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Abstract: We present the elastic scattering analysis of the 12C+24Mg system by using the WKB approximation method

within the framework of the barrier-internal wave decomposition over a wide range of energy from E lab = 16 MeV to

24.0 MeV. The results obtained are good agreement with the quantum mechanical (QM) calculation and experimental

data.
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1. Introduction

The elastic scattering data of the 12C+24Mg system are measured by Sciani et al. [1] in laboratory energies

from E lab = 16 MeV to 24.0 MeV. Since the measured data are under and above the Coulomb barrier, the elastic

scattering cross section patterns have a strongly oscillatory structure at forward, intermediate, and backward

angles. These sorts of experimental data are very important in order to understand the features of nuclear

potential. In the literature, the 12C+24Mg system is extensively examined by using some theoretical models.

Since there is anomalous large angle scattering (ALAS) in the elastic scattering cross section of the 12C+24Mg

system, this system cannot be explained by a standard optical model parameter. Sciani et al. use a shallow and

energy-dependent potential parameter and investigate the elastic and inelastic scattering data of the 12C+24Mg

system by optical and coupled channels methods [1]. Lichtenthäler et al. examine elastic scattering data of this

system by parametrized phase shift method [2]. Boztosun et al. propose a new coupling potential, which has

attractive and repulsive terms as distinct from the standard model, in order to explain the elastic and inelastic

scattering data of the 12C+24Mg system, simultaneously [3–5]. Karakoc et al. investigate the elastic and fusion

cross section data of the 12C+24Mg system by the microscopic α–α double folding cluster potential [6]. We

examine the elastic scattering of this system with a comparative study of the shallow and deep optical potentials

[7]. We also modify nuclear potential at the surface region with two small potentials in addition to the nuclear

potential. The presence of the two small additional potentials creates a deepening in the surface region of the

nuclear potential. We also show that two small additional potentials take into account the coupling effect like

that of the coupled channels calculation [8]. In this paper, within the framework of the internal and barrier

wave decomposition concept, which is important to understand the oscillatory structure of the scattering cross

section, we examine the elastic scattering of the 12C+24Mg system by using the WKB method over a wide

range of energy from E lab = 16 MeV to 24.0 MeV. In the next section, we present the nuclear potential and

WKB method. In Section 3, we present the results and discussion.
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2. Model and method

The effective potential, which describes the elastic scattering of the 12C+24Mg system, is given by

Veff (r) = Vl(r) + VN (r) + VC(r), (1)

where Vl(r), VN (r), and VC(r) are the centrifugal, nuclear, and Coulomb potentials, respectively. The modified

centrifugal potential is [9]

Vl(r) =
(l + 1/2)2ℏ2

2µr2
, (2)

where l(l + 1) → (l + 1/2)2 and µ is reduced mass of the colliding pair. The nuclear potential has a volume

type real and imaginary Woods–Saxon form factor as

VN (r) = V (r) +W (r) = − V0

1 + Exp( r−RV

aV
)
− i

W0

1 + Exp( r−RW

aW
)
, (3)

where V0, RV , and aV are depth, radius, and diffuseness parameters of the real nuclear potential. W0, RW ,

and aW are depth, radius, and diffuseness parameters of the imaginary nuclear potential. Nuclear potential

radius can be given by RV,W = rV,W (A
1/3
p + A

1/3
t ) . Ap and At are the mass number of projectile and target

nucleus. Since the Coulomb potential of a charged projectile particle Zpe
2 interacting with a charged target

particle Zte
2 distributed uniformly over a sphere of radius RC has a discontinuity at r = RC , we use a modified

version of the Coulomb potential as [10,11]

VC(r) =
ZpZte

2

r

[
1− exp

{
−vr − 1

2 (vr)
2 − 0.35(vr)3

}]
,

vRC = 3/2, RC = 2.3A
1/3
t ,

(4)

whereZp, Zt , and RC denote atomic numbers of the projectile and target nucleus as well as the Coulomb

radius, respectively. The interaction between 12C and 24Mg nuclei is represented in Figure 1. The effective

potential has a potential pocket at the range of r3 < r < r2 and is repulsive for out of this range. The potential

pocket disappears while the angular momentum increases in Figure 1. The depth and form of the potential

pocket are very important in order to explain observables of nuclear reactions. The turning points can be found

the roots of equation Ecm = Veff (r) for any angular momentum quantum number. In Figure 2 we plot the

complex turning points as a function of angular momentum quantum number. The pole points for real V (r)

and complex W (r) nuclear potentials can be calculated by using the formula rV,W = RV,W + (2n + 1)iπaV,W

with n integer numbers. The pole points are shown for real and imaginary potentials in Figure 2. More turning

and pole points can also be found for increasing nuclear radius and n numbers, but the contribution of these

turning and pole points to the elastic scattering cross section is very small.

The scattering matrix element or the S-matrix produced by the scattered waves from the outside and

inside of the potential barrier is [10,11]

e2iδ = ηB + ηI =
e2iδ1

N1
+

e2iδ3

N1(N1 + e2iS32)
, (5)

where ηB and ηI are the reflection coefficients representing the scattering waves from barrier and internal
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Figure 1. The real effective potential for some orbital angular momentum quantum numbers represents interaction

between 12C and 24Mg nuclei. r1, r2 , and r3 denote the turning points. Elab is the projectile energy in the laboratory

frame.

Figure 2. The complex turning points of the effective potential as a function of angular momentum quantum numbers

in complex plane. × Symbols denote the pole points of complex nuclear potential in Eq. (3).

regions. The phase shift for outermost turning point is defined as [10,11]

δ1 = S(r1, R)− SC(rc, R) =

√
2µ

ℏ2

 R∫
r1

√
Ecm − Veff (r)dr −

R∫
rC

√
Ecm − VC(r)− Vl(r)dr

 , (6)
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where r1, rC , and R are the outermost and Coulomb turning points as well as far enough distance where

the Coulomb potential has no effect, respectively. The Coulomb turning point is determined by the root of

equationEcm = Vl(r)− VC(r). N1(z) coefficient is

N1(z) =

√
2π

Γ( 12 + z)
exp(z ln(

z

e
)), z =

1

π
S(r2, r1), (7)

where the action integral for r2 and r1 turning points is

S(r2, r1) = S21 =

r1∫
r2

√
2µ

ℏ2
(Ecm − Veff (r)), (8)

The phase shift for the innermost turning point is defined as [10,11]

δ3 =

√
2µ

ℏ2

 R∫
r3

√
Ecm − Veff (r)dr −

R∫
rC

√
Ecm − VC(r)− Vl(r)dr

 , (9)

The action integral in Eq. (5) S32 can be obtained using Eq. (8) for r3 and r2 turning points. The scattering

amplitude represented by the scattering waves from the barrier of the effective potential is

fB(θ) = fC(θ) +
1

2ik

∑
l

(2l + 1)Pl(cos θ) exp(2iσl)(ηB − 1), (10)

where the reflection coefficient ηB can be obtained by using Eq. (5). The Coulomb phase shift for any l states

is defined by the recursion relation as

σl+1 = σl + tan−1(
η

l + 1
). (11)

The Coulomb phase shift is σ0 = ArgΓ(1 + iη) for l = 0. Here η is the Sommerfeld parameter and is defined

by

η =
ZpZte

2µ

ℏ2k
, (12)

where k2 = 2µEcm

ℏ2 . The Coulomb scattering amplitude in Eq. (10) is given by [12]

fC(θ) = − η

2k sin2( θ2 )
exp

(
−iη ln(sin2(

θ

2
)) + 2iArgΓ(1 + iη)

)
. (13)

The scattering amplitude represented by the scattering waves from inside of the effective potential is

fI(θ) =
1

2ik

∑
l

(2l + 1)Pl(cos θ) exp(2iσl)ηI , (14)

where the reflection coefficient ηI can be obtained by using Eq. (5). The total scattering amplitude consists of

superposition of the barrier and internal wave scattering amplitudes f(θ) ∼= fB(θ)+ fI(θ)[12]. The total elastic

scattering cross section is σ(θ) = |f(θ)|2 .
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3. Results and discussion

In this paper, we investigate elastic scattering of the 12C+24Mg system by using the WKB approximation

method. In the calculation we use the effective potential in Eq. (1). The nuclear potential parameters in Eq.

(3) are rV = 1.29fm and aV = 0.4 fm for real and rW = 1.77fm and aW = 0.6 fm for imaginary potential.

The depth parameters of real and imaginary potential in Eq. (3) change as a function of incident energy of

projectile nucleus in the Table.

Table. Variation in the depth parameters of real and imaginary potential versus incident energy of projectile nucleus in

laboratory frame.

Elab (MeV) 16.00 17.00 19.50 20.50 23.00
V0 (MeV) 42.10 42.82 38.00 37.75 36.20
W0 (MeV) 0.15 0.30 0.53 0.62 0.77

We calculate the elastic scattering cross section of the 12C+24Mg system over a wide range of energy by

using the WKB method taking into account the barrier and internal wave interference effect. The interference

between the barrier and internal waves produces an oscillation pattern in elastic scattering cross section in

Figure 3. While the incident energy of nucleus increases, the minima and maxima in oscillatory structures

of elastic scattering cross section increase at large scattering angles, in particular. This situation shows that

incident wave is affected by nuclear potential and internal wave amplitude increases. Therefore, the internal

and barrier waves have comparable amplitude and constitute constructive and destructive diffraction patterns

in elastic scattering cross section in Figure 3. For the same potential parameters, we also numerically calculate

the elastic scattering cross section of the 12C+24Mg system by using the quantum mechanical (QM) procedure

with FRESCO code (by Thompson, I. J., unpublished) in Figure 3. We show that the theoretical results, WKB

Figure 3. The comparative results of elastic scattering cross section data (Exp.) of the 12C+24Mg system with

quantum mechanical (QM) and WKB methods over a wide range of energy.
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and QM, have an excellent agreement with the elastic scattering cross section of experimental data. We also

find that the WKB and QM results have good agreement with each other at small angles, in particular.

In conclusion, the WKB method used in this calculation is very useful in order to understand the

oscillatory structure in the elastic scattering cross section of the 12C+24Mg system and this method could

be used in the calculation of other nuclear reaction observables such as inelastic and fusion cross sections.
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