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Abstract: The one-dimensional Klein–Gordon (KG) equation is investigated in the domain of conformable fractional

calculus for one-dimensional scalar potential, namely generalized Hulthen potential. The conformable fractional calculus

is based on conformable fractional derivative, which is the most natural definition in noninteger order calculus. Fractional

order differential equations can be solved analytically by means of this derivative operator. We obtained exact eigenvalue

and eigenfunction solutions of the local fractional KG equation and investigated the evolution of relativistic effects in

correspondence with the fractional order.

Key words: Local fractional Klein–Gordon equation, conformable fractional calculus, conformable fractional Nikiforov–

Uvarov method, generalized Hulthen potential.

1. Introduction

Relativistic wave equations, namely the Dirac equation and Klein–Gordon (KG) equation, have great importance

in efforts to determine the dynamics of a relativistic particle in relativistic quantum mechanics. Solution of

the KG equation explains the behavior of a spinless particle of rest mass m at high energies and velocities

comparable to the speed of light. Bound state solutions of the KG equation have been studied by many

authors in the literature; see [1–6] and references therein. Different methods can be used to obtain exact or

approximate solutions of KG equations written for various potential functions. The Nikiforov–Uvarov (NU)

method, supersymmetric quantum mechanics, factorization method, and asymptotic iteration method are the

most frequently used methods [7].

Using the theory of fractional calculus, which is based on noninteger order differentiations and integra-

tions, many physical phenomena can be described successfully [8–11]. Consequently differential equations that

describe physical systems are handled in the fractional domain. Various definitions have been proposed for the

fractional order differential and integral operators. Predominant definitions are Riemann–Liouville and Caputo

definitions [12].

RLDµ
af(x) =

1

Γ(n− µ)

dn

dxn

∫ x

a

(x− t)n−µ−1f(t)dt,
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CDµ
af(x) =

1

Γ(n− µ)

∫ x

a

(x− t)n−µ−1f (n)(t)dt,

where µ ∈ R , n − 1 ≤ µ < n , and the superscripts RL and C stand for Riemann–Liouville and Caputo,

respectively. These are nonlocal operators and do not satisfy classical properties such as chain, product, and

quotient rules, which allow us to achieve an analytical solution in the standard calculus. In 2014 a local

form of fractional derivative operator was defined by Khalil et al. [13]. This is the most natural fractional

order derivative operator that provides the above-mentioned rules. Thereafter conformable fractional calculus

theory [14], applicability of this definition in quantum mechanics [15], and solution of the fractional Schrödinger

equation [16] are studied in view of this local fractional derivative definition. Although the definition fails some

properties that are pointed out by Ortigueira and Machado [17], it is more suitable for applications as compared

with Riemann–Liouville or Caputo fractional derivative operators for real physical problems [18].

In a recent work, we derived the conformable fractional form of the NU method and solved the local

fractional Schrödinger equation for harmonic oscillator potential, Hulthen potential, and Woods–Saxon potential

in order to present the accuracy of the method [19].

The aim of the present work was to solve the fractional order one-dimensional time independent KG

equation for the generalized Hulthen potential in the scalar coupling scheme using the conformable fractional

NU method. The manuscript is organized as follows: in Sec. 2 the formalism of the KG equation for the

generalized Hulthen potential is briefly outlined. In Sec. 3 the definition of the conformable fractional derivative

operator and conformable fractional NU method are reviewed. In Sec. 4 we present the analytical solution of

the fractional KG equation for the generalized Hulthen potential. Finally, conclusions are discussed in the last

section.

2. Formalism of the KG equation with the generalized Hulthen potential in scalar scheme

The one-dimensional time independent KG equation for a spinless particle of rest mass m in the presence of

vector and scalar potentials is given by

ψ′′(x) +
1

ℏ2c2

[(
E − V (x)

)2 − (
mc2 + S(x)

)2]
ψ(x) = 0, (1)

where V (x) and S(x) are vector and scalar potentials, respectively. For the existence of bound state solutions

it is required that S(x) > V (x) [2]. When V (x) = 0, the one-dimensional KG equation for a given scalar

potential S(x) is reduced to the following form:

ψ′′(x) +
1

ℏ2c2

[
E2 −

(
mc2 + S(x)

)2]
ψ(x) = 0, (2)

In this case Eq. (2) can be transformed to a second-order Schrödinger-like differential equation:

ψ′′(x) +
2m

ℏ2

[
Eeff − Ueff (x)

]
ψ(x) = 0, (3)

where Eeff and Ueff are effective energy and effective potential given by

Eeff =
E2 −m2c4

2mc2
, Ueff (x) =

S2(x)

2mc2
+ S(x). (4)
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Therefore, Eq. (2) can be rewritten in the following form for ℏ = c = 1 [2]:

ψ′′(x) +
[
− S2(x)− 2mS(x)− (m2 − E2)

]
ψ(x) = 0. (5)

In order to specify the dynamics of a relativistic particle in a scalar potential, the potential function S(x) is

inserted in this equation. Here the potential function is chosen as generalized Hulthen function, which is given

by

S(x) = −S0
e−αx

1− qe−αx
, (6)

where q is a deformation parameter. This potential transforms to exponential potential, standard Hulthen

potential, and Woods–Saxon potential for q = 0, q = 1 and q = −1, respectively. Substituting the potential

function given by Eq. (6) in Eq. (5) and using a transformation z = S0e
−αx the following hypergeometric type

differential equation is obtained [2]:

ψ′′
q (z) +

S0 − qz

z(S0 − qz)
ψ′
q(z) +

1[
z(S0 − qz)

]2 [− (γ2 +

qβ2 + q2ϵ2)z2 + S0(β
2 + 2qϵ2)z − S2

0ϵ
2
]
ψq(z) = 0 (7)

for which

γ2 =
S2
0

α2
, β2 =

2mS0

α2
, ϵ2 =

1

α2
(m2 − E2). (8)

3. A brief review of the conformable fractional derivative operator and conformable fractional

NU method

The local fractional derivative operator, which is a natural extension of the standard derivative definition, was

introduced by Khalil et al. for the first time:

Dµ[f(t)] = lim
ϵ→0

f(t+ ϵt1−µ)− f(t)

ϵ
, t > 0 (9)

f (µ)(0) = lim
t→0+

f (µ)(t) (10)

where 0 < µ ≤ 1 and Dµ is the local fractional derivative operator [13]. This operator provides the basic rules

such as product, quotient, and chain rules, which are valid in standard calculus:

Dµ[af + bg] = aDµ[f ] + bDµ[g] linearity

Dµ[fg] = fDµ[g] + gDµ[f ] product rule

Dµ[f(g)] =
df

dg
Dµ[g] chain rule

Dµ[f ] = t1−µf ′ where f ′ =
df

dt
.

The last property is called the key property of the definition. If f is differentiable, then the µth order derivative

of f is equal to the product of its first-order derivative with t1−µ . Since fractional order differential equations
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have great importance in describing physical systems with a realistic approach, some appropriate methods are

derived to solve these equations. The NU method is a well known method that gives exact solutions of second-

order linear differential equations. In quantum mechanics the method has been used to solve Schrödinger-like

differential equations for various potentials. The method is based on reducing the handled equation to a

hypergeometric type second-order differential equation:

ψ′′(z) +
τ̃(z)

σ(z)
ψ′(z) +

σ̃(z)

σ2(z)
ψ(z) = 0, (11)

where τ̃(z) is a polynomial of at most first-degree, σ(z) and σ̃(z) are polynomials of at most second-degree and

ψ(z) is a function of hypergeometric-type [20]. Then the reduced equation, which is called the basic equation

of the method, can be solved systematically by means of special orthogonal functions and eigenstate solutions

can be achieved completely [20–23].

The conformable fractional form of this method is introduced in order to solve the conformable fractional
order Schrödinger equation and was presented in our recent work [19]. In the case of the conformable fractional

NU method fractional orders are inserted in the basic equation. Then using the key property of the conformable

fractional derivative operator one can obtain the following second-order differential equation:

ψ′′(z) +
τ̃f (z)

σf (z)
ψ′(z) +

σ̃(z)

σ2
f (z)

ψ(z) = 0, (12)

where τ̃f (z) = (1−µ)z−µσ(z)+ τ̃(z) and σf (z) = z1−µσ(z) and the subscript f stands for fractional. Boundary

conditions of the conformable fractional NU method are determined by the degrees of the coefficients in the

basic equation of the method given by Eq. (12). Here τ̃f (z) is a function of at most µth degree (which means

that this function can also be equal to a constant), σf (z) is a function of at most (µ + 1)th (i.e. the degree

of this function can also be equal to 1) and σ̃(z) is a function of at most 2µth degree (i.e. the degree of

this function can also be equal to 0 or µ). If any fractional order differential equation is reduced to the basic

equation using the key property of the local fractional derivative operator, then it can be solved analytically by

the conformable fractional NU method.

After determining the following newly defined functions related to the initial functions in the basic

equation, the eigenvalue and eigenfunction solution of Eq. (12) can be obtained:

πf (z) =
σ′
f (z)− τ̃f (z)

2
±

√
(
σ′
f (z)− τ̃f (z)

2
)2 − σ̃(z) + k(z)σf (z). (13)

Recall that πf (z) is a function of at most µth degree. Providing this condition the expression under the square

root sign must be the square of a µth-order function. Thus the function k(z) under the square root sign must

be chosen properly.

τf (z) = τ̃f (z) + 2πf (z). (14)

λ(z) = k(z) + π′
f (z). (15)

λn(z) = −nτ ′f (z)−
n(n− 1)

2
σ′′
f (z) (n = 0, 1, 2, ...). (16)
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In order to obtain the eigenvalue solution, the function λ(z) in Eq. (15) is taken equal to λn(z) in Eq. (16).

For the eigenfunction solution, functions ϕ(z) and yn(z) given by

ϕ′(z)

ϕ(z)
=
πf (z)

σf (z)
, (17)

(σf (z)ρ(z))
′ = τf (z)ρ(z). (18)

yn(z) =
Bn

ρ(z)

dn

dzn
[σn

f (z)ρ(z)], (19)

are inserted in ψ(z) = ϕ(z)y(z).

4. Solution of the conformable fractional KG equation for the generalized Hulthen potential

The conformable fractional form of the one-dimensional KG equation for the generalized Hulthen potential

given by Eq. (7) is written by replacing integer orders with fractional orders:

DµDµψq(z) +
S0 − qzµ

zµ(S0 − qzµ)
Dµψq(z) +

1[
zµ(S0 − qzµ)

]2 [− (γ2 +

qβ2 + q2ϵ2)z2µ + S0(β
2 + 2qϵ2)zµ − S2

0ϵ
2
]
ψq(z) = 0 (20)

Using the key property of the conformable fractional derivative definition, Eq. (20) can be transformed to a

second-order differential equation:

ψ′′
q (z) +

(S0 − qzµ)(2− µ)

z(S0 − qzµ)
ψ′
q(z) +

1[
z(S0 − qzµ)

]2 [− (γ2 + qβ2 +

q2ϵ2)z2µ + S0(β
2 + 2qϵ2)zµ − S2

0ϵ
2
]
ψq(z) = 0. (21)

Comparing this equation with the basic equation of the method, the parameters in Eq. (12) are determined as

τ̃f (z) = (S0 − qzµ)(2− µ)

σf (z) = z(S0 − qzµ)

σ̃(z) = −(γ2 + qβ2 + q2ϵ2)z2µ + S0(β
2 + 2qϵ2)zµ − S2

0ϵ
2. (22)

Since τ̃f (z), σf (z), and σ̃(z) are µth-, (µ + 1)th-, and 2µth-order, the conformable fractional NU method

can be used in order to obtain the bound state solutions of the local fractional KG equation for the generalized

Hulthen potential. After substituting the parameters given by Eq. (22) into Eq. (13), the function πf (z) can

be obtained as

πf (z) =
1

2

{
(µ− 1)S0 − qzµ(2µ− 1)±[

[q2(2µ− 1)2 + 4(γ2 + qβ2 + q2ϵ2)− 4kµq]z
2µ + [−2(µ− 1)(2µ− 1)qS0 −

4S0(β
2 + 2qϵ2) + 4kµS0]z

µ + 4S2
0ϵ

2 + (µ− 1)2S2
0

] 1
2
}
. (23)
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For the requirement of πf (z) to be a µth -degree function, parameter kµ , which is given by k = kµz
µ−1 , must

be chosen properly:

kµ1,2 =
1

2
[2β2 + µ(µ− 1)q ±

√
(µ2q2 + 4γ2)((µ− 1)2 + 4ϵ2)] (24)

Taking into account the ± signs in Eq. (24), four different forms of πf (z) are obtained. The function πf (z),

which is chosen as the function τf (z) given by Eq. (14), has a negative derivative for physical validity [20].

This condition is provided by

kµ =
1

2
[2β2 + µ(µ− 1)q −

√
(µ2q2 + 4γ2)((µ− 1)2 + 4ϵ2)]. (25)

Using the chosen kµ in Eq. (25) the function πf (z) is obtained as

πf (z) =
1

2

[
S0

(
µ− 1 +

√
(µ− 1)2 + 4ϵ2

)
−

(
q(2µ− 1 +

√
(µ− 1)2 + 4ϵ2) +

√
µ2q2 + 4γ2

)
zµ

]
. (26)

After determining πf (z), one can obtain the functions τf (z), λ(z), and λn(z) from Eq. (14), Eq. (15), and

Eq. (16), respectively:

τf (z) = S0

(
1 +

√
(µ− 1)2 + 4ϵ2

)
−
(
q(µ+ 1 +

√
(µ− 1)2 + 4ϵ2) +

√
µ2q2 + 4γ2

)
zµ, (27)

λ(z) =
1

2

[
2β2 − µ2q −

√
(µ2q2 + 4γ2)((µ− 1)2 + 4ϵ2)−

µ
√
µ2q2 + 4γ2 − µq

√
(µ− 1)2 + 4ϵ2

]
zµ−1, (28)

λn(z) = nµ
[
q(µ+ 1 +

√
(µ− 1)2 + 4ϵ2) +

√
µ2q2 + 4γ2 +

(n− 1)(µ+ 1)q

2

]
zµ−1. (29)

For λ(z) = λn(z), the eigenvalue spectra of the problem are established by recalling the equalities given by Eq.

(8):

E2 −m2 =
α2

4

{
(µ− 1)2 −

[4mS0 − µ2α2q − µα
√
µ2α2q2 + 4S2

0(1 + 2n)− µ(µ+ 1)n(n+ 1)qα2)

µα2q(2n+ 1) + α
√
µ2α2q2 + 4S2

0

]2}
(30)

In order to obtain the eigenfunction solution, the function ϕ(z) is determined by using Eq. (17):

ϕ(z) = z
1
2 (µ−1+

√
(µ−1)2+4ϵ2)(S0 − qzµ)

1
2µq (µq+

√
µ2q2+4γ2). (31)

Then the functions ρ(z) and yn(z) are obtained from Eq. (18) and Eq. (19):

ρ(z) = z
√

(µ−1)2+4ϵ2(S0 − qzµ)
1
µq (

√
µ2q2+4γ2). (32)
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yn(z) = Bnz
−
√

(µ−1)2+4ϵ2(S0 − qzµ)−
1
µq (

√
µ2q2+4γ2)

dn

dzn
[
zn+

√
(µ−1)2+4ϵ2(S0 − qzµ)n+

1
µq (

√
µ2q2+4γ2)

]
. (33)

The right-hand sides of Eq. (31) and Eq. (33) are inserted in the transformation ψ(z) = ϕ(z)yn(z):

ψ(z) = Bnz
1
2 (µ−1+

√
(µ−1)2+4ϵ2)(S0 − qzµ)

1
2µq (µq+

√
µ2q2+4γ2)

z−
√

(µ−1)2+4ϵ2(S0 − qzµ)−
1
µq (

√
µ2q2+4γ2)

dn

dzn
[
zn+

√
(µ−1)2+4ϵ2(S0 − qzµ)n+

1
µq (

√
µ2q2+4γ2)

]
. (34)

Consequently, the eigenvalue and the eigenfunction spectra of a spinless particle in the generalized Hulthen

potential, which are identical to the results in Ref. [2] and Ref. [24] for µ = 1, have been obtained completely

in view of conformable fractional calculus.

5. Results and discussion

Fractionalization of the relativistic wave equations has been widely studied by using Riemann–Liouville or Ca-

puto fractional derivative operators in general. Since all fractional derivative operators have a nonlocal character

and they do not satisfy the Leibniz rule, the wave equations including these operators are so complicated in

order to obtain an analytical solution related to the fractional dimension of the space. Herein, a local fractional

derivative operator is needed to arrive at an exact solution. The local fractional form of the KG equation is

proposed in order to describe the dynamics of a relativistic particle moving in the generalized Hulthen potential

by means of a conformable fractional derivative operator. Therefore, variation in the energy and the wavefunc-

tion spectra with respect to the fractional order can be obtained in a more realistic manner. In the presented

figures, evolution of the ground state energy of a spinless particle in deformed Hulthen potential is represented

as a function of the fractional order µ for three different values of the deformation parameter q and for three

different values of the range parameter α , namely 0.5, 1, and 2. It can be seen that the curves increase more

rapidly with increasing q to a particular value of µ . Then they decrease to the well-known values of ground

state energy at µ = 1 when the green line in Figure (1) is excluded. In Figure (2) and Figure (3) the initial

values of the curves start at µ ̸= 0 for all values of q . Moreover, maximum values of the curves are in evidence

when µ reaches the value 1. On the whole, all curves intersect two by two at different points corresponding to

the different values of µ and the curves reach maximum values more rapidly with increasing α . Furthermore,

ground state energy for the deformed Hulthen potential is given numerically for fixed S0 = 0.25 and given α

in Table (1), Table (2) and Table (3).

Table 1. Ground-state energy of the local fractional KG

equation for S0 = 0.25 and α = 0.5. Here α is expressed

in units of Compton wavelength, α = 1/λC = mc/ℏ .

µ = 0.25 µ = 0.5 µ = 0.75 µ = 1
q E0 E0 E0 E0

0.5 0.376295 0.441808 0.478148 0.496505
1 0.42148 0.48417 0.5 0.498157
1.5 0.45227 0.5 0.503884 0.490179

Table 2. Ground-state energy of the local fractional KG

equation for S0 = 0.25 and α = 1. Here α is expressed

in units of Compton wavelength, α = 1/λC = mc/ℏ .

µ = 0.25 µ = 0.5 µ = 0.75 µ = 1
q E0 E0 E0 E0

0.5 0.84296 0.962835 1 0.996314
1 0.947387 1.01761 1.00519 0.964541
1.5 1 1.02942 0.994548 0.941246
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Figure 1. The variation in the ground state energy of a

relativistic particle moving in the generalized Hulthen po-

tential as a function of the fractional order µ for three dif-

ferent values of potential deformation parameter q , where

α = 0.5.

Figure 2. The variation in the ground state energy of a

relativistic particle moving in the generalized Hulthen po-

tential as a function of the fractional order µ for three dif-

ferent values of potential deformation parameter q , where

α = 1.

q=1.5 blue
q=1 red
q=0.5 green
alpha=2
n=0

0.2 0.4 0.6 0.8 1.0
μ1.6

1.7

1.8

1.9

2.0

2.1

E

Figure 3. The variation in the ground state energy of a relativistic particle moving in the generalized Hulthen potential

as a function of the fractional order µ for three different values of potential deformation parameter q , where α = 2.

Table 3. Ground-state energy of the local fractional KG equation for S0 = 0.25 and α = 2. Here α is expressed in

units of Compton wavelength, α = 1/λC = mc/ℏ .

µ = 0.25 µ = 0.5 µ = 0.75 µ = 1
q E0 E0 E0 E0

0.5 1.89477 2.03522 2.01038 1.92908
1 2.05619 2.06136 1.97015 1.85251
1.5 2.1062 2.05407 1.94451 1.81759
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