

φ
(7)
1 . By inserting φ

(2)
1 into Eq. (10), we have:

d2φ
(2)
1

dz2
− m

′
(z)

m(z)

dφ
(2)
1

dz
+ [(E − V0(z))

2 −m2(z)]φ
(2)
1 (z) = 0, (12)

and we can rewrite Eq. (12) in the following form:

1

m(z)
[(E − V0(z))

2 −m2(z)]φ
(2)
1 (z) +

d

dz

(
1

m

dφ
(2)
1 (z)

dz

)
= 0. (13)
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Now we are going to determine the matching conditions for φ
(2)
1 at z = −a . As φ

(2)
1 (z) obeys the KG-type

modified equation in Eq. (13), we must impose on it and on its derivative for the continuity conditions. By

integrating Eq. (13) around the discontinuity z = −a , one gets:

1

m (−a+ ε)
φ1

′(2) (−a+ ε)− 1

m (−a− ε)
φ1

′(2) (−a− ε) =

∫ −a+ε

−a−ε

1

m(z)

[
m2 (z)− (E−V0 (z))2

]
φ
(2)
1 (z)dz. (14)

In the domain (−a− ε,−a+ ε), the functions m(z) and V0(z) have finite discontinuities at z = −a . Therefore,
when ε tends to zero, the integral at the second side of (14) goes to zero. Consequently, one can write: φ

(2)
1 (−a−) = φ

(2)
1 (−a+)

1
m(−a−)

d
dzφ

(2)
1 (−a−) = 1

m(−a+)
d
dzφ

(2)
1 (−a+) .

(15)

Following the same procedure, we obtain: φ
(2)
1 (a−) = φ

(2)
1 (a+)

1
m(a−)

d
dzφ

(2)
1 (a−) = 1

m(a+)
d
dzφ

(2)
1 (a+) .

(16)

In summary, we need to solve Eq. (12) with the boundary conditions

d2φ
(2)
1 (z)
dz2 −m

′
(z)

m(z)
dφ

(2)
1 (z)
dz +

[
(E−V0 (z))2 −m2 (z)

]
φ
(2)
1 (z) = 0

1
m(−a+)

d
dzφ

(2)
1 (−a+) = 1

m(−a−)
d
dzφ

(2)
1 (−a−)

1
m(a+)

d
dzφ

(2)
1 (a+) = 1

m(a−)
d
dzφ

(2)
1 (a−) .

(17)

KG-type Eq. (12) for the component φ
(2)
1 (z) has the following form in each region:

[(E −W1)
2 −m2

1]φ
(2)
1 (z) +

d2φ
(2)
1 (z)

dz2
= 0 for z < −a, (18)

[E2 −m2
2]φ

(2)
1 (z) +

d2φ
(2)
1 (z)

dz2
= 0 for − a < z < a, (19)

[(E −W2)
2 −m2

1]φ
(2)
1 (z) +

d2φ
(2)
1 (z)

dz2
= 0 for z > a. (20)

Let us choose the physical solutions:

φ
(2)
1 (z) =


a1e

k1z for z < −a,
a2e

ik2z+a3e
−ik2z for −a < z < a,

a4e
−k3z for z > a,

(21)

where a1 , a2 , a3 , and a4 are arbitrary constants and k1 , k2 , and k3 are:

k1 =

√
m2

1 − (E−W1)
2
, k2 =

√
E2 −m2

2, k3 =

√
m2

1−(E−W2)
2
. (22)
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The continuity of φ
(2)
1 (z) at z = ± a and the application of Eqs. (15) and (16) lead to the following four

equations: 
a1e

−k1a = a2e
−ik2a+a3e

ik2a

a4e
−k3a = a2e

ik2a+a3e
−ik2a

k1a1

m1
e−k1a = ik2

m2
(a2e

−ik2a−a3eik2a)

−k3a4

m1
e−k3a = ik2

m2
(a2e

−ik2a−a3eik2a)

. (23)

Using the following constraints equations, we deduce the other components:

(
ϕ

Θ

)
=

 E−V0(z)
m(z)

i
m(z)

d
dz

⊗ ψ, (24)

that is,

(E−V0 (z) )
m (z)

φ
(2)
1 (z) = ϕ

(5)
1 (z), (25)

(E−V0 (z) )
m (z)

φ
(3)
1 (z) = ϕ

(6)
1 (z), (26)

(E−V0 (z) )
m (z)

φ
(7)
1 (z) = ϕ

(4)
1 (z), (27)

i

m (z)

dφ
(2)
1 (z)

dz
= φ

(9)
1 (z) (28)

−i
m (z)

dφ
(3)
1 (z)

dz
= φ

(8)
1 (z) , (29)

i

m (z)

dφ
(7)
1 (z)

dz
= φ

(1)
1 (z), (30)

and φ
(10)
1 automatically vanishes (φ

(10)
1 = 0).

The corresponding total wave function in each region is then:

Ψ(z , t) =



iρ1k1

m1

a1

b1
(E−W1)ρ1

m1

(E−W1)a1

m1

(E−W1)b1
m1

ρ1

− ib1k1

m1

ia1k1

m1

0



e(k1z−iEt) for z < −a, (31)
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Ψ(z, t) =



−k2

m2
(ρ2e

ik2z−ρ3e−ik2z)

(a2e
ik2z+a3e

−ik2z)

(b2e
ik2z+b3e

−ik2z)

E
m2

(ρ2e
ik2z+ρ3e

−ik2z)

E
m2

(a2e
ik2z+a3e

−ik2z)

E
m2

(b2e
ik2z+b3e

−ik2z)

(ρ2e
ik2z+ρ3e

−ik2z)

k2

m2
(b2e

ik2z−b3e−ik2z)

−k2

m2
(a2e

ik2z−a3e−ik2z)

0



e−iEt for − a < z < a, (32)

Ψ(z , t) =



−iρ4 k3

m1

a4

b4
ρ4

m1
(E−W2)

a4

m1
(E−W2)

b4
m1

(E−W2)

ρ4

ib4
k3

m1

−ia4 k3

m1

0



e−(k3z+iEt) for z > a , (33)

where b1 , b2 , b3 , b4 , and ρ1 , ρ2 , ρ3 , ρ4 , analogous to a1 , a2 , a 3 , a4 , are constants to be determined by

the boundary and matching conditions.

Let us now pass on to the determination of the bound energy condition. For that, let us impose the

continuity of the Φ(z) wave function at z = ±a , and let us apply the conditions of Eqs. (15) and (16). Thus,

after tedious calculations, we find the relation that gives energy eigenvalues for the bound states:

e4iak2 =

(
1 + ik2m1

k1m2

)(
1 + ik2m1

k3m2

)
(
1− ik2m1

k1m2

)(
1− ik2m1

k3m2

) . (34)

By using the formula arctan(z) = 1
2i ln (

1+iz
1−iz ), we obtain the relativistic transcendental equation

2ak2 = nπ − arctan
k2m1

k1m2
− arctan

k2m1

k3m2

, (35)

where inside the well the momentum k2 of the bound states is deduced from the values n = 1, 2, 3... and the

range of the arctan is taken between 0 and π
2 . We notice that the explicit solutions of Eq. (35) showing the

dependence of the energy E and the number of the bound states on the width of the well 2a can be readily

determined numerically when the other parameters are fixed. However, in order to analyze the variation of
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the energy on the mass function, we must apply an approximate method because of the nonlinear terms in the

energy eigenvalues equation, Eq. (35). When the E ≤ (W1 + m1) approximation is used, Eq. (35) becomes

an inequality for the number of bound states:

2a

√
(W 1 +m1)

2 −m2
2 > π

(
n− 1

2

)
− arctan (

m1

m2
)

√
(W 1 +m1)

2 −m2
2

2m1∆W (∆W )
2 , (36)

where ∆W = W2 −W1 ⟩ 0, and this signifies that the total number of bound states N will be the highest n

satisfying this inequality when we treat Eq. (36) as an equation for N = 1, 2,. . .

2a

√
(W 1 +m1)

2 −m2
2 =

(
N − 1

2

)
− arctan (

m1

m2
)

√
(W 1 +m1)

2 −m2
2

2m1∆W (∆W )
2 , (37)

We affirm that the parameters of the well are critical, in the sense that by varying their values slightly we will

have one bound state less or one bound state more. Putting N = 1, Eq. (37) becomes:

arctan (
m1

m2
)

√
(W 1 +m1)

2 −m2
2

2m1∆W − (∆W )
2 =

π

2
− 2a

√
(W 1 +m1)

2 −m2
2, (38)

Eq. (38) expresses the appearance condition of the first bound state of the asymmetric square well. When

∆W ̸= 0, it is possible to fix some values of the parameters of the well that do not permit bound states, as

it is also the case for the conventional constant mass problem and the PDM nonrelativistic case [11]. The

conventional constant mass case is obtained by putting m1 = m2 = m in Eq. (35):

2ak2 = nπ − arctan
k2√

2m2 − k22 −W 2
1 + 2W1

√
k22 −m2

− arctan
k2√

2m2 − k22 −W 2
2 + 2W2

√
k22 −m2

, (39)

where n = 1, 2, 3,... The inequality for the number of bound states is obtained now from Eq. (36) if we take
m1 = m2 = m:

2a
√
W1 (W1 + 2m) > π

(
n− 1

2

)
− arctan

√
W1(W1 + 2m)

2m∆W − (∆W )
2 . (40)

It is worth noting that in the PDM case the critical values given by Eq. (36) for the number of bound states

depend on both m1 and m2 .

In particular, as m 2 → 0, there will at least one possible energy level.

2.2. Spin 0

In this case, the wave function Φ can be written as :

Φ =
(
φ
(0)
0 φ

(1)
0 φ

(2)
0 φ

(3)
0 φ

(4)
0

)T
. (41)

If we insert Eq. (41) into Eq. (4), we obtain a differential equation for φ
(0)
0 , which is:

d2φ
(0)
0 (z)

dz2
− m

′
(z)

m(z)

dφ
(0)
0 (z)

dz
+ [(E − V0(z))

2 −m2(z)]φ
(0)
0 (z) = 0. (42)
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The matrices β0 , β3 have been chosen according to [46]. The other components can be expressed as:

φ
(1)
0 (z) =

(E − V0 (z))

m (z)
φ
(0)
0 (z), φ

(4)
0 (z) =

i

m (z)

dφ
(0)
0

dz
(z), φ

(2)
0 (z) = φ

(3)
0 (z) = 0. (43)

Following the same steps as in the preceding case, we arrive at the result:

Ψ (z,t) =



1

E−W1

m1

0

0

ik1

m1


Ae(k1z−iEt) for z < −a, (44)

Ψ (z, t) =



Feik2z +Ge−ik2z

E
m2

(Feik2z +Ge−ik2z)

0

0

−k2

m2
(Feik2z −Ge−ik2z)


e−iEt) for − a < z < a, (45)

Ψ (z, t) =



1

E−W2

m1

0

0

− ik3

m1


De(k3z−iEt) for z > a, (46)

where A, F, G, and D are constants to be determined by the boundary and matching conditions. Using the

same method as for the spin 1 case, we find another form of the transcendental equation, which is:

2ak2 = nπ + arctan
k1m2

k2m1
+ arctan

k3m2

k2m1

, (47)

where n = 1, 2, 3,... and the range of the inverse tan is always taken between 0 and π
2 . To treat the variation

of the energy eigenvalues against m2 , for m1 = 1, m1 = 10, we follow the same stages as in the preceding

section: taking E ≤ (W1 + m1) into account in Eq. (47), the number of bound states N is given by the highest

n verifying the following inequality:

2a

√
(W 1 +m1)

2 −m2
2 > nπ + arctan (

m2

m1
)

√
2m1∆W − (∆W )

2

(W 1 +m1)
2 −m2

2

, (48)

and as in the spin 1 case, Eq. (48) means that if W1 + m1 > m2 , there are always bound states for the

asymmetric square well. Here also, contrary to what was found for the symmetric well [11], a dependence on

m1 and m2 is observed for the number of bound states.
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The critical values of the well that indicate when we have one bound state more are obtained from:

2a

√
(W 1 +m1)

2 −m2
2 = Nπ + arctan (

m2

m1
)

√
2m1∆W−(∆W )

2

(W 1 +m1)
2 −m2

2

, (49)

Moreover, we observe that for (W1+ m1) ≤ m2 there is no bound state in both cases of spin 1 and 0. For the

constant mass case, we have:

2ak2 = nπ + arctan

√
2m2 − k22 −W 2

1 + 2W1

√
k22 −m2

k2
+ arctan

√
2m2 − k22 −W 2

2 + 2W2

√
k22 −m2

k2
. (50)

3. Dependence of the relativistic asymmetric well spectra on some parameters

This section is devoted to the discussion of our numerical results and plots (Tables 1–4; Figures 1–8). As

mentioned above, we treat the problem of spin 1 and spin 0 bosons subject to a square well potential and

investigate the effect of the PDM on the energy spectra. We note that the number of bound states depends

linearly on width 2a of the well (see Eqs. (36) and (48)). Figures 1 and 2 show that, analogous to what was

observed for the PDM Schrödinger particle by a square potential [11], as the value of a increases, the energy

value decreases. On the other hand, the mass inside the well (m2) is an increasing function of parameter a

(see Figures 3–6). The effect of mass outside the well (m1) on the number of bound states is slight. Regarding

the variation of the energy on the m2 mass, we proceed approximately like in the classical PDM system. Thus,

the energy eigenvalues increase with increasing m2 as shown in Figures 7 and 8. This behavior is different from

that observed in the above reference. We also investigate the effect of the value of m2 on the first critical values

of the a parameter. The results are reported in Tables 1 and 3. It is readily seen that these first critical values

of the a parameter decrease with decreasing m2 .

Figure 1. The curves of the energy spectrum against a

for some excited states in the case of spin 1 (m1 = 1, m2

= 0.5, W1 = 2, W2 = 3).

Figure 2. A reproduction of Figure 1 for spin 0.
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Figure 3. The energy degeneracy with respect to n = 1,

2, 3 against a in the case of spin 0 for different values of

m2 , W1 = 2, W2 = 3.

Figure 4. Similar to Figure 3, but with n = 4, 5, 6.

Figure 5. Absence of the energy degeneracy with respect

to n = 1, 2, 3 against a in the case of spin 1 and for m1

= 1, W1 = 2, W2 = 3.

Figure 6. The energy degeneracy with respect to n = 4,

5, 6 against a in the case of spin 1 and for (m1 = 1, W1

= 2, W2 = 3).

Table 1. The calculated critical values of a from Eq. (37), fixing the width where a new bound state arises in the case

of spin 1.

m1 m2 a(1) a(2) a(3) a(4) a(5) a(6)

1 2 0.1629 0.8653 1.5677 2.2701 2.9725 3.6749
1 1 0.0599 0.6152 1.1705 1.7258 2.2811 2.8364
1 1

2 0.0281 0.5591 1.0901 1.6211 2.1521 2.6831
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Figure 7. Energy eigenvalues versus m2 in the case of

m1= 1, W1 = 2, W2 = 3 and for spin 1.

Figure 8. A reproduction of Figure 7 for spin 0.

Table 2. The calculated critical values of m2 from Eq. (37), fixing the mass where a new bound state arises in the case

of spin 1.

m1 m
(1)
2 m

(2)
2 m

(3)
2

1 2.9400 2.4168 0.8799
10 11.8937 10.9510 8.5540

Table 3. The calculated critical values of a from Eq. (49), fixing the width where a new bound state arises in the case

of spin 0.

m1 m2 a(1) a(2) a(3) a(4) a(5) a(6)

1 2 0.7965 1.4982 2.2014 2.9038 3.6063 4.3088
1 1 0.6154 1.1707 1.7261 2.2814 2.8368 3.3921
1 1

2 0.5861 1.1171 1.6481 2.1791 2.7101 3.2412

Table 4. The calculated critical values of m2 from Eq. (49), fixing the mass where a new bound state arises in the

case of spin 0.

m1 m
(1)
2 m

(2)
2 m

(3)
2 m

(4)
2 m

(5)
2

1 2.9156 2.7619 2.5098 2.1350 1.5568
10 11.7555 11.2999 10.5611 9.4659 7.8699

In addition, we note that the DKP square potential energy levels for some adjacent numbers intersect

at some values of a, thus resulting in degeneracy (see Figures 3, 4, and 6). However, an absence of energy

degeneracy is illustrated in Figure 5. It is consistent with the results obtained in the literature. As for Table 2
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(and respectively Table 4), it proves the effect of m1 on the first critical energy values of m2 . For the case of

spin 0, we also note a degeneracy of energy eigenvalues with respect to the numbers of the bound states. These

results obtained are in good agreement with previous works [27].

4. Conclusion

In this work, the (1+1)-dimensional effective mass DKP equation (spin 0 and spin 1) with potential well having

an asymmetric form has been considered.

From the generalized boundary conditions, we have shown that the bound states in both cases of spin

0 and spin 1 are solutions (numerically) of transcendental equations and this was afterwards shown to have

reduced the DKP equation to the KG equation. A difference of sign in the transcendental equations related

to spin 0 and spin 1 should be noted. For some critical values of the well, i.e. the values of the characteristic

potential width, and the mass inside the well, we have calculated the bound states. Thus, we have noted that

there is a difference in the mass configuration when it is not constant.

Finally, our results could be a starting point for the analysis of the scattering of boson particles by a

square potential well in the DKP equation when the mass is dependent on the position. This problem will be

discussed elsewhere.
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