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Abstract:Calorimetry in future and upgrade collider detectors has a clear overall trend towards high granularity, both

laterally and longitudinally. This trend is a requirement for the full exploitation of particle flow algorithms, which

reconstruct individual particles using the subdetector that provides the best resolution for this specific particle. The

increased level of detail in the event topologies due to higher segmentation of the calorimeter provides additional handles

for several calorimetric measurements, such as the identification of the hadronic interaction layer, which is not possible

for calorimeters with traditional tower geometry. Here, the power of using multivariate statistical techniques in the

identification of the hadronic interaction layer in a highly segmented calorimeter is investigated.
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1. Introduction

High energy particle collider experiments have always been a key component of scientific and technological ad-

vancement. The current highest energy particle collider is the Large Hadron Collider (LHC -

http://home.cern/topics/large-hadron-collider) with four big experiments: CMS [1], ATLAS [2], LHCb [3], and

ALICE [4]. The major future colliders envisaged are the International Linear Collider (ILC -

https://www.linearcollider.org/ILC), Compact Linear Collider (CLIC - http://clic-study.web.cern.ch/), and

Future Circular Collider (FCC - https://fcc.web.cern.ch/Pages/default.aspx). The major task for the collider

experiments is to measure all the emerging particles at the collision with highest precision. The high energy

physics community has come to a consensus that the high precision aimed in these experiments can be achieved

with the utilization of particle flow algorithms (PFAs) [5].

PFAs attempt to measure each particle in a jet individually, using the component that provides the best

energy/momentum resolution. In this approach, charged particles are measured with a high-precision tracker,

photons with the electromagnetic calorimeter, and the remaining neutral hadronic particles in a jet with the

combined electromagnetic and hadronic calorimeters.

The CALICE collaboration (https://twiki.cern.ch/twiki/bin/view/CALICE/WebHome) developed sev-

eral high segmentation calorimeters primarily targeting the linear collider experiments as well as the upgrade

of the LHC detectors. The examples of the active media of these calorimeters are scintillators of the Analog

Hadron Calorimeter (AHCAL) and the Scintillator Tungsten (ScW) Electromagnetic Calorimeter, Silicon of
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the Silicon Tungsten (SiW) Electromagnetic Calorimeter, and Resistive Plate Chambers (RPCs) of the Digital

and Semi-Digital Hadron Calorimeters (DHCAL and SDHCAL) as well as Monolithic Active Pixel Sensors

(MAPS), Gas Electron Multipliers (GEMs), and Micromegas. The common point in these calorimeters is that

they have high lateral and longitudinal segmentation. Also of extreme importance is that all of the LHC ex-

periments have either adopted or are considering adopting high segmentation detector technologies for their

calorimeter upgrades. The CMS experiment at the LHC has an approved program for large-scale Phase II

calorimetry upgrade planned in 2023. This upgrade will consist of replacing the endcap calorimeters with a

new silicon-based high granularity sampling calorimeter, HGC [6,7]. The endcap calorimeter system is divided

into three separate parts: silicon–tungsten electromagnetic calorimeter of 28 sampling layers (EE), silicon–brass

front hadron calorimeter with 12 sampling layers (FH), and scintillator–brass backing hadron calorimeter with

11 sampling layers (BH). EE and FH will be maintained at –30◦ . Other examples from LHC are as follows:

ATLAS is considering a high-granularity timing detector; LHCb is considering a high timing, position, and

angular resolution silicon–tungsten electromagnetic calorimeter; and ALICE is considering the ultimate digital

calorimeter with MAPS.

As the overall trend in the future/upgrade detector systems is towards a significant increase in spatial

segmentation, the algorithms to reconstruct the traversing particles should also evolve in the same manner. The

energy reconstruction in conventional calorimetry is performed by simply adding contributions from individual,

usually large-size geometrical calorimeter units called towers and there is minimal information about the

topology of the individual electromagnetic or hadronic interactions. With the introduction of high segmentation,

numerous topological variables become available.

Here, the identification of the hadronic interaction layer based on multivariate analysis techniques utilizing

topological variables is investigated.

2. Materials and methods

In order to fully exploit the power of the analysis of the data obtained with highly segmented detector systems,

techniques based on multivariate analysis (MVA) can be developed. With the availability of the high spatial

detail of the particle interactions inside the detectors, several topological interaction variables can be obtained.

A few examples are the longitudinal barycentre, radial dispersion, and the geometrical objects that contain e.g.

90% of the total interaction energy. Many more variables can be added to the list with various discriminating

powers across different particle types and energies.

MVAs are based on supervised learning algorithms and can be utilized in two major ways in high energy

physics data analysis: processing, evaluation, and application of multivariate classification, where a signal

sample is tried to be identified within a mixed sample of signal and background; and of multivariate regression

where attempts are made to predict the value of a response variable based on a set of input variables. The

software tool designated for the implementation of these methods is TMVA—Toolkit for Multivariate Data

Analysis with ROOT [8]. TMVA enables the training, testing, evaluation, and application of many regression

and classification methods. The utilization of the toolkit is quite simple; however, effective use of the available

statistical tools requires an in-depth knowledge of the detectors and the proper tuning of the settings in the

classification and regression methods so that they are suitable for the particular implementation.

Among the MVA methods, multilayer perceptron or artificial neural networks (MLP), linear discriminant

(LD) analysis, probability density estimator using self-adapting phase-space binning (PDE-Foam), and boosted

regression trees with gradient bagged boost (BDTG) can be listed. These MVA methods are briefly described

below [8].
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An MLP is a simulated collection of interconnected neurons, with each neuron producing a certain

response at a given set of input signals. By applying an external signal to some input neurons the network

is put into a defined state that can be measured from the response of one or several output neurons. One

can therefore view the neural network as a mapping from a space of input variables onto a one-dimensional or

multidimensional space of output variables. The mapping is nonlinear if at least one neuron has a nonlinear

response to its input.

The LD analysis provides data classification using a linear model, where linear refers to the discriminant

function being linear in the parameters. It is equivalent to the Fisher discriminant, which seeks to maximize

the ratio of between-class variance to within-class variance by projecting the data onto a linear subspace.

The PDE-Foam method divides the multidimensional phase space into a finite number of hyperrectangles

(cells) of constant event density. This “foam” of cells is filled with averaged probability density information

sampled from the training data. For a given number of cells, the binning algorithm adjusts the size and position

of the cells inside the multidimensional phase space based on a binary split algorithm that minimizes the

variance of the event density in the cell. The binned event density information of the final foam is stored in

cells, organized in a binary tree. In regression mode, the algorithm determines cells with small varying regression

targets.

The BDTG is a binary tree structured regressor. Repeated left/right decisions are taken on one single

variable at a time until a stop criterion is fulfilled. The phase space is split this way into many regions. Each

output node represents a specific value of the target variable. The boosting of a regression tree extends this

concept from one tree to several trees, which form a forest. The trees are derived from the same training

ensemble by reweighting events, and are finally combined into a single regressor, which is given by a weighted

average of the individual regression trees. Boosting stabilizes the response of the regression trees with respect

to fluctuations in the training sample and is able to considerably enhance the performance with respect to a

single tree. The boosting procedure is employed to adjust the parameters such that the deviation between the

model response and the true value y obtained from the training sample is minimized. Gradient boost works

best on weak classifiers, meaning small individual regression trees with a depth of often just 2 to 4. In certain

settings gradient boost may also benefit from the introduction of a bagging-like resampling procedure using

random subsamples of the training events for growing the trees. This is called stochastic gradient boosting and

is what is implemented in this demonstrator.

In order to study the implementation of MVAs in the identification of the hadronic interaction layer, a

highly granular calorimeter response was simulated with the Geant4 package [9]. The calorimeter consists of

scintillators as active media and tungsten as the absorber material. A single layer is made of a cassette structure

that has 2-mm steel plates at the front and back with 5-mm scintillator and 5-mm PCB layers in between. The

calorimeter is an alternating structure of 10.5-mm tungsten absorbers and the cassettes, and is geometrically

similar to the CALICE AHCAL [10]. The scintillator layer is segmented into 1 cm × 1 cm cells with no dead

areas. In order to mimic a real calorimeter response, 15% spread is introduced to the response (here the total

energy deposit within a tile) of the traversing minimum ionizing particles (MIPs).

As beam particles, positively charged pions are used in energies of 10, 20, 30, 40, 50, 60, 70, 80, 90, and

100 GeV (typical test beam hadron energies). The particles are generated at the face of the calorimeter in the

central 10 cm × 10 cm area and are directed at normal angles to the calorimeter surface. The energy deposit in

the calorimeter tiles is expressed as a factor of average MIP response of the tiles. The noise level of the response

is set at 0.5 MIPs and any energy deposit below this is considered zero. Figure 1 shows Geant4 event displays

for 10 GeV (left) and 30 GeV (right) pions.

264
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Figure 1. Events displays of 10 GeV (left) and 30 GeV (right) pion interactions.
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Figure 2. The deviation between the MVA-calculated interaction layer and the true interaction layer for MLP (a), LD

(b), PDE-Foam (c), and BDTG (d) methods.
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The analysis of the hadronic interaction data starts with the identification of the interaction layer, where

the incident hadron goes through the first hadronic interaction. For the identification of the interaction layer,

the following topological variables are utilized:

1. The layer with maximum number of MIPs.

2. Maximum number of MIPs.

3. The layer that contains the tile with maximum number of MIPs.

4. Layer with maximum number of tiles with signal above threshold (0.5 MIPs).

The regression algorithms were trained with 25,000 events and were tested with 25,000 events.
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Figure 3. The distributions of the deviation between the MVA-calculated interaction layer and the true interaction

layer for MLP (a), LD (b), PDE-Foam (c), and BDTG (d) methods.
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3. Results

Figure 2 shows the deviation between the MVA-calculated interaction layer and the true interaction layer for

MLP (a), LD (b), PDE-Foam (c), and BDTG (d) methods. All methods are successful in identifying the

hadronic interaction layer and tend to predict larger values for smaller interaction layers and smaller values for

larger interaction layers.

The deviation is largest at very low and very high interaction layers and is optimally predicted by the

MVA methods in the range of 5–12.

Figure 3 shows the distributions of the deviations for MLP (a), LD (b), PDE-Foam (c), and BDTG (d)

methods together with the Gaussian fits in the entire range. The low end tail is sufficiently well described by

the fits. The majority of the high tail contribution comes from the hadrons interacting in the first few layers.

Figure 4 shows the mean (black) and sigma (red) of the Gaussian fits of Figure 3. The error bars are

smaller than the size of the markers. All methods show superior performance in the identification of the hadronic

interaction layer. An absolute deviation less than 1 signifies a correct identification since the layer numbers are

integers. BDTG shows the smallest spread with a sigma value close to 1.
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Figure 4. Mean (black) and sigma (red) of the Gaussian fits of Figure 3.

4. Conclusions

The development of high granularity calorimeters enables the invention of numerous topological event variables.

These variables can be utilized in the identification of the hadronic interaction layer, reconstruction of the

incident particle energy, and several other hadronic interaction measurements.

In this study, the feasibility of identification of the interaction layer with multivariate analysis techniques

is investigated as a novel approach for highly granular calorimeter systems. The identification of the hadronic

interaction layer is particularly important in the reconstruction of the energy of the hadron with high resolution,

as well as energy flow calculations and leakage corrections. With traditional calorimetry, where the energy of

the hadron is an accumulated signal in large detector volumes called towers, such precise measurements are

not possible. In highly granular calorimeters on the other hand, advanced statistical analysis techniques can be

utilized.
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The methods used in this study, MLP, LD, PDE-Foam, and BDTG show superior performance in the

identification of the interaction layer. The BDTG method is preferable to the others in terms of higher accuracy

and less computation time requirement.
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