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doi:10.3906/fiz-1704-23

Turkish Journal of Physics

http :// journa l s . tub i tak .gov . t r/phys i c s/

Research Article

Localization of a nonlocal interaction

Ujjwal LAHA1,∗, Sanjib Kr DAS1, Jhasaketan BHOI2
1Department of Physics, National Institute of Technology, Jamshedpur, Jharkhand, India
2Department of Physics, Government College of Engineering, Kalahandi, Odisha, India

Received: 22.04.2017 • Accepted/Published Online: 24.07.2017 • Final Version: 10.11.2017

Abstract: A simple method for the localization of a separable nonlocal interaction is formulated in terms of Green’s

functions and the solutions with regular and irregular boundary conditions. The constructed energy–momentum-

dependent local potential with regular boundary condition is real while that for the irregular boundary condition is

complex in nature. The phase function method is exploited to compute elastic scattering phases for the nucleon–nucleon

and alpha–nucleon systems. Reasonable agreements in scattering phase shifts with experimental data are obtained,

particularly, in the low energy range for the systems under consideration. The phase shifts for the imaginary parts of the

potentials derived from the irregular solutions for the alpha–nucleon systems, however, give indications of resonances at

very low energies.
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1. Introduction

In 1949, the first attempt to establish the relationship between scattering phase shifts and potential was made

by Levinson [1]. He showed that two potentials that decrease rapidly enough give rise to no bound states and

those that give the same phase shifts for all angular momenta are identical. Later that same year, Bargmann

[2] conducted a study on phase equivalent potentials and introduced a technique for constructing them. He

discovered a manifold of potentials V(r) with the same spectral density for positive energies as a given potential

V0 (r). Each member of V(r)s is phase equivalent to V0 (r) but may differ in the number of bound states [3,4]. In

1951, Gel’fand and Levitan [5] presented an integral equation that relates the phase shifts as functions of energy

to another function from which the scattering potential can be obtained. The phase shifts are to be described by

what is called a spectral function and the potential is derived from the kernel that solves their integral equation.

Later on, the algorithms of the inverse scattering problem, within the framework of supersymmetric quantum

mechanics, have been exploited by a number of researchers [6–10] to generate phase equivalent potentials.

The use of separable nonlocal interactions to fit two-nucleon phase shifts in various angular momentum

states is well established. Attempts were made by several groups [11–13] to construct equivalent local potentials

to nonlocal interactions or localization of nonlocal potentials. An equivalent local potential analysis to a nonlocal

one is quite common in optical model studies. These methods include a comparison between the characteristics

of nonlocal potentials and the familiar phenomenology of the local potentials. In general, the phase shifts or

the T-matrix elements of the nonlocal and its equivalent local potentials are compared. Coz et al. [14] have
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applied the method of energy-dependent equivalent potential to several nonlocal Hartree–Fock nucleon–nucleus

potentials. The energy dependence of such local potentials varies slightly over the entire energy range for which

the original nonlocal potentials are applicable. There exist experimental situations that involve scattering by

additive interactions, some of which must for various physical reasons be treated exactly, whereas others may

be treated as a relatively small perturbation [15,16]. A typical example of this kind is the scattering of particles

under the combined influence of electromagnetic and nuclear forces like proton–proton (p-p), alpha–proton (α -

p), and alpha–alpha (α -α) [17–19]. In view of the importance of experiments that involve charged hadrons,

the interest in studying potentials consisting the sum of a short-range finite-rank separable potential and an

electromagnetic potential is increased. The short range interaction is of nuclear origin while the electromagnetic

potential takes care of the charges. The alpha particles are tightly bound and have no low lying excited states.

In view of this, one can use the simple Schrödinger equation with electromagnetic plus separable nonlocal

potentials to compute scattering phase shifts for alpha–nucleon systems. In atomic and plasma physics screened

and cut-off Coulomb potentials are important. Many standard results in nonrelativistic scattering theory for

the short-range potentials have to be modified for charged particle scattering as the particles interacting via the

Coulomb potential never behave like free particles. Even the asymptotic condition for a well-behaved potential

does not hold and as a consequence the concept of a phase shift is ill defined for Coulomb scattering. In reality,

the Coulomb potential does not exist in nature and becomes somewhat screened at a certain distance. Moreover,

the traditional approach to the phase function method (PFM) for the local potential does not hold good for the

pure Coulomb interaction and it needs separate treatment. The Hulthén potential at small values of r behaves

like a Coulomb potential, whereas for large values of r it decreases exponentially so that its capacity for bound

states is smaller than that of the Coulomb potential (for attractive cases). Thus, to circumvent the difficulties

for computing scattering phase shifts by use of the traditional phase function method the electromagnetic

interaction here is defined by a screened Coulomb potential, the atomic Hulthén one.

In this text, we present a simple method of localization of nonlocal interaction by using the regular and

irregular solutions and judge the merit of our approach through some model calculations. Our approach to

the problem based on simple rearrangements of the Schrödinger equation with electromagnetic plus separable

nonlocal interactions and the phase function method (PFM) permits a rigorous inclusion of the electromagnetic

effect to the elastic scattering of charged hadron systems. In section 2 we describe the method of localization

of local plus a separable nonlocal interaction. Section 3 is devoted to the results and discussions. Finally, the

conclusions are given in section 4.

2. Localization of Hulthén-modified separable nonlocal interaction

Separable potentials have been frequently used in different areas of physics because of the simplicity involved

in analytical calculation. A nonlocal potential is, in general, a function of two coordinate variables. In the

separable model Vℓ(r, r
′) =

i=1∑
N

λiℓ
∣∣giℓ(r)⟩ ⟨gi(r′)∣∣ with λiℓ and giℓ(r) represent the state dependent strength

parameter and form factor of the interaction. The attractive part of the nucleon–nucleon interaction involves

a phenomenological intermediate region and a one pion exchange tail [20]. Therefore, for a correct description

of the nucleon–nucleon interaction within the formalism of a separable model one needs at least two terms

in the potential with the strength parameters having opposite signs. Since low energy scattering experiments

sample out only the outer region of the potential, one term separable potential may be of importance for this

energy range. For intermediate and high energy ranges one has to consider higher rank potential because of
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the sensitivity of scattering data to the choice of inner core irrespective of whether the separable interaction is

symmetric or nonsymmetric [21–24], and the associated Schrödinger equation can be solved in closed form.

At a centre of mass energyE = k2 + iε , the radial Schrödinger equation for the Hulthén plus rank N

separable potential in all partial waves ℓ is written as

[
d2

dr2
+ k2 − ℓ(ℓ+ 1)

r2
− VH(r)

]
ψℓ(k, r) =

N∑
i=1

λℓigℓi(βℓi, r)

∞∫
0

dr′gℓi(βℓi, r
′)ψℓ(k, r

′), (1)

where the atomic Hulthén interaction

VH(r) = V0
e−r/a

1− e−r/a
(2)

with V0 , the strength and a , the screening radius of the atomic Hulthén potential. In the limit a → ∞ ,

the potential in Eq. (2) goes over to Coulomb potential if V0a
2 = e2 = 1 (in atomic unit, au = 5.291772 ×

10−11m). The quantities gℓi(βℓi, r)s are the form factors of the separable potential and λℓi and βℓi stand for

the strength and inverse range parameters. Eq. (1) may be rewritten as

[
d2

dr2
+ k2 − ℓ(ℓ+ 1)

r2

]
ψℓ(k, r) =

[
VH(r) +

1

ψℓ(k, r)

N∑
i=1

λℓigℓi(βℓi, r) dℓi(βℓi, k)

]
ψℓ(k, r) (3)

with

dℓi(βℓi, k) =

∞∫
0

dr′gℓi(βℓi, r
′)ψℓ(k, r

′). (4)

The wave function ψℓ(k, r) involved in Eq. (3) is not the solution of a local interaction while it denotes the

solution for the Hulthén plus rank N separable potential. Thus, on comparing Eq. (3) with the Schrödinger

equation for a local potential the term within the braces on the right-hand side is considered as an approximate

energy-dependent equivalent local interaction for the Hulthén plus rank N separable potential identified as

VEQ(k, r) = VH(r) +
1

ψℓ(k, r)

N∑
i=1

λℓigℓi(βℓi, r) dℓi(βℓi, k). (5)

If the electromagnetic interaction is turned off the above equation reduces to equivalent local potential for the

pure separable potential. If the potential is less singular at r = 0 than r−2 , that is lim
r→0

r2V (r) = 0, the

point r = 0 is regular in the theory of ordinary second-order differential equation. The solution that vanishes

at r = 0 is termed as regular and the one that does not is called irregular. We shall apply both the regular and

irregular boundary conditions for the construction of approximate equivalent local potentials. As the Hulthén

or Hulthén-like potentials are exactly solvable for the S-wave only we shall treat here the case for ℓ = 0 and

hereafter omit the subscript ℓ throughout the text.

449



LAHA et al./Turk J Phys

2.1. Regular boundary condition

The integral equation corresponding to Eq. (1) for the regular solution ϕHS(k, r) for the Hulthén plus rank N

separable potential is written as

ϕHS(k, r) = ϕH(k, r) +
N∑
i=1

λid
(R)
i (βi, k)

r∫
0

dr′gi(βi, r
′)G(R)H(r, r′), (6)

where the Hulthén Green’s function G(R)H(r, r′) for the regular boundary condition is given by [25]

G(R)H(r, r′) =
[
ϕH(k, r)fH(k, r′)− ϕH(k, r′)fH(k, r)

]
/fH(k) (7)

and

d
(R)
i (βi, k) =

∞∫
0

drgi(βi, r)ϕ
HS(k, r). (8)

Here ϕH(k, r) and fH(k, r) stand for the regular and irregular solutions of pure Hulthén potential [26,27] and

fH(k) the corresponding Jost function defined as

ϕH(k, r) = a (1− e−r/a) eikr 2F1

(
1 +A, 1 +B; 2; 1− e−r/a

)
, (9)

fH(k, r) = eikr 2F1

(
A, B; C; e−r/a

)
(10)

and

fH(k) =
Γ(C)

Γ(1 +A)Γ(1 +B)
(11)

with

A = −iak + ia(k2 + V0)
1/2, (12a)

B = −iak − ia(k2 + V0)
1/2 (12b)

and
C = 1− 2iak. (12c)

Eq. (6) represents an inhomogeneous integral equation with a degenerate kernel and can easily be solved to

have

d
(R)
i (βi, k) =

1

det NWHS(β, k)

N∑
j=1

wHS
ij (β, k)ZHS

j (k) (13)

with

det NW
HS(β, k) =

∣∣∣∣∣∣∣∣∣∣

WHS
11 (β, k) WHS

12 (β, k) WHS
13 (β, k) .................WHS

1N (β, k)

WHS
21 (β, k) WHS

22 (β, k) WHS
23 (β, k) .................WHS

2N (β, k)

...............................................................................................

WHS
N1 (β, k) WHS

N2 (β, k) WHS
N3 (β, k) .................WHS

NN (β, k)

∣∣∣∣∣∣∣∣∣∣
, (14a)
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where

WHS
ij (β, k) = δij − λj

∞∫
0

r∫
0

dr dr′gi(βi, r)G
(R)H(r, r′)gj(βj , r

′), (14b)

ZHS
j (k) =

∞∫
0

dr ϕH(k, r)gj(βj , r) (15)

and wHS
ij (β, k)s represent the cofactors of WHS

ij (β, k)s. Thus, Eq. (6) together with Eqs. (7)–(15) gives the

desired expression for the regular solution for Hulthén plus rank N separable potential as

ϕHS(k, r) = ϕH(k, r) +
1

det NWHS(β, k)

N∑
i,j=1

λiw
HS
ij (β, k)ZHS

j (k)SHS
i (βi, r) (16)

with

SHS
i (βi, r) =

r∫
0

dr′gi(βi, r
′)G(R)H(r, r′). (17)

Combination of Eqs. (2), (5), and (16) produces the desired result of equivalent energy-dependent local

interaction for Hulthén plus rank N separable potential.

2.2. Irregular boundary condition

The irregular solution fHS(k, r) for the Hulthén plus rank N separable potential satisfies the integral equation

fHS(k, r) = fH(k, r) +

N∑
i=1

λid
(I)
i (βi, k)

∞∫
r

dr′gi(βi, r
′)G(I)H(r, r′) (18)

with the irregular Hulthén Green’s function [15] G(I)H(r, r′)

G(I)H(r, r′) = −
[
ϕH(k, r)fH(k, r′)− ϕH(k, r′)fH(k, r)

]
/fH(k) (19)

and

d
(I)
i (βi, k) =

∞∫
0

drgi(βi, r)f
HS(k, r). (20)

Solving Eq. (18) one gets

d
(I)
i (βi, k) =

1

det NWHS(β, k)

N∑
i,j=1

wHS
ij (β, k)Y HS

j (k), (21)

where

Y HS
j (k) =

∞∫
0

dr fH(k, r)gj(βi, r) (22)
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Eq. (18) together with Eqs. (21) and (22) yields

fHS(k, r) = fH(k, r) +
1

det NWHS(β, k)

N∑
i,j=1

λiw
HS
ij (β, k)Y HS

j (k)THS
i (βi, r) (23)

with

THS
i (βi, r) =

∞∫
r

dr′gi(βi, r
′)G(I)H(r, r′). (24)

Combining Eqs. (2), (5), and (23) one can construct the expression for VEQ(k, r) with the irregular boundary

condition. When the electromagnetic interaction VH(r) is turned off one obtains the equivalent local interactions

for the pure nonlocal potential for both the boundary conditions under consideration.

2.2.1. Case study: Hulthén plus Yamaguchi potential

Since its appearance the Yamaguchi potential [21] has become an immensely popular tool in dynamical cal-

culation of two-nucleon or nucleon–nucleus systems. The rank one Yamaguchi potential with symmetric form

factors is written as

V (r, r′) = λ g(β, r) g(β, r′) = λ e−β r e−β r′ , (25)

where λ is the strength and β the inverse range parameter. From Eqs. (16) and (23) the regular and irregular

solutions [28] for the Hulthén plus Yamaguchi potential is obtained as

ϕHY (k, r) = ϕH(k, r) +
λ

WHY (β, k)
ZHY (k)SHY (β, r) (26)

and

fHY (k, r) = fH(k, r) +
λ

WHY (β, k)
Y HY (k)THY (β, r). (27)

The quantity WHY (β, k) is the Fredholm determinant associated with the regular and irregular boundary

conditions, ZHY (k) and Y HY (k) are the transforms of the regular and irregular solutions of the pure Hulthén

interaction by the form factors of the Yamaguchi potential, and SHY (β, r) and THY (β, r) denote the transforms

of the regular and irregular Hulthén Green’s functions by the Yamaguchi form factors. In the following we shall

evaluate the above quantities by exploiting the standard integrals associated with the special functions of

mathematical physics. The factors

ZHY (k) = λ

∞∫
0

dr e−β r ϕH(k, r) = a2
Γ ((β − ik)a) Γ ((β + ik)a)

Γ (1 + (β − ik)a−A) Γ (1 + (β − ik)a−B)
(28)

and

Y HY (k) = λ

∞∫
0

dr e−β r fH(k, r) =
1

(β − ik)
3F2 (A, B, (β − ik)a; C, 1 + (β − ik)a; 1) . (29)
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In evaluating the above integrals we have used the following standard integral [29–31]:

1∫
0

xρ−1(1− x)σ−1
2F1 (α, β; γ; x) dx = Γ(ρ)Γ(σ)

Γ(ρ+σ) 3F2 (α, β, ρ; γ, ρ+ σ; 1) ;

[Rep > 0, Reσ > 0, (γ + σ − α− β) > 0]

. (30)

The evaluation of two indefinite integrals SHY (β, r) and THY (β, r) is rather tricky. From Eqs. (7), (9)–(11)

the regular Hulthén Green’s function G(R)H(r, r′) is expressed as [28]

G(R)H(r, r′) = Γ(1+A)Γ(1+B)
Γ(C) a eik(r+r′)

[
(1− e−r/a) 2F1

(
1 +A, 1 +B; 2; 1− e−r/a

)
× 2F1

(
A, B; C; e−r′/a

)
−(1−e−r′/a) 2F1

(
A, B; C; e−r/a

)
2F1

(
1+A, 1+B; 2; 1− e−r′/a

)] .

(31)

Transforming the 2F1 (A, B; C; ∗) in Eq. (31) by the recurrence relation [29–31]

2F1 (a, b; c; z) = Γ(c) Γ(c−a−b)
Γ(c−a)Γ(c−b) 2F1 (a, b; a+ b− c+ 1; 1− z) + (1− z)

c−a−b

×Γ(c) Γ(a+b−c)
Γ(a)Γ(b) 2F1 (c− a, c− b; c− a− b+ 1; 1− z)

(32)

we get

G(R)H(r, r′) = lim
ε→0

aeik(r+r′)
[(
1− e−r/a

)
2F1

(
1 +A, 1 +B; 2; 1− e−r/a

)
×

× 2F1

(
A, B; ε; 1− e−r′/a

)
−

(
1− e−r′/a

)
2F1

(
1 +A, 1 + B; 2; 1− e−r′/a

)
×

× 2F1

(
A, B; ε; 1− e−r/a

)] .

(33)

Substitution of Eq. (33) in Eq. (17), transformation of the independent variable z′ =
(
1− e−r′/a

)
along with

the series expansion of z′ as

(1− z′)(β+ik)a−1 =

∞∑
n=0

Γ(n+ 1− (β + ik)a)

Γ(1− (β + ik)a)

z′n

n!
(34)

leads to

SHY (β, r) = a2 eikr (1− e−r/a)

∞∑
n=0

Γ(n+ 1− (β + ik)a)

Γ(1− (β + ik)a)n!
fn+1

(
A+ 1, B + 1; 2; 1− er/a

)
. (35)

In deriving the above expression we have made use of the following standard integral [32]:

fσ (a, b; c; z) = 1
(c−1) [2F1 (a, b; c; z)

z∫
0

dz′ z′σ−1 (1− z′)a+b−c
2F1 (a− c+ 1, b− c+ 1; 2− c; z′)

−z1−c
2F1 (a− c+ 1, b− c+ 1; 2− c; z)

z∫
0

dz′ z′σ+c−2 (1− z′)a+b−c
2F1 (a, b; c; z

′)

.

(36)
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Combining Eqs. (19) and (24) the indefinite integral THY (β, r) may be rewritten as

THY (β, r) =
∞∫
r

dr′g(β, r′)G(I)H(r, r′) =
∞∫
0

dr′g(β, r′)G(I)H(r, r′) +
r∫
0

dr′g(β, r′)G(R)H(r, r′)

=
∞∫
0

dr′g(β, r′)G(I)H(r, r′) + SHY (β, r)

. (37)

Substitution of Eq. (19) together with Eqs. (9)–(12c) in Eq. (37), evaluation of the definite integrals in the

light of Eq. (30), and some algebraic manipulation lead to

THY (β, r) = SHY (β, r)− Y HY (k)

fH(k)
ϕH(k, r) +

ZHY (k)

fH(k)
fH(k, r). (38)

The double transform of the regular Hulthén Green’s function G(R)H(r, r′) by the form factors of the Yamaguchi

potential can easily be obtained by straightforward integration of Eq. (35). From Eq. (14) we write

WHS(β, k) = 1− λG(R)H(β, k), (39)

where

G(R)H(β, k) =

∞∫
0

r∫
0

dr dr′ e−β rG(R)H(r, r′) e−β r′ =

∞∫
0

dr e−β r SHY (β, r). (40)

Substitution of Eq. (35) in (40) and change of independent variable by z =
(
1− e−r/a

)
yields

G(R)H(β, k) = a3
∞∑

n=0

Γ(n+ 1− (β + ik)a)Γ(n+ 2)Γ((β − ik)a)

n ! Γ(1− (β + ik)a)Γ(n+ 2 + (β − ik)a)
fn+1 (1 +A, 1 +B; 2 + (β − ik)a; 1 ) . (41)

In deriving Eq. (40) the following standard integral has been used [32]:

1∫
0

dz zc−1 (1− z)ν−1fσ (a, b; c; pz) =
Γ(σ+c−1)Γ(ν)
Γ(σ+c+ν−1) fσ (a, b; c+ ν; p) ,

[Re ν > 0, Re σ > 0, Re (σ + c) > 1, |p| < 1]

. (42)

By exploiting the relation [32]

fσ (a, b; c; z) =
zσ

σ (σ + c− 1)
3F2 (1, σ + a, σ + b; σ + 1, σ + c; z) (43)

we arrive at

G(R)H(β, k) = a3
∞∑

n=0

Γ(n+1−(β+ik)a)Γ((β−ik)a)
Γ(1−(β+ik)a)Γ(n+3+(β−ik)a) ×

3F2 (1, n+A+ 2, n+B + 2; n+ 2, n+ 3 + (β − ik)a; 1)

. (44)

Eq. (44) involves an unpleasing infinite sum over 3F2(∗) function and may not be suitable for numerical

computation. To that end we shall express it in its maximal reduced form. Using the following transformation
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formulas [33] for the 3F2(∗) function

3F2 (a, b, c; e, f, 1) = Γ(e)Γ(e−a−b)
Γ(e−a)Γ(e−b) 3F2 (a, b, f − c; a+ b− c+ 1, f, 1) + Γ(e)Γ(f)Γ(a+b−e)Γ(e+f−a−b−c)

Γ(a)Γ(b)Γ(f−c)Γ(e+f−a−b)

× 3F2 (e− a, e− b, e+ f − a− b− c; e− a− b+ 1, e+ f − a− b, 1)
,

(45)

3F2 (a, b, c; e, f, 1) =
Γ(e)Γ(f)Γ(s)

Γ(a)Γ(s+ b)Γ(s+ c)
3F2 (s, e− a, f − a; s+ b, s+ c, 1) (46)

and

3F2 (a, b, c; e, f, 1) =
Γ(e+ f − a− b− c)Γ(f)

Γ(f − c)Γ(e+ f − a− b)
3F2 ( e− a, e− b, c; e, e+ f − a− b; 1) (47)

in Eq. (44) we obtain

G(R)H(β, k) = −a3 Γ((β−ik)a)
(1+A)(1+B)Γ(1−(β+ik)a)

∞∑
n=0

(n+1)Γ(n+1−(β+ik)a)
Γ(n+2+(β−ik)a) ×3F2 (−n, 1, 1−(β + ik)a; A+2, B+2; 1)

+a2 Γ(1+A)Γ(1+B)Γ((β−ik)a)Γ((β+ik)a)
(β−ik)Γ(C)Γ(1+(β−ik)a−A)Γ(1+(β−ik)a−B) × 3F2 (A, B, (β − ik)a; 1 + (β − ik)a, C; 1)

.

(48)

Eqs. (39) and (48) express the Fredholm determinant for the regular and irregular boundary conditions for

motion in Hulthén plus Yamaguchi potential in the maximal reduced form. Thus, combination of Eqs. (2), (5),

(9), (12), (13), (25), (26), (28), (35), (39), and (48) produces the desired expression for the energy-dependent

local interaction for the Hulthén plus Yamaguchi potential V
HY (R)
EQ (k, r) with the regular boundary condition

written as

V
HY (R)
EQ (k, r) = VH(r) + λ

ZHY (k)

ϕHY (k, r)WHY (β, k)
e−β r. (49)

While from Eqs. (2), (5), (10), (12), (21), (25), (27), (29), (38), (39), and (48) the same for the irregular

boundary condition is obtained as

V
HY (I)
EQ (k, r) = VH(r) + λ

Y HY (k)

fHY (k, r)WHY (β, k)
e−β r. (50)

For future use we designate the above two interactions, constructed from the exact regular and irregular

solutions of the Hulthén plus Yamaguchi potential, as exact equivalent potentials V
(R)
EX (k, r) = V

HY (R)
EQ (k, r)

and V
(I)
EX(k, r) = V

HY (I)
EQ (k, r).

2.2.2. Case study: pure Yamaguchi potential

The regular and irregular solutions of the Yamaguchi potential are given by [34]

ϕ(Y )(k, r) = k−1 sin kr +
λ d(R)Y (β, k)

(β2 + k2)

(
e−β r + β k−1 sin kr − cos kr

)
(51)

f (Y )(k, r) = eikr +
λ d(I)Y (β, k)

(α2 + k2)
e−β r (52)
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with

d(R)(β, k) =
1

W (Y )(β, k)(β2 + k2)
, (53)

d(I)(β, k) =
(β + ik)

W (Y )(β, k)(β2 + k2)
(54)

and

W (Y )(β, k) = 1− λ

2β(β2 + k2)
. (55)

Therefore, Eq. (5) with VH(r) = 0 in conjunction with Eqs. (49)–(53) produces the equivalent potentials

for the nonlocal Yamaguchi one. For charged hadron scattering one deals with the problem by adding the

electromagnetic interaction to the nuclear part. Thus, the total energy-dependent potentials, hereby designated

as approximate energy-dependent local interactions, for (p-p) and (α -p) systems for the regular and irregular

boundary conditions are written as

V
(R)
AP (k, r) = VH(r) +

λ

(β2 + k2)ϕY (k, r)WY (β, k)
e−β r (56)

and

V
(I)
AP (k, r) = VH(r) +

λ (β + ik)

(β2 + k2)fY (k, r)WY (β, k)
e−β r. (57)

Thus far we have constructed energy-dependent local interactions for the Hulthén plus nonlocal Yamaguchi

potential with regular and irregular boundary conditions and these will be applied to compute scattering phase

shifts for the nucleon–nucleon and alpha–nucleon systems.

3. Results and discussions

The phase function method is an efficient approach for computing the scattering phase shifts for quantum

mechanical problems involving local [35] and nonlocal interactions [36,37]. We shall compute the phase shifts

for the systems under consideration by applying the phase equation

δ′ℓ(k, r) = −k−1 V (r) [ĵℓ(kr) cos δℓ(k, r) − η̂ℓ(kr) sin δℓ(k, r)]
2, (58)

where ĵℓ(kr) and η̂ℓ(kr) are the Riccati Bessel functions with ĥ
(1)
ℓ (x) = −η̂ℓ(x) + i ĵℓ(x). The scattering

phase shift δℓ(k) is obtained by solving Eq. (54) from origin to asymptotic region with the initial condition

δℓ(k, 0) = 0.

Table. Strength
(
λ fm−3

)
and range

(
β fm−1

)
parameters for nucleon–nucleon and alpha–nucleon systems.

Nucleon–nucleon Alpha–nucleon
1S0 (n-p/p-p) 3S1 (n-p) 1/2(+) (α-n) 1/2(+) (α-p)

λ β λ β λ β λ β

–5.237 1.1045 –7.533 1.4054 –9.995 1.2 –13.56 1.3
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Figure 1. 1S0 phase shifts for the (n-p) system. Exper-

imental data from Refs. [38] and [39].

Figure 2. 1S0 phase shifts for the (p-p) system. Exper-

imental data from Ref. [38].
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Figure 3. 3S1 phase shifts for the (n-p) system. Exper-

imental data from Refs. [38] and [39].

Figure 4. S-wave phase shifts for the (α -n) and (α -p)

system. Experimental data from Ref. [40].

With the parameters given in the Table we have computed the phase shifts for the systems under

consideration by applying Eq. (58) and they are portrayed in Figures 1–5 with experimental data [38–40].

Moreover, the associated potentials as expressed in Eqs. (49), (50), (56), and (57) for those systems are

depicted in Figures 6–10. We have chosen to work with ℏ2

2m = 41.47MeV fm2 , V0a = 0.03472 fm−1 and

ℏ2

2m = 25.92MeV fm2 , V0a = 0.05516 fm−1 for nucleon–nucleon and alpha–nucleon systems [41,42] respectively.

The scattering phase shifts for the (n-p) and (α -n) systems are obtained by putting V0 = 0 in our numerical

routine for the (p-p) and (α -p) systems, respectively, with proper parameters. Looking closely at Figures 1 and

2 it is observed that our computed 1S0 phase shifts δnp , δpp -Exact (Regular) and δnp , δpp -Approx. (Regular)

for the nucleon–nucleon systems are comparable with the experimental results [38,39] up to 50 MeV. Beyond 50

MeV our phase shift values started diverging from standard data [38,39]. This is not quite unexpected as the
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Figure 5. Low energy behavior of the phase shifts ob-

tained from imaginary parts of the potentials for the (α -n)

and (α -p) systems.

Figure 6. 1S0 potentials for the (n-p) system for k = 1.0

fm−1 .
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Figure 7. 1S0 potentials for the (p-p) system for k = 1.0

fm−1 .

Figure 8. 3S1 potentials for the (n-p) system for k = 1.0

fm−1 .

pure nonlocal Yamaguchi [21] potential fits the nucleon–nucleon phase shifts in the low energy range. Those

computed with the real potentials, derived from the irregular solutions, fit experimental results [38,39] beyond

75 MeV. It is noted that out of the two types of interactions, the 1S0 potentials constructed with the regular

solutions produce better results in the low energy range than the interactions developed from their irregular

solutions. In Figure 3 it is observed that the 3S1 potentials from regular solutions fit the experimental data

accurately and are superior to their irregular counterparts. The potentials constructed via the regular solutions

are real quantities while those from irregular solutions are complex. This is attributed to the fact that the regular

solution for any potential is always a real quantity and the irregular one, in general, is complex in nature. We

have also computed phase shifts for the imaginary part of the potential developed from irregular solutions and

plotted them in Figures 1–3 for the nucleon–nucleon systems. All these phase shifts are negative within the

entire range of energy. In Figure 4 the phase shifts for the alpha–nucleon systems are plotted with both kinds
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Figure 9. S-wave potentials for the (α -n) system for k =

0.4 fm−1 .

Figure 10. S-wave potentials for the (α -p) system for k

= 0.4 fm−1 .

of energy-dependent interactions as a function of laboratory energy and are found to be in close agreement with

experimental data [40] within the entire energy range under consideration. In contrast to nucleon–nucleon cases,

the real part of the potentials constructed with irregular solutions for the alpha–nucleon systems produce better

agreements with experimental data [40] compared to its counterparts expressed in terms of regular solutions.

The imaginary parts of the potentials constructed from the irregular solutions for the Hulthén plus Yamaguchi

potential produce abrupt changes in phase shifts by π modulo in certain low energy intervals, which give

some indications of resonances. In Figure 5 it is noted that the phase shifts for both the exact and approximate

potentials for the (α -p) system change by about 180◦ in the energy intervals Ecm = 10−40KeV &25−30 KeV ,

respectively, while those for the (α -n) system occur at Ecm = 10 − 20KeV &5 − 10KeV , respectively. The

resonance phenomenon is caused by a capture of the incident missiles in the scattering region and delay in their

emergence. The low energy resonances are associated with the introduction of bound states. Generally, the

low energy resonances for S-waves do not occur due to absence of the centrifugal barriers but if the potential

contains its own barrier, it may happen in the S-wave also. The imaginary parts of our potentials for the (α -n)

and (α -p) systems (Figures 9 and 10) have barriers and are consistent with the above statement. These S-wave

resonances are described as nonphysical in nature as no bound states for 5Li and 5He exist at these energies

for 1/2+ states. The ground states of 5Li and 5He correspond to 3/2-state. However, the real parts of the said

potentials do not support any such resonances.

As observed, the energy-dependent equivalent potentials, constructed via the regular solutions for the

various systems under consideration, as shown in Figures 6–10, exhibit finite discontinuities at certain points

within their ranges. For instance, the nucleon–nucleon potentials change sharply at about r = 2.5fm for
1S0 state with k = 1.0fm−1 (Figures 6 and 7) and at about r = 2.25fm for 3S1 state with k = 1.0fm−1

(Figure 8). Figures 9 and 10 show that for alpha–nucleon systems sharp changes in the potentials occur at

about r = 2 .3&2.1fm for k = 0.4 fm−1 . We have also verified that these sharp peaks in the potentials occur

at smaller values of r as k increases. These sharp peaks vary from –700 to 4000 MeV for the (α -n) system

and from –1500 to 2000 MeV for the (α -p) system, which are not observed in the scale of Figures 9 and 10.

However, for k ≤ 0.8 fm−1 (ELab ≤ 53MeV ), we have verified (plotted in Figure 6 [k = 0.5-Exact] only) that
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no abrupt changes in the 1S0 ,
3S1 (n-p), or 1S0 (p-p) potentials occur and they vary smoothly within the

range of interactions. These observations are fully consistent with our phase shift studies as they are in good

agreement with those of refs. 38 and 39. Thus, one may conclude by noting that our localization procedure is

valid in the low and intermediate energy range.

The observed finite discontinuities in the potentials associated with the regular solutions are originated

due to the behavior of the regular solutions with distance. As r becomes large the regular wave function

ϕHS(k, r) behaves as Sin (kr + δ) while the irregular solution fHS(k, r) goes as eikr [25]. Although the

energy-dependent interactions with regular solutions show some unexpected behavior, this is not reflected in

the phase shift calculations. The phase shift values are smooth and very much consistent with standard data.

This is attributed to the fact that the resultant contributions to scattering phase shifts from either side of

the point of finite discontinuities in the related potentials are of definite values. On the other hand, the real

and imaginary parts of the potentials computed via the irregular solutions exhibit no unforeseen behavior and

change smoothly with distance.

4. Conclusion

In this paper we have localized the separable nonlocal interactions by the use of Green’s functions with

regular and irregular boundary conditions to fit nucleon–nucleon and alpha–nucleon phase shifts. Our energy-

dependent equivalent local potentials derived via the regular and irregular solutions produce more or less the

same phase shifts for the systems under consideration and are in reasonable agreement with the experimental

data, particularly at low and intermediate energies. This is quite expected since the result of inversion from

nonlocal to local potentials should not depend on the boundary conditions imposed on the input information.

The alpha–nucleon problem has been one of the few meaningful two-body problems in nuclear physics. In

this direction a large number of phenomenological potentials (both local and nonlocal) have been constructed

for possible applications to alpha–nucleus scattering in the spirit of the folding model. It is noted that the

Woods–Saxon potentials extracted from the phenomenological studies of Satchler et al. [40] fitted the tail of

(n-α) potential thus generated in a larger part at higher energy. The first analysis of the (n-α) data with

nonlocal separable potential was performed by Mitra et al. [43]. For the S-wave scattering they observed that

the spin-orbit potential was much smaller than the central potential and the interaction admitted a bound

state. It is worthwhile to mention that the nonlocal separable or energy-dependent local interactions of various

shapes are generally used in the folding models for alpha–nucleus scattering. The present text also dealt with

the energy-dependent interaction without spin–orbit potential. Thus, the alpha–nucleon scattering, apart from

being sufficiently interesting by itself, is expected to provide a deeper understanding of the alpha–nucleus

interaction. It would be desirable to extend our results to higher partial waves. Such an effort requires

analytical solutions for the Hulthén potential for ℓ > 0. With the formalism of supersymmetry inspired

factorization method [27,42,44] one can construct higher partial wave solutions for the Hulthén potential only.

However, the constructions of higher partial wave solutions for the Hulthén plus separable potentials involve

inordinate complications. However, it is under our active consideration and will be communicated in a future

correspondence. The present approach to the problem is much simpler and more straightforward than the earlier

approaches by McTavish [12] and Talukdar et al. [13]. Our formalism can also be extended for nucleus–nucleus

elastic scattering and restriction to symmetric form factors is not compelling. As it is of importance to have

in the literature alternative approaches to the problem for calculation of physical observables of a particular

system, it is our belief that the present treatment deserves some attention.
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