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Abstract: In this paper, we apply Fα -calculus on the fractal Koch and Cesàro curves with different dimensions. A

generalized Newton’s second law on the fractal Koch and Cesàro curves is given. Density of the moving particles absorbed

on fractal Cesàro are derived. Illustrative examples are given to present the details of Fα -integrals and Fα -derivatives.
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1. Introduction

Fractional calculus includes the derivatives and integrals with arbitrary orders and it has been applied in science

and engineering [1, 2]. The fractional derivatives were used to model non-conservative systems, processes

with memory effect, and anomalous diffusion [3-5]. The fractional derivatives are nonlocal but most of the

measurements in physics are local [6]. As a result, in view of the fractional local derivatives and the Chapman–

Kolmogorov condition, a new Fokker–Planck equation was given [7]. The local fractional derivatives lead to a

new measure on fractal sets [8]. Fractal geometry that generalizes Euclidean geometry has an important role in

science, engineering, and medical science. Fractals are geometrical objects that have self-similar properties and

fractional dimensions. Fractal geometry was used in biology and medicine for describing pathogenetic processes

in medicine [9]. Fractal dust was utilized to model the distribution of stars and galaxies in the universe [10].

General topology and measure theory were used to generalize analysis on the fractal sets. Heat diffusion on

a fractal medium and the vibration of a material with fractal structure were modeled by defining Laplacians

on self-similar sets [11]. Using harmonic analysis and probability theory, differential equations on fractal sets

were suggested and solved [12]. Many methods have been used to develop a formal analytical description of

fractal sets and processes [13]. Fluid flow in a fractal porous medium was mapped into fractal continuum flow

for describing stress and strain distributions in elastic fractal bars [14]. Frictional properties of Weierstrass–

Mandelbrot surfaces were given using fractal Koch surfaces [15].

Recently, Fα -calculus (Fα .C.) was formulated in a seminal paper as a framework by Parvate and Gangal,

which is the generalized standard calculus. Fα .C. is calculus on fractals with the algorithmic property [16–

18]. Researchers have explored this area giving new insight into Fα .C. [19, 20]. The fractal Cantor sets were

considered as grating in the diffraction phenomena [21]. Following this line of research we apply Fα .C. to the

fractal Koch and Cesàro curves. The differential equation characterizing the motion of the particles on fractal

curves is studied.

The paper is organized as follows: in Section 2, we summarize Fα .C. on the fractal Koch and Cesàro

∗Correspondence: a.khalili@iaurmia.ac.ir

418



GOLMANKHANEH/Turk J Phys

curves. In Section 3, we develop the new results including the equation of motion of the particles. Section 3

contains our conclusion.

2. Preliminaries

In this section, we summarize the Fα .C. on parameterized fractal curves and use it in the case of the fractal

Koch and Cesàro curves (see [18] for a review).

Calculus on the fractal Koch and Cesàro curves: Let us consider the fractal Koch and Cesàro

curves, which are denoted by F ⊂ R3 , and define the corresponding staircase function. The fractal Koch and

Cesàro curves are called continuously parameterizable if there exists a function w(t) : [a0, b0] → F, a0, b0 ∈ R

that is continuous one to one and onto F [18].

Definition 1 For fractal curves F and a subdivision P[a,b], a < b, [a, b] ⊂ [a0, b0] , the mass function is defined

as [18]:

γα(F, a, b) = lim
δ→0

inf
{P[a,b]:|P |≤δ}

n−1∑
i=0

|w(ti+1)−w(ti)|α

Γ(α+ 1)
, (1)

where |.| indicates the Euclidean norm on R3 and P[a,b] = {a = t0, ..., tn = b}.

Definition 2 The staircase functions for the fractal Koch and Cesàro curves are defined as:

Sα
F (t) =

{
γα(F, p0, t) t ≥ p0,

−γα(F, t, p0) t < p0,
(2)

where p0 ∈ [a0, b0] is an arbitrary point.

In Figure 1 we have sketched the fractal Koch and Cesáro curves and Sα
F (t) setting α = 1.26 and

α = 1.78.

Definition 3 The γ -dimensions of the fractal Koch and Cesáro curves (F ) are defined as:

dimγ(F ) = inf{α : γα(F, a, b) = 0}

= sup{α : γα(F, a, b) = ∞}. (3)

Definition 4 The Fα -derivative of a function f at θ ∈ F is defined as:

Dα
F f(θ) = F − lim

θ′→θ

f(θ′)− f(θ)

J(θ′)− J(θ)
, (4)

where J(θ) = Sα
F (w

−1(θ)), θ ∈ F and if the limit exists [18].

Definition 5 A number l is the F -limit of a function f if we have

θ′ ∈ F and |θ′ − θ| < δ ⇒ |f(θ′)− l| < ϵ. (5)

If such a number exists [18], it is indicated by

l = F − lim
θ′→θ

f(θ′). (6)
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(a) �e fractal Koch curve and S 1.26
F (t) dnaevrucoráseClatcarfehT)b( S 1.7

F (t)

Figure 1. The graph of the fractal Koch curve and fractal Cesáro curve (in blue) and the corresponding staircase
functions (in red).

A segment C(t1, t2) of the fractal Koch and Cesáro curve is defined as:

C(t1, t2) = {w(t′) : t′ ∈ [t1, t2]}, (7)

and M, m are defined as follows [18]:

M [f, C(t1, t2)] = sup
θ∈C(t1,t2)

f(θ), (8)

m[f, C(t1, t2)] = inf
θ∈C(t1,t2)

f(θ). (9)

Definition 6 The upper and the lower Fα -sum for the function f over the subdivision P are defined as:

Uα[f, F, P ] =
n−1∑
i=0

M [f, C(ti, ti+1)][S
α
F (ti+1)− Sα

F (ti)], (10)

Lα[f, F, P ] =
n−1∑
i=0

m[f, C(ti, ti+1)][S
α
F (ti+1)− Sα

F (ti)]. (11)

Definition 7 The Fα -integral of the function f is defined as∫
C(a,b)

f(θ)dαF θ =

∫
C(a,b)

f(θ)dαF θ = sup
P[a,b]

Lα[f, F, P ]

=

∫
C(a,b)

f(θ)dαF θ = inf
P[a,b]

Uα[f, F, P ]. (12)
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Fundamental theorems of Fα -calculus:

First part: If f : F → R is an Fα -differentiable function and h : F → R is F -continuous such that

h(θ) = Dα
F f(θ), then we have ∫

C(a,b)

h(θ)dαF θ = f(w(b))− f(w(a)). (13)

Second part: If f is bounded and F -continuous on C(a, b) and g : F → R then

g(w(t)) =

∫
C(a,t)

f(θ)dαF θ, t ∈ [a, b], (14)

where we suppose

Dα
F g(θ) = f(θ). (15)

For the proofs we refer the readers to [18].

Some properties:

1) If f(θ) = k ∈ R , then Dα
F f = 0.

2) If f is F -continuous and Dα
F f = 0, then f = k .

3) The generalized Taylor series on the fractal Koch curves is written as

h(θ) =
∞∑

n=0

(J(θ)− J(θ′))n

n!
(Dα

F )
nh(θ′), θ ∈ F. (16)

4) If f(θ) = 1 is a constant function then∫
C(a,b)

f(θ)dαF θ =

∫
C(a,b)

1dαF θ

= Sα
F (b)− Sα

F (a) = J((w(b))− J((w(a)). (17)

Note: The Fα -integral and the Fα -derivative on the fractal Koch curves are linear operators.

Consider f(t) : F → R on the fractal Koch curves as

f(t) = (Sα
F (t))

2. (18)

The Fα -derivative and the Fα -integral of f are∫
C(0,t)

f(t)dαF t =
(Sα

F (t))
3

3
+ k,

and
Dα

F f(t) = 2 Sα
F (t),

where k is constant. Figure 2 shows the graphs of f , the Fα -integral, and the Fα -derivative of f .
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(a)  e f on fractal Koch curve
(b)  e ∫ f ( t ) dαF t on fractal Koch curve

(c)  e D α
F f ( t ) on fractal Koch curve

Figure 2. Graph of the Fα -integral and the Fα -derivative of f on the fractal Koch curve.

3. Equation of motion on fractal curves

The generalized Newton’s second law on the fractal Koch and Cesáro curves is suggested as

m(Dα
F )

2rαF (t) = fαF , (19)

where rαF : F → R , vα
F (t) = Dα

F rαF , and aαF (t) = (Dα
F )

2 rαF are called the generalized position, generalized

velocity, and generalized acceleration on the fractal Koch and Cesáro curves, respectively.

Example 1 Consider a force fαF = k(̂i + ĵ) [ MLαT 2 ] such that fαF : F → R is applied on a particle with

mass m on the fractal Koch curves. One sees immediately that generalized acceleration, velocity, and position
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are

aα
F (t) =

k

m
,

vαF (t) =
k

m
Sα
F (t) + vαF (0),

rαF (t) =
k

2m
Sα
F (t)

2 + vαF (0)S
α
F (t) + rαF (0). (20)

We present the graph of Eq. (20) in Figure 3.

Figure 3. The graph of rαF (t) setting vα
F (0) =

k
2m

= 1, rαF (0) = 0.

Example 2 Consider particles moving along the fractal Cesàro curve, which absorbs the particles. The math-

ematical model for this phenomenon is given by

Dβ
F ζ(t) = −kζ(t), β = 1.78, (21)

where ζ is the density of particles on the fractal Cesàro curve. Using the Fα -integral, it is easy to obtain the

solution:

ζ(t) = ζ(0)e−kSβ
F (t). (22)

Figure 4 shows the density of particles ζ(t) for the flux of particles on the fractal Cesàro curve with

absorbtion.

Example 3 Consider the following differential equation on the fractal Cesàro curve:

(D1.78
F )2µ(t) + 9µ(t) = cos(t), t ∈ F, (23)

with the boundary conditions

D1.78
F µ(t)

∣∣
t=0

= 5, (24)

µ(π/2) = −5/3. (25)
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Figure 4. The graph of ζ(t) on the fractal Cesàro curve.

Using the conjugacy of Fα .C. and ordinary calculus, the solution is

µ(t) = λ cos(3 S1.78
F (t)) +

5

3
sin(3 S1.78

F (t)) +
1

8
cos(S1.78

F (t)), (26)

where λ is constant.

Example 4 Consider the Langevin equation on the fractal Cesàro curve as follows:

m D1.78
F ξ(t) = −κ ξ(t) + τ η(t) (27)

where m, κ , and τ are constants and η(t) is a stationery Gaussian white noise. With the conjugacy of Fα .C.

with ordinary calculus and using inverse transformation between them, we have

ξ(t) = D1.78
F ξ(t)

∣∣
t=0

e−κS1.78
F (t) +

τ

m

∫ t

0

e−τ(S1.78
F (t)−S1.78

F (t′))η(t′) d1.78F t′. (28)

Using < η(t) >= 0 , we obtain

< D1.78
F ξ(t) >= D1.78

F ξ(t)
∣∣
t=0

e−κS1.78
F (t), (29)

where < . > is denoted the mean function of a random process.

4. Conclusion

In this work, we addressed the Fα .C. that generalizes standard calculus on fractals with fractional dimension

and self-similar properties. In the sense of the standard calculus the fractal Koch and Cesàro curves are not

differentiable and integrable. Fα .C. is used to define the Fα -integral and the Fα -derivative on the fractal Koch

and Cesàro curves. Some illustrative examples are given and the main aspects discussed. Finally, generalized

differential equations corresponding to the motions on the fractal Koch and Cesàro curves are suggested and

solved.
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