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Abstract: Chaos exists in the Buck converter due to the switching action of the controlled switch and this nonlinear

phenomenon results in unreliable working performances. Hence, this paper uses a self-feedback control method with two

adjustable parameters to suppress the chaotic behavior in the Buck converter. First, the self-feedback control method

is presented by introducing a generic second-order chaotic system. Then, from the perspective of transfer functions

obtained in terms of the piecewise linear model of the controlled Buck converter, effects of controller’s parameters on

system performances are discussed. On the basis of the Jacobian matrix of the discrete iterative mapping model of the

controlled Buck converter, the stability of the period-1 orbit is analyzed. Finally, numerical simulations confirm that

without determining targeting orbits in advance, this self-feedback control method can stabilize the chaotic behavior of

the Buck converter to the stable period-1 orbit.
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1. Introduction

The Buck converter, which converts a direct current (DC) voltage to a lower DC voltage, has strong nonlinearity.

This system exhibits some complex nonlinear phenomena such as chaos, bifurcation, and quasi-periodicity [1–3].

For example, with the increasing of the input voltage, the Buck converter undergoes period-1, -2, and -4 orbits

and eventually goes into the chaotic region. The chaotic phenomenon can pose a threat to the stability of the

Buck converter. Thus, it is necessary to control chaos in the Buck converter. Control of chaos involves designing

a control law that is capable of stabilizing the chaotic behavior to a fixed point or various periodic trajectories.

After the OGY method as the pioneering work was developed [4], there have been many other ideas

about controlling chaos. Generally, these chaos control methods may be classified into two main groups: one is

feedback control [5–8] and the other is non-feedback control [9,10]. For the non-feedback control, the chaotic

behavior is eliminated by adopting weak periodic perturbations and parameter perturbations. However, non-

feedback control alters intrinsic characteristics of the original dynamical system. Feedback control has been

extensively applied because of its sound theoretical basis and better performance. Feedback control can hold

intrinsic characteristics.

There are several feedback control methods that are appropriate to control the chaotic phenomenon

existing in the Buck converter. The time-delayed feedback control method, which does not require the knowledge

of the target orbits [11,12], has been used to control chaos in the Buck converter. Its controller is constructed

on the basis of the difference between the current state and the time-delayed state. From the frequency-domain
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perspective, based on the notch filter, Lu’s research group has studied several effective feedback control methods

as well as similar methods for controlling chaos in the Buck converter [13–16]. The input of the controller was

chosen from the state variable or the output for detecting the nonlinear behaviors of the controlled system.

These feedback control methods [11–16] require full or partial state variables of the system.

Based on an idea borrowed from “iteration”, which can be usually found in discrete dynamical systems,

this paper provides a self-feedback chaos control method to control chaos in the Buck converter that belongs to

hybrid dynamical systems. The self-feedback control process can be understood as a substitution process, like

the first iteration.

Differing from previous methods [11–16], the self-feedback chaos control method in this paper does not

depend on the state variables of the system. Compared to the classical targeting method [17], without calculating

targeting orbits beforehand, the self-feedback chaos control method can stabilize the chaotic behavior in the

Buck converter to the stable period-1 orbit. The washout filter has to supplement a dimension based on that

of the original system to realize chaos control for the Buck converter [18], but the self-feedback chaos control

method does not need to add a dimension.

The rest of the paper is organized as follows. Section 2 reviews the fact that chaotic behavior exists in the

Buck converter. In Section 3, a self-feedback chaos control method is addressed. In Section 4, first, introducing

the self-feedback chaos control method to the original Buck converter, the model of the controlled Buck converter

is established. In terms of this model, transfer functions corresponding to the controlled switch G being on or off

are given. Then, from the perspective of the transfer functions, effects of the controller’s parameters on system

performances are discussed. In Section 5, the stability of the period-1 orbit is analyzed using the Jacobian

matrix. Section 6 implements numerical simulations. In the end, the paper gives the concluding remarks.

2. System description and overview of the route to chaos

Figure 1 shows the topological graph of the Buck converter. For convenience in obtaining the circuit state

equations, we assume that all the components in the circuit are idealized. Comparator A2 has an infinite gain.

The switches have zero ON and infinite OFF resistances, and they can switch on or off instantly without time

delay.

In this paper, the Buck converter operates in continuous conduction mode.

Figure 1. Topological graph of the Buck converter.
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Assuming that error amplifier A1 works in the linear region, its output, known as the control voltage, is

given by:

Vcon (t) = α [Vo (t)− Vref ] , (1)

where α is the gain of A1 and Vref denotes the reference voltage. The control voltage Vcon and the sawtooth

voltage Vramp are connected to two input ports of comparator A2 . The sawtooth voltage is described by [19]:

Vramp (t) = VL + (VH − VL)

(
t

T
mod 1

)
, (2)

where VH and VL are the upper and lower voltages of Vramp , respectively, and T is the switching period, i.e.

the period of Vramp . If Vramp > Vcon , then comparator A2 generates a high level such that switch G is on. If

Vramp < Vcon , A2 yields a low level such that it is off.

Considering the inductor current iL and the output voltage Vo as state variables, the circuit state

equations, known as the piecewise linear model, corresponding to the ON and OFF states of the controlled

switch G are:

i̇L = −Vo

L + Vin

L u

V̇o = iL
C − Vo

R×C

, (3)

where Vin is the input voltage, R is the resistance, L is the inductance, and C is the capacitance. In Eq. (3),

the switching logic u is: {
u = 1, Vramp > Vcon

u = 0, Vramp < Vcon
. (4)

Circuit parameters [19,20] are: Vin = 18 − 45V , R = 22Ω, L = 20mH , C = 47µF , T = 400µs ,

Vref = 11.3V , α = 8.4, VL = 3.8V , and VH = 8.2V .

On the basis of Eq. (3), the global bifurcation process is obtained (see Figure 2). It is admittedly

found that with the input voltage Vin increasing (here, Vin is considered as a bifurcation parameter), the Buck

converter undergoes the period-doubling bifurcation process and eventually goes into the chaotic region.

Figure 2. Global bifurcation process in the Buck converter (Vin = 18−45V ) , inductor current versus the input voltage.

From Figure 2, obviously, when Vin = 32.35 − 45V the system is in the chaotic state. In the following

text, without loss of generality, taking Vin = 35− 40V , the chaotic state is discussed using the inductor current
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waveform, the output voltage waveform, the switching logic, the power-spectral density (PSD), the Poincare

section, and the largest Lyapunov exponent (LLE).

In Figures 3a and 3b, the inductor current waveform and the output voltage waveform oscillate irregularly.

In Figure 3c, the switching logic is aperiodic. This means that the controlled switch G switches between the OFF

state and the ON state irregularly. The PSD based on fast Fourier transform (FFT) behaves as a continuous

spectrum with background noise (see Figure 3d). The Poincare section has strange attractors (see Figure 3e).

The largest Lyapunov exponent λmax is greater than zero while the Buck converter is in the chaotic state, as

shown in Figure 3f.

3. Self-feedback chaos control method

First, for simplification, consider a second-order system with existing chaotic phenomenon:

dx1

dt
= f1 (x1, x2, t) ; (5a)

dx2

dt
= f2 (x1, x2, t) . (5b)

For Eq. (5), a self-feedback chaos control method (its block diagram is shown in Figure 4) with two adjustable

control parameters γ and m is designed as:

f̄1 (x1, x2, t)=m× γ + (1−m)× f1 (x1, x2, t) ; (6a)

f̄2 (x1, x2, t) = m× γ + (1−m)× f2 (x1, x2, t) , (6b)

where γ > 0, and the control intensity is 0 ≤ m < 1.

Introducing the self-feedback chaos control method in Eq. (6) to the original chaotic system of Eq. (5),

or in other words substituting f̄1 (x1, x2, t), f̄2 (x1, x2, t) for f1 (x1, x2, t), f2 (x1, x2, t) respectively (here the

substituting process corresponds to the first iteration in discrete dynamical systems), the controlled system is

given by:

dx1

dt
=m× γ + (1−m)× f1 (x1, x2, t) ; (7a)

dx2

dt
= m× γ + (1−m)× f2 (x1, x2, t) . (7b)

In Eq. (7), if m= 0, the controlled system of Eq. (7) reduces to the original chaotic system of Eq. (5). If γ> 0,

0 < m < 1, the self-feedback chaos control method is fed back to the original chaotic system such that this

system evolves under controlled circumstances.

4. Transfer functions and effects of the controller’s parameters on system performances

In this section, first, based on the piecewise linear model of the controlled Buck converter, transfer functions

are obtained. Secondly, we analyze the effects of the controller’s parameters on system performances. Finally,

to improve voltage conversion efficiency in the process of carrying out chaos control, the range of parameter γ

is discussed.
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Figure 3. Chaotic state: (a) inductor current waveform of the chaotic state (Vin = 35V ) ; (b) output voltage waveform

of the chaotic state (Vin = 35V ) ; (c) switching logic diagram of the chaotic state (Vin = 35V ) (d) PSD of the chaotic

state (Vin = 35V ) , where power-spectral density is abbreviated as PSD; (e) Poincare section of the chaotic state

(Vin = 35V ) ; (f) largest Lyapunov exponent λmax (Vin = 35− 40V ) .
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Figure 4. Block diagram of the self-feedback chaos control method.

Clearly, adding the self-feedback chaos control method of Eq. (6) into the original Buck converter of Eq.

(3), the piecewise linear model of the controlled Buck converter is given by:

i̇L = m× γ + (1−m)×
(
−Vo

L
+

Vin

L
u

)
; (8a)

V̇o = m× γ + (1−m)×
(
iL
C

− Vo

R× C

)
. (8b)

From Eqs. (8a) and (8b), if u = 1 (the controlled switch G is on), then the controlled Buck converter is:

i̇L = m× γ − (1−m)× Vo

L
+ (1−m)× Vin

L
, (9a)

V̇o = m× γ + (1−m)× iL
C

− (1−m)× Vo

R× C
. (9b)

Let γ = δ × Vin where δ > 0. According to Eq. (9), the transfer function from output voltage Vo to input

voltage Vin is:

Hon (s) =
Vo

Vin
=

L×δ×m×(1−m)+(1−m)2

L×C

s2 + (1−m)s
R×C + (1−m)2

L×C

. (10)

We know that for the second-order system, the standard form of the transfer function is:

G (s) =
k0 × ω2

n

s2 + 2ξ × ωn × s+ ω2
n

, (11)

where k0 is the amplification factor. ωn is the natural frequency. ξ is the damping ratio. Let Hon (s) = G (s).

We get k0 = 1 + L×δ×m
1−m , ωn = 1−m√

L×C
, and ξ =

1−m
R×C

2ωn
= 1

2R

√
L
C .
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Similarly, from Eqs. (8a) and (8b), if u = 0 (the controlled switch G is off), then the controlled Buck

converter is:

i̇L = m× γ + (1−m)× −Vo

L
, (12a)

V̇o = m× γ + (1−m)× iL
C

− (1−m)× Vo

R× C
. (12b)

Based on Eq. (12), the transfer function is:

Hoff (s) =
Vo

Vin
=

δ×m×(1−m)
C

s2 + (1−m)s
R×C + (1−m)2

L×C

. (13)

Let Hoff (s) = G (s). We get k0 = L×δ×m
1−m , ωn = 1−m√

L×C
, and ξ = 1

2R

√
L
C .

From the transfer functions of Eqs. (10) and (13), we can obtain three results.

First, we know that the controlled Buck converter has two closed-loop poles:

s1, 2 = −ξ × ωn ± jωd, (14)

where ωd = ωn

√
1− ξ2 is the vibrational frequency. Because of ωd = (1−m)

√
1−ξ2

L×C , the larger m is, the

smaller ωd is. That is, while the control intensity m increases, the system response becomes smoother.

Second, the distance d between the closed-loop poles and the imaginary axis is:

d = ξ × ωn =
ξ × 1−m√

L×C

. (15)

From Eq. (15), the larger m is, the smaller d is. According to classical control theory, if the closed-loop poles

are closer to the imaginary axis, then these poles have a greater influence on the system. This implies that with

m increasing the control action that imposes on the system becomes stronger.

Finally, γ has no effect on the smoothness of the system response since this parameter is merely related

to the amplification factor k0 . It is well known that k0 is independent of the smoothness.

Voltage conversion efficiency [21] is defined as η = V̄o
/
Vin

, where the over bar stands for the averaged

output voltage. From Figure 5, it can be seen that when the input voltage Vin increases, voltage conversion

efficiency η decreases in a general trend. It hints that we can diminish Vin to improve this efficiency.

Substituting γ = δ × Vin into Eq. (9a), Eq. (9b) becomes:

i̇L = Vin

(
m× δ +

1−m

L

)
+ (1−m)× −Vo

L
. (16)

When the control action is not activated (m = 0), the term Vin

(
m× δ + 1−m

L

)
in Eq. (16) reduces to Vin

L .

To diminish Vin , the condition 0 < Vin

(
m× δ + 1−m

L

)
< Vin

L should be satisfied. That is, the new input

voltage
⌢

V in = Vin (m× δ × L+ 1−m) after the Buck converter being controlled is lower than the original

input voltage Vin . Then 0 < δ < 1
L is obtained (0 < γ < Vin

L ). Thus, the range of γ > 0 is narrowed to

0 < γ < Vin

L , which is convenient to tune γ in the process of implementing numerical simulations.
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Figure 5. Voltage conversion efficiency η versus the input voltage Vin .

From 0 < γ < Vin

L , we know that the smaller γ is, the lower Vin is and the higher η is. Note that the

range of the input voltage Vin should guarantee that the uncontrolled system is under the chaotic regime.

5. Stability analysis of the period-1 orbit

In this section, we establish the discrete iterative mapping model of the controlled Buck converter and then

discuss the stability of the period-1 orbit based on the Jacobian matrix. We will give more detailed analyses

using numerical simulations later.

Rewrite Eq. (8) as:

[
V̇o

i̇L

]
= (1−m)

[ −1
R×C

1
C

−1
L 0

] [
Vo

iL

]
+ (1−m)×

[
0
1
L

]
Vin × u+

[
1
1

]
m× γ. (17)

Letting γ = δ × Vin ,
m×δ
1−m = δ and Eq. (17) becomes:

[
V̇o

i̇L

]
= (1−m)

[ −1
R×C

1
C

−1
L 0

] [
Vo

iL

]
+ (1−m)×

[
δ̄
u
L + δ̄

]
Vin, (18)

where:

Aon = Aoff = (1−m)

[ −1
R×C

1
C

−1
L 0

]
,

Bon = (1−m)

[
δ̄
1
L + δ̄

]
Boff = (1−m)

[
δ̄
δ̄

] .

We discretize the state variables by means of the stroboscopic mapping method, which can be obtained by

observing the system dynamics every T seconds, at the beginning of each Vramp cycle. Note that xn =

x (nT ) = [Vo (nT ) , iL (nT )]
T
, n = 1, 2, 3 · · · . In each cycle (for example, T ∼ 2T ), the Buck converter goes

through two kinds of phases.
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1) The controlled switch G is under the OFF phase if T ∼ Ts . When this phase is over, the state variable

xm is:

xm = foff
(
xn, d̄n

)
= Noff

(
d̄n

)
× xn +Moff

(
d̄n

)
× Vin, (19)

where dn = 1 − dn , dn represents the duty ratio, which is defined as the ratio of the ON duration to the

switching period T .

2) The controlled switch G is under the ON phase if Ts ∼ 2T . When this phase is over, the state variable

xn+1 is:

xn+1 = fon
(
xm, d̄n

)
= Non

(
1− d̄n

)
× xm +Mon

(
1− d̄n

)
× Vin. (20)

Incorporating Eqs. (19) and (20), the discrete iterative mapping model of the controlled Buck converter is given

by:

xn+1 = f
(
xn, d̄n

)
= Non

(
1− d̄n

)
×Noff

(
d̄n

)
×xn+

[
Non

(
1− d̄n

)
×Moff

(
d̄n

)
+Mon

(
1− d̄n

)]
×Vin, (21)

where:

Non

(
1− d̄n

)
= eAon×dn×T ;

Mon

(
1− d̄n

)
= A−1

on

[
Non

(
1− d̄n

)
− I

]
Bon, I represents the identity matrix;

Noff

(
d̄n

)
= eAoff×d̄n×T ;

Moff

(
d̄n

)
= A−1

off

[
Noff

(
d̄n

)
− I

]
Boff .

In addition, from Eqs. (1) and (2), the function of the duty ratio, known as the switching logic, is defined as:

u
(
d̄n

)
= Vcon

(
d̄n

)
− Vramp

(
d̄n

)
. (22)

The Jacobian matrix of Eq. (21), Γ , is given by:

Γ =
∂xn+1

∂xn
=

∂f

∂xn
− ∂f

∂d̄n

(
∂u

∂d̄n

)−1
∂u

∂xn
, (23)
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where:

∂f

∂xn
=Non

(
1− d̄n

)
×Noff

(
d̄n

)
∂f

∂d̄n
=

[
∂Non

(
1− d̄n

)
∂d̄n

Noff

(
d̄n

)
+Non

(
1− d̄n

)
×

∂Noff

(
d̄n

)
∂d̄n

]
xn

+

[
∂Non

(
1− d̄n

)
∂d̄n

Moff

(
d̄n

)
+Non

(
1− d̄n

)
×

∂Moff

(
d̄n

)
∂d̄n

+
∂Mon

(
1− d̄n

)
∂d̄n

]
Vin

=
[
−Aon × T ×Non

(
1− d̄n

)
×Noff

(
d̄n

)
+Non

(
1− d̄n

)
×Aoff × T ×Noff

(
d̄n

)]
xn

+
[
−Aon × T ×Non

(
1− d̄n

)
×Moff

(
d̄n

)
+Non

(
1− d̄n

)
×Noff

(
d̄n

)
×Boff

×T −Non

(
1− d̄n

)
×Bon × T

]
Vin

∂u

∂d̄n
= [α 0]

[
Aoff × T ×Noff

(
d̄n

)
× xn + T ×Noff

(
d̄n

)
×Boff × Vin

]
− (VH − VL)T

= [α 0]Noff

(
d̄n

)
(Aoff × xn +Boff × Vin)T − (VH − VL)T

∂u

∂xn
= [α 0]Noff

(
d̄n

)
In terms of det [λ× I− Γ] , the characteristic multipliers λ1, λ2 can be calculated. If |λi| < 1, i = 1, 2 are less

than 1, then the period-1 orbit is stable, while one characteristic multiplier greater than 1 suffices to render

the periodic orbit unstable. In particular, if one characteristic multiplier equals –1 and the other is less than 1,

the period-doubling bifurcation occurs. In this way, the stability of the period-1 orbit is analyzed based on the

Jacobian matrix.

6. Numerical simulations

In this section, numerical simulations are performed to verify whether the chaotic behavior in the Buck converter

can be controlled to the stable period-1 orbit via applying the self-feedback chaos control method and to verify

the correctness of the theories given in Sections 4 and 5.

Circuit parameters are: Vin = 35−40V , R = 22Ω, L = 20mH , C = 47µF , T = 400µs , Vref = 11.3V ,

α = 8.4, VL = 3.8V , and VH = 8.2V . The controller’s parameters are 0 < m < 1, 0 < γ < Vin

L .

Figure 6 shows the evolutionary process of the output voltage Vo from the chaotic state to the various

periodic orbits with control intensity m increasing, taking γ = 4, Vin = 35V . It can be observed that the

controlled Buck converter undergoes the chaotic state, and then undergoes the period-4, -2, and -1 orbits (an

inverse period-doubling bifurcation process). Note that there are some coexisting attractors around m = 0.14

and m = 0.31.

Figure 7a shows that when m = 0.4− 0.25, characteristic multipliers all lie within the unit circle in the

complex plane. We conclude that the period-1 orbit is stable. It is worth noting that when m is about 0.31,

coexisting attractors occur and the corresponding characteristic multipliers lie in the right half of the complex

plane.

From Figure 7b, when the control intensity m decreases from 0.25 to 0.2046, two conjugate characteristic

multipliers are closer to the real axis and arrive at the real axis. Then the characteristic multipliers break away,

one turning left and the other turning right. The left characteristic multiplier eventually exits the unit circle
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Figure 6. Evolutionary process of the output voltage from the chaotic state to the various periodic orbits with the

control intensity m increasing, taking γ = 4, Vin = 35V .

Figure 7. Locus of characteristic multipliers, corresponding to variations of the control intensity m and the input

voltage Vin : (a) locus of characteristic multipliers for m = 0.4 − 0.25, Vin = 35V , γ = 4; (b) locus of characteristic

multipliers for m = 0.25−0.2046, Vin = 35V , γ = 4; (c) locus of characteristic multipliers for Vin = 35−40V , m = 0.3,

γ = 4.
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through –1, indicating a period-doubling bifurcation. The critical bifurcation point is m = 0.2046, which means

that the stable period-1 orbit is to lose stability.

According to the above analyses, chaos in the Buck converter is controlled to the stable period-1 orbit

when 0.2046 < m < 1, γ = 4.

The locus of characteristic multipliers for Vin = 35–40 V is shown in Figure 7c. It is shown that when

Vin = 35–40 V, m = 0.3, and γ = 4, the Buck converter after being controlled is in the stable period-1 orbit.

That is, the stability zone of the Buck converter can be widened by applying the self-feedback chaos control

method.

Output voltage waveforms during a switching period T = 400µs are described by Figure 8, corresponding

to m = 0.3, 0.15, 0.072 and γ = 0.4. With the control intensity m = 0.072 < 0.15 <0.3 increasing, slopes of

curves decrease. Figure 8 confirms that the larger m is, the smoother the system response is, as mentioned in

Section 4. Here, the system response is the output voltage.

Figure 9 shows that while taking γ = 0.4, 40, 400 and m = 0.3 the slopes of output voltage waveforms

are almost consistent. This means that γ has almost no influence on oscillation of the output voltage even

though this parameter has a significant variation. However, a slight variation of the control intensity m has a

remarkable effect on stationarity of the output voltage.

Figure 8. Output voltage waveforms during a switching

period T = 400µs when m = 0.3, 0.15, 0.072 and γ =

0.4.

Figure 9. Output voltage waveforms during a switching

period T = 400µs when γ = 0.4, 40, 400 and m = 0.3.

In the process of tuning parameters, 0 < γ < Vin

L is taken as a minor (secondary) parameter and is

roughly adjusted. 0 < m < 1 is regarded as the main (principal) parameter and is accurately tuned. Besides,

regulation of m does not rely on circuit parameters of the Buck converter, which makes adjustment of m

flexible.

Certainly, the inductor current can also be considered as the system response and the same results can

be obtained. This case will not be given in detail.

In the following text, without loss of generality, taking γ = 4 and m = 0.3, the stable period-1 orbit is

discussed.

Figure 10 shows the transition from the chaotic motion to the stable period-1 motion. Without applying

the self-feedback chaos control method (t < 0.02 s), the Buck converter is working in the chaotic regime.

Applying this method and after a transient, the stable regime is reached.
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For clearly viewing the stable period-1 orbit, blowing up the interval t = [0.1, 0.1035] s in Figure 10, we

obtain the output voltage waveform of the stable period-1 orbit (see Figure 11). In this interval, the system is

under the stable regime.

Figure 10. Transition from the chaotic motion to the

stable period-1 motion, the output voltage versus time,

with γ = 4, m= 0.3.

Figure 11. Output voltage waveform of the stable period-

1 orbit with γ = 4, m= 0.3, t = [0.1, 0.1035] s .

When the Buck converter is in the stable period-1 orbit, the periods of the output voltage, the inductor

current (see Figure 12), and the switching logic u (see Figure 13) are equal to the switching period T = 400µs .

That is, the system steady-state waveforms are periodic with the same period as the sawtooth voltage Vramp .

Figure 12. Inductor current waveform of the stable

period-1 orbit with γ = 4, m= 0.3.

Figure 13. Switching logic diagram of the stable period-1

orbit with γ = 4, m= 0.3.

The phase plot of the stable period-1 orbit is a closed curve (see Figure 14). If we want to see how the

output voltage and the inductor current are varying with t , we need a tridimensional representation (t, Vo, iL).

When increasing t ≥ 0.1, the curve described in the space gives the stable solution of the Buck converter (see

Figure 15). It can be observed that (t, Vo, iL) is also regular.
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Figure 14. Phase portrait of the stable period-1 orbit

with γ = 4, m= 0.3.

Figure 15. Tridimensional representation (t, Vo, iL) of

the stable period-1 orbit with γ = 4, m= 0.3.

As shown in Figure 16, the control voltage Vcon is compared with the sawtooth voltage Vramp . In each

cycle of Vcon , there is one sawtooth voltage Vramp waveform. That is, the period of Vcon is T . From Eq. (4)

in Section 2, if Vramp > Vcon , then the controlled switch G is on; if Vramp < Vcon , then the controlled switch

G is off. With the help of Eq. (4) and according to Figure 16, it is readily concluded that the controlled switch

G is on (off) for one time in a cycle of Vcon while the Buck converter runs in the stable period-1 orbit.

Figure 16. Comparison graph of the stable period-1 orbit

with γ = 4, m= 0.3.

Figure 17. Power-spectral density (PSD) of the stable

period-1 orbit with γ = 4, m= 0.3.

When the Buck converter after being controlled is under the stable period-1 orbit, the PSD based on

FFT exhibits some spikes at j
T = 2500j where j = 1, 2, 3, 4 (see Figure 17). This means that inductor current

ripples are degraded compared with the PSD of the chaotic state. The Poincare section of the stable period-1

orbit has only one point (see Figure 18).
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Figure 18. Poincare section of the stable period-1 orbit with γ = 4, m= 0.3.

7. Conclusions

It is proven that the self-feedback chaos control method can stabilize the chaotic behavior in the Buck converter

to the stable period-1 orbit by adjusting the controller’s parameters. Moreover, the stability region of the Buck

converter is widened and the voltage conversion efficiency is improved using this chaos control method. Note

that a large variation of γ has little influence on the system response. However, a slight variation of the control

intensity m has a remarkable effect on the system response. Hence, in the process of tuning the controller’s

parameters, initially the minor parameter γ is treated as a fixed value and then the control intensity m as the

main parameter is finely selected in the interval (0.2046, 1).

The self-feedback chaos control method is independent of state variables of the Buck converter. Hence,

this method is useful when state variables of the system cannot be readily measured.

In future work, this method can also be used to remove the chaotic phenomena existing in other hybrid

dynamical systems such as the flyback converter, the Ćuk converter, and the power factor correction circuit.
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