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Abstract: In our previous work, we calculated bound-free electron–positron pair production cross section without a

correction term. In this work, bound-free electron–positron pair production with a correction term is considered to

calculate the cross section for peripheral relativistic heavy ion collisions. The Dirac wave functions have been used for

the leptons and first order corrections are included. It is seen that the results for the production cross sections are

considerably smaller than those of the previous calculations. We applied the same method for the calculations of the

antihydrogen production cross sections as well.
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1. Introduction

Bound-free pair production (BFPP) is one of the processes that restrict the luminosity of ion beams. In this

process, the charge of the ion decreases and it is depleted out of the beam. For this reason, calculation of the

exact bound-free electron–positron pair production cross section is important for deciding the stability of the

beam [1–10].

Another important application of this calculation is for producing antihydrogen. Antihydrogen is the

simplest bound state of antimatter and may be produced with the collision of antiprotons with ions. They

were first produced and observed at the CERN Low Energy Antiproton Ring (LEAR) in 1995. In this process

( p̄+ Z → H̄ + e− + Z), xenon (Z = 54) was used. This process was first proposed by Munger et al. and they

studied the calculation of antihydrogen production cross section by equivalent photon approximation (EPA).

The cross section calculation of antihydrogen production is important, because as with BFPP, the antihydrogen

production mechanism also leads to beam loss [11–18].

In our previous works [19,20], we calculated the BFPP and relativistic antihydrogen production with

Monte Carlo integration techniques by computing the Feynman diagrams. The wave functions for free positron,

captured electron, free electron, and captured positron were given there. In this work, we calculated the bound-

free electron–positron pair production cross section with correction terms. For this, we added the correction term

Ψ
′
to the electron wave function known as the Sommerfeld-Maue wave function. For the bound positron, we

used the Darwin wave function as in our previous work [19]. We applied the same procedure for the calculation

of antihydrogen production cross section with correction terms. For the antihydrogen production mechanism
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we added the correction term Ψ̄
′
to the positron wave function and for the bound electron we used the Darwin

wave function as in our previous work [20].

In section 2, we derived the cross section of BFPP with the correction term. In section 3, we applied

the same technique for the antihydrogen production. Finally we presented our calculations and compared them

with the previous works. The obtained BFPP cross section results with the correction term are smaller than

the cross section results without it.

2. Theoretical background

2.1. Electron capture with correction

To calculate the cross section for bound-free electron–positron pairs with a correction term in relativistic heavy-

ion collisions, we applied the lowest-order perturbation theory in the framework of quantum electrodynamics

(QED). We described the BFPP process with the correction term by the two Feynman diagrams, direct and

crossed terms in lowest QED order.

For the BFPP process, free positron is described by the plane-waves

Ψ(+)
q = N+

[
eiq·ru(+)

σq
+Ψ

′
]
, (1)

and together with the correction term Ψ
′
in order to account for the distortion due to the charge of one of the

nuclei. In this work, we calculated the effect of this term on the cross section result.

While calculating the total cross section of BFPP with correction terms, we added only the Fourier

transform of Ψ
′
to the calculations. The Fourier transform of Ψ

′
can be obtained from the Dirac equation of

the positron in the Coulomb field of nucleus and the detailed calculations are done in [1]. The result is

Ψ
′
= 4πZe2u(+)

σq

2E
(+)
q − α⃗ · (p⃗− q⃗)

(p⃗− q⃗)
2
(p⃗2 − q⃗2)

. (2)

In expression (1), moreover,

N+ = e−
πa+

2 Γ (1 + ia+) a+ =
Ze2

v+
, (3)

is a normalization constant that accounts for the distortion of the wave function acceptable for Zα ≪ 1 [1,3,21].

u
(+)
σq represents the spinor structure for the outgoing positron [19].

After the free pair production, the captured electron is described as a bound state with the Darwin wave

function. In a semirelativistic approximation, these electron states are often represented by [22, 23]

Ψ(−) =

(
1− i

2m
α ·∇

)
uΨnon−rel(r), (4)

i.e. in terms of the nonrelativistic (ground) state function

Ψnon−rel (r) =
1√
π

(
Z

aH

)3/2

e−Zr/aH , (5)

of the hydrogen-like ion, and where u represents the spinor part of the captured electron and aH = 1/e2 the

Bohr radius of atomic hydrogen.
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Using the positron wave function with the correction term and the captured electron wave function from

above, the direct term for the BFPP can be written as⟨
Ψ(−) |Sab|Ψ(+)

q

⟩
= i

∑
p

∑
s

∫ ∞

−∞

dω

2π

⟨
Ψ(−)

∣∣∣Va

(
ω − E(−)

)∣∣∣χ(s)
p

⟩⟨
χ
(s)
p

∣∣∣Vb

(
E

(+)
q − ω

)∣∣∣Ψ(+)
q

⟩
(
E

(s)
p − ω

)
= i

∑
p

∑
s

∫ ∞

−∞

dω

2π

∞∫
−∞

d3r

(
1 +

i

2m
α ·∇

)
Ψnon−rel(r)e

ip·rAa(r;ω − E(−))

×
∞∫

−∞

d3r
′
N+e

−ip·r
′
(
eiq·r

′

+Ψ
′
)
Ab

(
r
′
;E(+)

q − ω
) ⟨

u |(1− βαz)|u(s)
σp

⟩⟨
u
(s)
σp |(1 + βαz)|u(+)

σq

⟩
(
E

(s)
p − ω

)
= i

∑
p

∑
s

∫ ∞

−∞

dω

2π

∞∫
−∞

d3r

(
1 +

i

2m
α ·∇

)
Ψnon−rel(r)e

ip·rAa(r;ω − E(−))

×
∞∫

−∞

d3r
′
N+e

−i(p−q)·r
′

Ab

(
r
′
;E(+)

q − ω
)
P (u)

+i
∑
p

∑
s

∫ ∞

−∞

dω

2π

∞∫
−∞

d3rΨnon−rel(r)e
ip·rAa(r;ω − E(−))

×
∞∫

−∞

d3r
′
N+e

−ip·r
′

Ψ
′
Ab(r

′
;E(+)

q − ω)P (u) (6)

Detailed information about the vector potential terms for (Aµ
a and Aµ

b ) can be found in our previous BFPP

calculations without a correction term [19].

Here the spinor part of above equation can be expressed as

P (u) =

⟨
u |(1− βαz)|u(s)

σp

⟩⟨
u
(s)
σp |(1 + βαz)|u(+)

σq

⟩
(E

(s)
p − ω)

. (7)

For the calculation of the overall integral, we need the results of the first part over r integral. In this work, we

just give the result of the integral over r without details,∫ ∞

−∞
d3r

(
1 +

i

2m
α ·∇

)
Ψnon−rel (r) e

ip·rAa

(
r;ω − E(−)

)

= −
[
1 +

α · p
2m

]
8π2Ze

1√
π

(
Z

aH

)3/2
δ(ω − E(−) − βpz)(

Z2

a2
H
+

p2
z

γ2 + p2
⊥

) e[ip⊥·b2 ], (8)

where E(−) is the energy of the captured electron. Again, we just give the result of the first part of integral

over r
′
:

∞∫
−∞

d3r
′
N+e

−i(p−q)·r
′

Ab

(
r
′
;E(+)

q − ω
)
= −N+8π

2Zeγ2 δ(E
(+)
q − ω − β(pz − qz))

(pz − qz)
2
+ γ2(p⊥ − q⊥)

2 e
i(p⊥−q⊥)·b2 , (9)

where E
(+)
q is the energy of the positron.
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Up to now, we included the correction term in the BFPP expressions and when we compare these results

with the previous calculations [19], it is clear that there are differences between them. In Eq. (6) for the

third term of the integral, we used the explicit form of Ψnon−rel(r) given in Eq. (5) and the vector potential

Aa(r;ω
′ − E(−)). The result of this integration can be found as

∞∫
−∞

d3r
1√
π

(
Z

aH

)3/2

e−ip·rAa

(
r;ω

′
− E(−)

)
= −8π2Ze

1√
π

(
Z

aH

) 3
2 δ
(
ω − E(−) − βpz

)(
p2
z

γ2 + p2
⊥

) eip⊥·b2 (10)

Since the corrections are to first order in Zα , we replaced Ψnon−rel(r) with its constant value 1√
π

(
Z
aH

)3/2
in the third term of Eq. (6) [1]. By using the analogue steps, for the calculation of the overall integral of the

fourth part over r
′
in Eq. (6)

∞∫
−∞

d3r
′
N+e

−ip·r
′

Ψ
′
Ab

(
r
′
;E(+)

q − ω
′
)
= 4πZe2u(+)

σq

2E
(+)
q − α⃗ · (p⃗− q⃗)

(p⃗− q⃗)
2
(p⃗2 − q⃗2)

(11)

Finally, by combining all parts of integral components given in Eqs. (8)–(11), we can obtain the explicit

expression for the direct BFPP amplitude with the correction term:

⟨
Ψ(−) |Sab|Ψ(+)

q

⟩
=iN+

∑
s

∑
σp

∫
d3p

(2π)
3

∫
dω

2π
ei(p⊥−q⊥

2 )·b8π2Ze
1√
π

(
Z

aH

)3/2
δ(ω − E(−) − βpz)(

Z2

a2
H
+

p2
z

γ2 + p2
⊥

) [
1 +

α · p
2m

]

× 8π2Zeγ2
δ
(
E

(+)
q − ω + β (pz − qz)

)
(pz − qz)

2
+ γ2 (p⊥ − q⊥)

2P (u)

− iN+

∑
s

∑
σp

∫
d3p

(2π)
3

∫
dω

2π
eip⊥·b2 8π2Ze

1√
π

(
Z

aH

)3/2
δ(ω − E(−) − βpz)(

p2
z

γ2 + p2
⊥

)
× 4πZe2

2E
(+)
q − α⃗ · (p⃗− q⃗)

(p⃗− q⃗)
2
+ (p⃗2 − q⃗2)

P (u) (12)

After integrating Eq. (12) over ω, pz , the transition matrix element for a fixed spin and momentum state of

the positron as well as for a given intermediate state can be expressed as

⟨
Ψ(−) |Sab|Ψ(+)

q

⟩
=

iN+

2β

1√
π

(
Z

aH

) 3
2
∫

d2p⊥

(2π)
2 e

i(p⊥−q⊥
2 )·bF (−p⊥ : ωa)F (p⊥ − q⊥ : ωb)Tq(p⊥ : +β)

−iN+
1√
π

(
Z

aH

) 3
2
∫

d3p

(2π)
4 e

ip⊥·b2 F (p,q : ωa)T
′

q (p⊥ : +β) (13)

where b is again the impact parameter of the ion–ion collision, and the function F (q, ω) can be described as

the scalar parts of the field associated with the ions a and b in momentum space.
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The explicit form of the scalar field and frequencies of the virtual photons can be investigated in [19].

The scalar field that represents the correction term also can be written as

F (p,q : ωa) =
8π2Zeγ2β2

(ω2
a + γ2β2p2

⊥)

[
4πZe2

2E
(+)
q − α⃗ · (p⃗− q⃗)

(p⃗− q⃗)
2
(p⃗2 − q⃗2)

]
. (14)

Apart from the scalar field of each ion, Eq. (13) also contains the transition amplitude T , which relates the

intermediate photon lines to the outgoing electron–positron lines. This amplitude depends explicitly on the

(relative) velocity of the ions β , the transverse momentum p⊥ , and the momentum of the positron q , and it is

given by

T
′

q (p⊥ : +β) =
∑
s

∑
σp

⟨
u |(1− βαz)|u(s)

σp

⟩⟨
u
(s)
σp |(1 + βαz)|u(+)

σq

⟩
(
E

(s)
p −

(
E(−)+E

(+)
q

2

)
− β qz

2

) (15)

and Tq(p⊥ : +β) can be seen in [19].

Finally, we must note that the integration over the impact parameter b Eq. (13) can be carried out

also analytically. Following very similar lines, it is possible also to evaluate the crossed -term amplitude that is

described
⟨
Ψ(−) |Sba|Ψ(+)

q

⟩
.

After having the amplitudes for the direct and crossed diagram, we are now prepared to write down

the cross section for the generation of a free-bound electron–positron pair in collisions of two heavy ions with

correction term

σ =

∫
d2b
∑
q<0

∣∣∣⟨Ψ(−) |S|Ψ(+)
q

⟩∣∣∣2, (16)

where S = Sab + Sba denotes the sum of the direct and crossed terms.

As a result, after making use of all the simplifications from above, these cross sections for the BFPP with

the correction term can be expressed as

σ =

∫
d2b
∑
q<0

∣∣∣⟨Ψ(−) |Sab|Ψ(+)
q

⟩
+
⟨
Ψ(−) |Sba|Ψ(+)

q

⟩∣∣∣2

= |N+|2
1

π

(
Z

aH

)3∑
q<0

∫
d2b

((∫
d2p⊥

(2π)
2 e

i(p⊥−q⊥
2 )·bF (−p⊥ : ωa)F (p⊥ − q⊥ : ωb)Tq (p⊥ : +β)

−
∫

d3p

(2π)
4 e

ip⊥·b2 F(p,q : ωa)T
′

q(p⊥ : +β)

)

+

(∫
d2p⊥

(2π)
2 e

−i(p⊥−q⊥
2 )·bF (−p⊥ : ωb)F (p⊥ − q⊥ : ωa)Tq (p⊥ : −β)

−
∫

d3p

(2π)
4 e

−ip⊥·b2 F(p,q : ωa)T
′

q(p⊥ : −β)

))2

. (17)
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3. Antihydrogen production with correction

In our previous work [20], we calculated the cross section of the H̄ production by pair production with positron

capture in relativistic collisions of ions. In these antihydrogen cross section calculations, we did not add the

effect of the distortion term due to the wave function of the free electron. Conclusions we reached from our
previous work showed that correction terms play important roles for large charges. Because of this reason, we

added the correction term to the Sommerfeld-Maue (plane-wave) wave function for the electron,

Ψ
(−)
k = N+

[
eik·ru(−)

σk
+ Ψ̄

′
]

(18)

In expression (18), N+ and a+ are described in (3).

The Fourier transform of Ψ̄
′
can be obtained from the Dirac equation of the electron in the Coulomb

field of an antinucleus. The detailed calculations can be found in [17]. The correction term for the free electron

state is given as

Ψ̄
′
= Ψ

′∗γ0 = 4πZe2ū(−)
σk

2E
(−)
k γ0 + γ⃗ · (p⃗− k⃗)(
p⃗− k⃗

)2
(p⃗2 − k⃗2)

γ0 (19)

and after the pair production, the positron is captured by antiprotons and it is described as a bound state. In

a semirelativistic approximation, these positron states are represented by the Darwin wave function

Ψ(+) =

(
1 +

i

2m
α ·∇

)
uΨnon−rel(r), (20)

nonrelativistic (ground) state function is described in (5).

Using the Sommerfeld-Maue wave function for the free electron and the Darwin wave function for the

captured positron, the direct Feynman diagram can be written as⟨
Ψ(+) |Sab|Ψ(−)

k

⟩
=iN+

∑
s

∑
σp

∫
d3p

(2π)
3

∫
dω

2π
ei(p⊥−k⊥

2 )·b8π21e
1√
π

(
1

aH

)3/2
δ(ω − E(+) − βpz)(

12

a2
H
+

p2
z

γ2 + p2
⊥

) [
1− α · p

2m

]

× 8π2Zeγ2
δ
(
E

(−)
k − ω − β (pz − kz)

)
(pz − kz)

2
+ γ2 (p⊥ − k⊥)

2P (u)

− iN+

∑
s

∑
σp

∫
d3p

(2π)
3

∫
dω

2π
eip⊥·b2 8π21e

1√
π

(
1

aH

)3/2
δ(ω − E(+) − βpz)(

p2
z

γ2 + p2
⊥

)

× 4πZe2
2E

(−)
k γ0 + γ⃗ ·

(
p⃗− k⃗

)
(
p⃗− k⃗

)2 (
p⃗2 − k⃗2

) γ0P (u). (21)

After integrating the above equation over ω and pz , the transition matrix element for a fixed spin and

momentum state of the positron as well as for a given intermediate state can be expressed as;⟨
Ψ(+) |Sab|Ψ(−)

k

⟩
=
iN+

2β

1√
π

(
1

aH

) 3
2
∫

d2p⊥

(2π)
2 e

i
(
p⊥− k⊥

2

)
·b
F (−p⊥ : ωa)F (p⊥ − k⊥ : ωb)Tk (p⊥ : +β)

− iN+
1√
π

(
1

aH

) 3
2
∫

d3p

(2π)
4 e

ip⊥·b2 E(p,k : ωa)T
′

k(p⊥ : +β), (22)
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where b is the impact parameter of the ion–ion collision, the function F (−p⊥ : ωa), F (p⊥ − k⊥ : ωb), and

E(p,k : ωa) are the scalar part of the field associated with the ions a and b in momentum space:

F (−p⊥ : ωa) =
4π1e(

12

a2
H
+

ω2
a

γ2β2 + p2
⊥

) , (23)

F (p⊥ − k⊥ : ωb) =
4πZeγ2β2(

ω2
b + γ2β2(p⊥ − k⊥)

2
) , (24)

and

E (p,k : ωa) =
8π21eγ2β2

(ω2
a + γ2β2p2

⊥)

4πZe2
2E

(−)
k γ0 + γ⃗ · (p⃗− k⃗)(
p⃗− k⃗

)2
(p⃗2 − k⃗2)

γ0

 . (25)

The transition amplitudes Tk(p⊥ : +β) and T
′

k(p⊥ : +β) can be expressed explicitly for antihydrogen

production as

Tk (p⊥ : +β) =
∑
s

∑
σp

[
1− α · p

2m

] ⟨u |(1− βαz)|u(s)
σp

⟩⟨
u
(s)
σp |(1 + βαz)|u(−)

σk

⟩
(
E

(s)
p −

(
E(+)+E

(−)
k

2

)
− β kz

2

) , (26)

and

T
′

k (p⊥ : +β) =
∑
s

∑
σp

⟨
u |(1− βαz)|u(s)

σp

⟩⟨
u
(s)
σp |(1 + βαz)|u(−)

σk

⟩
(
E

(s)
p −

(
E(+)+E

(−)
k

2

)
− β kz

2

) (27)

After calculating the amplitude for the direct diagram, we calculate the amplitude for the crossed diagram and

repeat the same procedure that we did for BFPP to write down the cross section for the generation of relativistic

antihydrogen production with the correction term

σ =

∫
d2b
∑
k>0

∣∣∣⟨Ψ(+) |S|Ψ(−)
k

⟩∣∣∣2 =

∫
d2b
∑
k>0

∣∣∣⟨Ψ(+) |Sab|Ψ(−)
k

⟩
+
⟨
Ψ(+) |Sba|Ψ(−)

k

⟩∣∣∣2

= |N+|2
1

π

(
1

aH

)3∑
k>0

∫
d2b

((∫
d2p⊥

(2π)
2 e

i
(
p⊥−k⊥

2

)
·b
F (−p⊥ : ωa)F (p⊥ − k⊥ : ωb)Tk (p⊥ : +β)

−
∫

d3p

(2π)
4 e

ip⊥·b2 E(p,k : ωa)T
′

k(p⊥ : +β)

)

+

(∫
d2p⊥

(2π)
2 e

−i
(
p⊥− k⊥

2

)
·b
F (−p⊥ : ωb)F (p⊥ − k⊥ : ωa)Tk (p⊥ : −β)

−
∫

d3p

(2π)
4 e

−ip⊥·b2 E(p,k : ωa)T
′

k(p⊥ : −β)

))2

. (28)
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4. Results and concluding remarks

In this work, we have performed our calculations for the peripheral collisions of relativistic heavy ions for the

total cross section of bound-free electron–positron and antihydrogen production with a correction term.

In order to compare our new cross section results (with correction term) with our previous work (without

correction term) [19], we performed total BFPP cross section results for selected collision energies in Table 1.

It is clear that correction term reduces the cross section quite substantially.

Table 1. BFPP cross sections σBFPP (in barn) for selected collision systems and cross sections at RHIC and LHC

collider facilities without and with the correction term added to the positron wave function, respectively.

Ref. [19] This work (cor)
RHIC Au+Au 94.5 b 58.3 b
LHC Pb+Pb 202 b 138.8 b

In some previous works, the expression for pair production with electron capture in the nucleus with

target charge is obtained via first order perturbation theory [1,24,25]. We compared our BFPP cross section

correction term added results given in [25]. They found 45 barn for Au+Au collisions at RHIC and 102 barn

for Pb+Pb collisions at LHC. In this work, they also added the effect of higher shells. These results are about

30% lower compared with our work.

Our BFPP result with the correction term for Cu+Cu ions at RHIC is 0.238 barn . The obtained result

for the beam of 63Cu29+ ions at 100 GeV/nucleon at the BNL Relativistic Heavy Ion Collider (RHIC) given

in [26] is approximately 0.2 barn , which is very close to our result with the correction term.

Similarly, in Table 2, we compared the new antihydrogen production cross section with our previous work

[20] for Au− p̄ and Pb− p̄ collisions at RHIC and LHC energies. In Au− p̄ and Pb− p̄ collisions, our new cross

section results for RHIC and LHC energies are smaller than those in our previous work. The reason for this

reduction at cross section is the effect of the corrections of order Zα added to the free particle wave function

for the capture processes.

Table 2. Antihydrogen production cross sections results for Au − p̄ and Pb − p̄ collisions at RHIC and LHC collider

facilities without and with the correction term added to the electron wave function, respectively.

RHIC [20] RHIC (cor) LHC [20] LHC (cor)
Au-p̄ 15.3 mb 9.3 mb 31.1 mb 19.2 mb
Pb-p̄ 14.9 mb 10 mb 30.2 mb 20.7 mb

In Figure 1 the BFPP cross sections for symmetric collisions of ions are shown as a function of the nuclear

charge Z . Cross section calculations are done for the two collision energies with and without the correction

term for E = 100 GeV/nucleon and for 3400 GeV/nucleon. As seen from the figure, correction term that is

added to the positron wave function lowers the cross section results especially for small values of the colliding

ions. Figure 2 displays the total BFPP cross sections for two different systems as functions of the Lorentz

contraction factor γ . Results are displayed with and without the correction term for Au + Au and Pb + Pb

collisions. As expected, the correction term lowers the cross section results.

Figure 3 displays the relativistic antihydrogen production cross sections as functions of the nuclear charge

for RHIC and LHC energies with and without the correction term added to the electron wave function. Here

collisions of antiprotons and heavy ions are considered. As seen in this figure, without the correction term the
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Figure 1. BFPP cross sections for two different systems

as functions of the nuclear charge Z . BFPP cross sections

(in barn) for the symmetric collision of bare ions with

nuclear charge Z at RHIC and LHC energies with and

without the correction term.

Figure 2. BFPP cross sections with and without the

correction term for two different systems Au + Au and

Pb + Pb as functions of the γ . The magnitude of γ is

going from 10 to 3400.

maximum value of the cross section is obtained when nuclear charge is about 65 at RHIC and LHC energies.

The reason for this is while the ions are getting heavier, the contribution of the normalization constant in the

antihydrogen wave function is inversely proportional to the charge of heavy ions [20]. This conflict is solved

when we add the correction term to our cross section calculations and therefore the antihydrogen cross section

value increases with the nuclear charge of the heavy ions.

Figure 4 shows the relativistic antihydrogen cross sections with and without the correction term for

two different ions as functions of the Lorentz contraction factor. This figure displays that the probability of

antihydrogen production increases with the γ values. Without the correction term, the antihydrogen cross

Figure 3. Relativistic antihydrogen cross sections with

and without the correction term for two energy systems at

100 GeV/nucleon and 3400 GeV/nucleon as functions of

the nuclear charge Z .

Figure 4. Relativistic antihydrogen cross sections with

and without correction term for two different ions (Au

and Pb) as functions of γ that the magnitude of it is

going from 10 to 3400 (p− represents antiproton).
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section results of Au+ p̄ collision are higher than the results of Pb+ p̄ . While Z is getting higher, the inverse

effect of the square of the normalization constant makes the antihydrogen cross section values lower [20]. When

we add correction term to the relativistic antihydrogen cross sections, this conflict disappears and, as expected,

the cross section results of Pb+ p̄ get higher than the antihydrogen cross section results of Au+ p̄ .

In this work we calculated bound-free electron–positron pair production cross section and antihydrogen

production including the correction term. We added the correction term Ψ
′
to the electron wave function

known as the Sommerfeld-Maue wave function and for the bound positron we used the Darwin wave function.

Similarly, for the antihydrogen production mechanism, we added the correction term Ψ̄
′
to the positron wave

function and for the bound electron we used the Darwin wave function.

We presented our results in the above tables and figures. The BFPP cross section results with the

correction term are smaller than the results without it, since the wave functions used are correct only to first

order in α . It is expected that the addition of higher-order terms may change our results. In future research,

the inclusion of distortion corrections to higher order in Zα will be necessary to obtain more precise results.
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